
Enhancement of Recommendation Engine

Technique for Bug System Fixes

Jalal Sadoon Hameed Al-Bayati 1, Mohammed Al-Shamma 2, and Furat Nidhal Tawfeeq 1,*

1 Department of Website, University of Baghdad, Baghdad, Iraq
2 Department of Computer Engineering, University of Baghdad, Baghdad, Iraq

Email: jalal.hameed@uobaghdad.edu.iq (J.S.H.A.-B.); m.alshammaa@coeng.uobaghdad.edu.iq (M.A.-S.);

furat@bccru.uobaghdad.edu.iq (F.N.T.)

*Corresponding author

Abstract—This study aims to develop a recommendation

engine methodology to enhance the model’s effectiveness and

efficiency. The proposed model is commonly used to assign or

propose a limited number of developers with the required

skills and expertise to address and resolve a bug report.

Managing collections within bug repositories is the

responsibility of software engineers in addressing specific

defects. Identifying the optimal allocation of personnel to

activities is challenging when dealing with software defects,

which necessitates a substantial workforce of developers.

Analyzing new scientific methodologies to enhance

comprehension of the results is the purpose of this analysis.

Additionally, developer priorities were discussed, especially

their utility in allocating a problem to a specific developer.

An analysis was conducted on two key areas: first, the

development of a model to represent developer prioritizing

within the bug repository, and second, the use of hybrid

machine learning techniques to select bug reports. Moreover,

we use our model to facilitate developer assignment

responsibilities. Moreover, we considered the developers’

backgrounds and drew upon their established knowledge and

experience when formulating the pertinent objectives. An

examination of two individuals’ experiences with software

defects and how their actions impacted their rankings as

developers in a software project is presented in this study.

Researchers are implementing developer categorization

techniques, assessing severity, and reopening bugs. A suitable

number of bug reports is used to examine the model’s output.

A developer’s bug assignment employee has been established,

enabling the program to successfully address software

maintenance issues with the highest accuracy of 78.38%. Best

engine performance was achieved by optimizing and

cleansing data, using relevant attributes, and processing it

using deep learning.

Keywords—bugs, fusion of intelligent optimization, artificial

neural networks, machine and deep learning

I. INTRODUCTION

Open-source bug reports play a significant role in

software development cycles, accounting for up to 60% of

reported issues within the software development system.

The “10x Rule” posits that bugs that deviate significantly

from the norm are typically more challenging to identify

and rectify than other bugs. However, specific issues

remain undetectable or unpatched based on our current

understanding, bug identification, and resolution

capabilities. In addition, there has been a substantial rise in

software flaws. Furthermore, it is worth noting that 180

issues were detected and documented within Eclipse’s bug-

tracking system during software development. In addition,

Debian has generated approximately 140 unresolved bug

reports [1]. Software developers employ bug-reporting

tools to streamline the process of detecting and resolving

software defects. Furthermore, assigning problem reports

in the software development business is a significant

difficulty, requiring careful attention to ensure proper

allocation [2].

Open-source project developers commonly utilize an

open bug library to manage and track all reported software

defects. The task of rectifying the bug necessitates the

delegation of the error report to group members. Upon the

arrival of a novel writing, a select cohort of developers is

tasked with rectifying the software defect. Consequently,

this assists bug triage personnel in determining the

appropriate prioritization for bug resolution [3]. Bug

repositories are problem-tracking systems encompassing a

comprehensive database of software and programming

codes. In contrast to proprietary business databases, open-

source bug libraries are accessible to all users without any

cost. The utilization of repositories is crucial to facilitating

cooperation among programmers and supporting the

functionality of the associated project [4].

The study utilizes datasets sourced from the same open-

source project as Eclipse. A recommendation engine [5–7]

is employed, incorporating optimization techniques

through utilizing various machine learning algorithms,

including C4.5, neural networks, deep learning

architectures, and optimization techniques using the most

recent evolutionary algorithm. Several researchers utilized

support vector machines and explored the application of

unsupervised learning techniques. Moreover, the

researchers incorporated information derived from the

Firefox browser, which is renowned for being an open-

source software initiative. After a brief introduction, the

article discusses the background and methodology process

in Section III. A detailed description of the methodology
Manuscript received November 7, 2023; revised November 17, 2023;

accepted January 10, 2024; published April 28, 2024.

