Home
Author Guide
Editor Guide
Reviewer Guide
Published Issues
Special Issue
Introduction
Special Issues List
Sections and Topics
Sections
Topics
Internet of Things (IoT) in Smart Systems and Applications
journal menu
Aims and Scope
Editorial Board
Indexing Service
Article Processing Charge
Open Access
Copyright and Licensing
Preservation and Repository Policy
Publication Ethics
Editorial Process
Contact Us
General Information
ISSN:
1798-2340 (Online)
Frequency:
Monthly
DOI:
10.12720/jait
Indexing:
ESCI (Web of Science)
,
Scopus
,
CNKI
,
etc
.
Acceptance Rate:
12%
APC:
1000 USD
Average Days to Accept:
87 days
Journal Metrics:
Impact Factor 2023: 0.9
4.2
2023
CiteScore
57th percentile
Powered by
Article Metrics in Dimensions
Editor-in-Chief
Prof. Kin C. Yow
University of Regina, Saskatchewan, Canada
I'm delighted to serve as the Editor-in-Chief of
Journal of Advances in Information Technology
.
JAIT
is intended to reflect new directions of research and report latest advances in information technology. I will do my best to increase the prestige of the journal.
What's New
2025-01-10
All 12 papers published in JAIT Vol. 15, No. 10 have been indexed by Scopus.
2024-12-23
JAIT Vol. 15, No. 12 has been published online!
2024-06-07
JAIT received the CiteScore 2023 with 4.2, ranked #169/394 in Category Computer Science: Information Systems, #174/395 in Category Computer Science: Computer Networks and Communications, #226/350 in Category Computer Science: Computer Science Applications
Home
>
Published Issues
>
2022
>
Volume 13, No. 6, December 2022
>
JAIT 2022 Vol.13(6): 624-631
doi: 10.12720/jait.13.6.624-631
Dark Web Text Classification by Learning through SVM Optimization
Ch A. S. Murty
1
and Parag H. Rughani
2
1. Centre for Development of Advanced Computing (C-DAC), Hyderabad, India
2. National Forensic Sciences University, India
Abstract
—The Darkweb has become the largest repository of unauthorized information compared to the surface web because of its benefit of anonymity and privacy. With these anonymity and privacy features, the dark web is also becoming a safe place for illegal activities and hence an increase of dark web usage and size of the onion-based URLs. With the increasing use of dark web users, it is the need for cybercrime investigators across the globe to classify dark web data for understanding various illegal activities to control and categorize URLs hosting such illicit activities with feature engineering. In this research, the Support Vector Machines (SVM) algorithm is used to understand the algorithm’s efficiency for a proposed model to classify dark web data with optimization techniques. Text-based keywords from more than 1800 websites were collected by applying feature engineering techniques and the system’s performance was evaluated with the SVM approach. The results are very encouraging as the Precision, Recall, and F-measure values are 0.83, 0.90 & 0.96 achieved with a dataset of 1800 URLs.
Index Terms
—Darkweb, SVM, classification, Darkweb content classification
Cite: Ch A. S. Murty and Parag H. Rughani, "Dark Web Text Classification by Learning through SVM Optimization," Journal of Advances in Information Technology, Vol. 13, No. 6, pp. 624-631, December 2022.
Copyright © 2022 by the authors. This is an open access article distributed under the Creative Commons Attribution License (
CC BY-NC-ND 4.0
), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is non-commercial and no modifications or adaptations are made.
附件说明
PREVIOUS PAPER
Implementation of Enhanced Data Integrity Algorithm in Cloud Computing
NEXT PAPER
The Design and Implementation of a Dashboard Web-Based Service Management Operations