Home
Author Guide
Editor Guide
Reviewer Guide
Published Issues
Special Issue
Introduction
Special Issues List
Sections and Topics
Sections
Topics
Internet of Things (IoT) in Smart Systems and Applications
journal menu
Aims and Scope
Editorial Board
Indexing Service
Article Processing Charge
Open Access
Copyright and Licensing
Preservation and Repository Policy
Publication Ethics
Editorial Process
Contact Us
General Information
ISSN:
1798-2340 (Online)
Frequency:
Monthly
DOI:
10.12720/jait
Indexing:
ESCI (Web of Science)
,
Scopus
,
CNKI
,
etc
.
Acceptance Rate:
12%
APC:
1000 USD
Average Days to Accept:
87 days
Journal Metrics:
Impact Factor 2023: 0.9
4.2
2023
CiteScore
57th percentile
Powered by
Article Metrics in Dimensions
Editor-in-Chief
Prof. Kin C. Yow
University of Regina, Saskatchewan, Canada
I'm delighted to serve as the Editor-in-Chief of
Journal of Advances in Information Technology
.
JAIT
is intended to reflect new directions of research and report latest advances in information technology. I will do my best to increase the prestige of the journal.
What's New
2024-09-25
Vol. 15, No. 9 has been published online!
2024-08-28
Vol. 15, No. 8 has been published online!
2024-07-29
Vol. 15, No. 7 has been published online!
Home
>
Published Issues
>
2022
>
Volume 13, No. 2, April 2022
>
JAIT 2022 Vol.13(2): 192-197
doi: 10.12720/jait.13.2.192-197
AI Based Cancer Detection Models Using Primary Care Datasets
Goce Ristanoski
1
, Jon Emery
2
, Javiera Martinez Gutierrez
2,3
, Damien McCarthy
2
, and Uwe Aickelin
1
1. Department of Computing and Information Systems, The University of Melbourne, Australia
2. Department of General Practice and Centre for Cancer Research, Medicine, Dentistry and Health Sciences, The University of Melbourne, Australia
3. Department of Family Medicine, School of Medicine, Pontifical Catholic University of Chile, Chile
Abstract
—Cancer is one of the most common and serious medical conditions with more than 144 000 Australians having been diagnosed with cancer in 2019. The non-specific nature of cancer symptoms and its low prevalence make cancer diagnosis particularly challenging, especially for primary care physicians/General Practitioners (GPs). Ongoing research in cancer diagnosis places a heavy focus on understanding the epidemiology of cancer symptoms. With GPs being the first point of contact for most patients, prediction models using the patient’s medical history from primary care data can be a useful decision tool for early cancer detection. Our work both investigates the opportunities to use primary care data, specifically pathology data, for developing such decision tools and tackles the challenges coming from uncertainty in the data such as irregular pathology records. We present opportunities using the results within the frequently ordered full blood count to determine relevance to a future cancer diagnosis. By using several different pathology metrics, we show how we can generate features suitable for AI models that can be used to detect cancer 3 months earlier than current practices. Though the work focuses on patients with lung cancer, the methodology can be adjusted to other types of cancer and other data within the medical records. Our findings demonstrate that even when working with incomplete or obscure patient history, hematological measures contain valuable information that can indicate the potential of cancer diagnosis for up to 8 out of 10 patients. The use of the proposed decision tool presents a way to incorporate pathology data in the current cancer diagnosis practices and to incorporate various pathology tests or other primary care datasets for similar purposes.
Index Terms
—explainable AI, early cancer detection, uncertainty in data, feature generation
Cite: Goce Ristanoski, Jon Emery, Javiera Martinez Gutierrez, Damien McCarthy, and Uwe Aickelin, "AI Based Cancer Detection Models Using Primary Care Datasets," Journal of Advances in Information Technology, Vol. 13, No. 2, pp. 192-197, April 2022.
Copyright © 2022 by the authors. This is an open access article distributed under the Creative Commons Attribution License (
CC BY-NC-ND 4.0
), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is non-commercial and no modifications or adaptations are made.
13-Y0004-Australia
PREVIOUS PAPER
Fast Data-Centric Optimization of Nonlinear Dynamic Flows on Network System Suited for Big-Data and Extreme Computing
NEXT PAPER
Towards Building a Facial Identification System Using Quantum Machine Learning Techniques