555

Journal of Advances in Information Technology, Vol. 15, No. 4, 2024

doi: 10.12720/jait.15.4.555-564

mailto:jalal.hameed@uobaghdad.edu.iq
mailto:m.alshammaa@coeng.uobaghdad.edu.iq
mailto:furat@bccru.uobaghdad.edu.iq

used in this study is presented in Section IV of this work.

In Section V, clustering is used to make the expected

outcomes. The final section of this study discussed the

study’s conclusion and prospects.

II. BACKGROUND

This section provides a concise overview of the diverse

bug-fixing methodologies proposed by multiple scholars.

Various methods have been proposed to identify the

optimal bug framework that offers recommendations for

the most effective bug-fixing applications. Xuan et al. [3]

examined a social network-based methodology for

prioritizing bug reports within the context of the Eclipse

and Mozilla bug repositories. Shokripour et al. [8]

employed a time-dependent bug identification technique in

their study. The time metadata for each word in the

database was examined. The statistical method known as

Term Frequency-Inverse Document Frequency (TF-IDF,

which is a metric utilized in machine learning and

information retrieval) is employed to observe the syntactic

variation of terms in documents. Jin et al. [9] employ an

enhanced Linear Discriminant Analysis model to automate

the classification of faults. The eligible bug reports were

defined based on the distribution of bug problems, and the

similarities between the bug fix creator and the distribution

were examined. The proposed technique utilizes developer

demographics to suggest a community of skilled

developers who regularly participate in bug resolution and

possess significant technical expertise.

The present study examined two distinct methodologies

in executing these investigations: social network

measurements and machine learning algorithms.

Considering the given characteristics, we elucidate the

methodologies employed in summarizing the comparisons,

considering the number of programs, variables considered,

and specific techniques utilized. This paper provides a

comprehensive overview of the existing knowledge about

problem triaging. Bug repositories are problem-tracking

systems encompassing a comprehensive database of

hardware, software, and programming concerns. Open-

source bug repositories, in contrast to closed-source

commercial repositories, are accessible to all individuals

without any cost. These repositories play a crucial role in

software development by facilitating progress exchange

among programmers during the development process.

Haruna et al. [10] utilized fine-tuned a pre-trained

Bidirectional Encoder Representations from Transformers

(BERT) triplet network that uses pairs. Duplicate-original

bug reports made the positive class, and Original-Unrelated

bug reports made the negative class. The original bug report

was the same (anchor) in both positive and negative cases.

In Lerch’s study [11], an analysis of existing bug reports

containing similar stack traces was proposed based on stack

traces available from execution. Therefore, the user does

not need to fill out the whole bug report only to discover

that it is a duplicate of another one.

Wang et al. [12] utilized both the bug information, such

as the summary and description, and the execution

information to compute the similarities between the two

bug reports. Utilizing execution information is a

compelling technique. They attempt to duplicate the bug by

following instructions to recreate it and monitor the

functions invoked during the process. They use this data to

construct a secondary collection of vectors and combine

similarity ratings derived from bug report information and

execution data. Their experiment attained a 90% recall rate

for k = 5 on a significantly limited dataset consisting of only

232 bug reports, with a mere 42 pairs of duplicates.

Kukkar et al. [13] used a Convolutional Neural Network

(CNN) for feature extraction, a deep learning model that

captures the syntactic and semantic meaning of features for

similarity computations. The study utilizes several openly

available bug data sources, for example, Eclipse, Open

Office, Firefox, etc. The paper reports 89%,83%, and 78%

recall rates for k = 5 for Eclipse, Open Office, and Firefox,

respectively. The formula for the recall is based on the

classification approach. It also accounts for the correct

classification of non-duplicate reports comprising 80% to

90% of the data. Alipour et al. [14] incorporated more

features based on bug reports and additional information

already available. Contextual features improve the ability

to identify duplicate bugs. Six contexts were created, each

linked to a list of words used to define the context. The

researchers used vectors from these new features and

typical bug report details to compute the similarity between

the two bugs. Kucuk and Tuzun [15] characterized Master,

Duplicate, and Unique bug reports. Classification was also

made of resolved master-duplicate bug reports and

unresolved master-duplicate bug reports, along with

measures that could be taken for each category. If the bug

tracking system allows, the proposed actions suggest

reopening the resolved bug report or creating a new scope.

