Home
Author Guide
Editor Guide
Reviewer Guide
Published Issues
Special Issue
Introduction
Special Issues List
Sections and Topics
Sections
Topics
Internet of Things (IoT) in Smart Systems and Applications
Human-Computer Interaction (HCI) in Modern Technological Systems
journal menu
Aims and Scope
Editorial Board
Indexing Service
Article Processing Charge
Open Access
Copyright and Licensing
Preservation and Repository Policy
Publication Ethics
Editorial Process
Contact Us
General Information
ISSN:
1798-2340 (Online)
Frequency:
Monthly
DOI:
10.12720/jait
Indexing:
ESCI (Web of Science)
,
Scopus
,
CNKI
, EBSCO,
etc
.
Acceptance Rate:
17%
APC:
1000 USD
Average Days to Accept:
106 days
Managing Editor:
Ms. Mia Hu
E-mail:
editor@jait.us
Journal Metrics:
Impact Factor 2023: 0.9
4.2
2023
CiteScore
57th percentile
Powered by
Editor-in-Chief
Prof. Kin C. Yow
University of Regina, Saskatchewan, Canada
I'm delighted to serve as the Editor-in-Chief of
Journal of Advances in Information Technology
.
JAIT
is intended to reflect new directions of research and report latest advances in information technology. I will do my best to increase the prestige of the journal.
What's New
2025-04-02
Included in Chinese Academy of Sciences (CAS) Journal Ranking 2025: Q4 in Computer Science
2025-03-20
JAIT Vol. 16, No. 3 has been published online!
2025-02-27
JAIT has launched a new Topic: "Human-Computer Interaction (HCI) in Modern Technological Systems."
Home
>
Published Issues
>
2021
>
Volume 12, No. 1, February 2021
>
Magnetic Resonance Sequences: Experimental Assessment of Achievements and Limitations
Pedro Furtado
DEI-CISUC, Universidade de Coimbra, Coimbra, Portugal
Abstract
—Deep Learning can be applied to learn segmentations of abdominal organs in MRI sequences, a challenging task due to changing morphologies of organs along different slices. Evaluation of outcome is important to decide on applicability and to command further improvements. Software tools include evaluation metrics. Some metrics indicate quasi-perfection, with potential erroneous conclusions, visual inspection and some per organ metrics say otherwise. Our aim is the correct interpretation of commonly available metrics on organs segmentation. The method to do that is to build two architectures (DeepLab, FCN), run segmentation experiments, interpret results. Examples of results as aggregates (mean accuracy 98% weighted IoU 97%) are overly optimistic. Further analysis shows much lower scores (mean IoU 68% IoU of individual organs 78, 66, 59, 41%). We conclude that correct interpretation of the metrics, importance of further architectural or post-processing improvements on false positives.
Index Terms
—segmentation, deep learning, assessment
Cite: Pedro Furtado, "Magnetic Resonance Sequences: Experimental Assessment of Achievements and Limitations," Journal of Advances in Information Technology, Vol. 12, No. 1, pp. 66-70, February 2021. doi: 10.12720/jait.12.1.66-70
Copyright © 2021 by the authors. This is an open access article distributed under the Creative Commons Attribution License (
CC BY-NC-ND 4.0
), which permits use, distribution and reproduction in any medium, provided that the article is properly cited, the use is non-commercial and no modifications or adaptations are made.
10-IP0063_Portugal
PREVIOUS PAPER
Deep-Learning Based Joint Iris and Sclera Recognition with YOLO Network for Identity Identification
NEXT PAPER
Viability Assessment of Bull Sperms Using Deep Learning
Article Metrics in Dimensions