If there is still an open Master bug report, the new bug

report cannot be submitted. Moreover, they identified

severe differences between parent and child bug reports in

both categories based on severity, the number of users

involved, the bug surface time, and the lifecycle time. As

part of the SiameseQAT, Rocha and Carvalho [16]

considered information from individual bug reports and

clusters of Parent-Child Reports in which each parent can

have multiple children. As a result, the Parent Report

becomes the collection’s centroid. In addition to syntactical

and semantic learning, SiameseQAT extracts topic

information from structured and unstructured texts. Their

report found that 85% of the recall was accounted for in

datasets from Eclipse, Netbeans, and Open Office.

Mahfoodh and Hammad [17] employed Word2Vec and

Tensorflow to construct a neural network-driven machine

learning model to detect duplicate bug reports. A word-

matching technique is employed to ascertain the similarities

between two phrases. In the study of Xiao et al. [18], a

novel heterogeneous information network has been

presented to integrate both structured and unstructured

features of a bug report, such as version, priority, severity,

etc. HINDBR, stands for Heterogeneous Information

Network Based Duplicate Bug Report, an innovative Deep

Neural Network (DNN) that detects duplicate defect reports

that are semantically similar with high accuracy, utilizes

representation learning to construct a complex neural

network. Their findings indicate a notable 98% accuracy

556

Journal of Advances in Information Technology, Vol. 15, No. 4, 2024

rate in classifying a limited dataset consisting of pairs of

bug reports that are either duplicates or non-duplicates.

III. METHODOLOGY

Fig. 1 presents the technique flowchart, which will be

briefly clarified in the subsequent parts.

Fig. 1. Proposed methodology flowchart.

A. Data Acquisition

The dataset was acquired through a data error monitor

on Eclipse’s official website, eclipse.org. The kit

comprises a dataset sample representing the results of bug

measures in the Eclipse platform. The bug identification

number is specified in the initial column of the table.

Lastly, the provided columns contain 48 group labels

ranging from one to seven. Each group inside the dataset

corresponds to a specific group of developers that their

respective firms have allocated to address and resolve

defects in particular components of the software project.

We conducted tests using MATLAB [19] and Weka [20]

to evaluate the effectiveness of various machine-learning

algorithms [20]. These tests involved classifying

characteristics based on group labels and relying on such

features. The accomplishment has been attained using a

ten-fold cross-validation method. The data exhibits

multiple dimensions, and the irrelevant columns should be

removed. Certain features, also known as variables, have

the potential to exhibit redundancy, noise, or a lack of

relevance to the desired outcome. The inclusion of

irrelevant features within machine learning models has the

potential to reduce their accuracy, efficiency, and

clarity [21]. The following figure illustrates the

developers engaged in the project and reported software

defects. An institutional framework delineates every

cohort of software developers, and each group rectifies the

quantity of software defects. Fig. 2 depicts the occurrence

of bugs for each group of developers, The bug reports are

classified into seven categories, with each category being

a class that includes many bug reports and the individuals

that resolved or marked the bugs. Our situation entails a

collection of over 7,000 bug reports that include many

developers. Fig. 2 displays the categories and the

respective number of defects in each category.

The dataset comprises various groups representing

distinct organizations engaged in application development

and their respective total counts. The whole dataset

containing Eclipse bugs is accessible at the following URL:

https://data.mendeley.com/datasets/t6d9y7yt54/1 [22].

Fig. 2. Occurrences of bugs within each classification.

The following columns represent the features (columns)

of the Eclipse bug report dataset. Each column in the

dataset contains information about the bug, such as the

platform from where the bug occurred. BugID; component;

assignee Email; os; platform; milestone; nrKeywords;

nrDependentBugs; peopleCC;

openedhoursOpenedBeforeNextRelease; lastModified;

priority; severity; resolution; firstFix; lastFix;

hoursLastFixBeforeNextRelease; hoursLastFixAfter

PreviousRelease; status;firstActivity; nrActivities;

lastResolution; nrComments; hoursToLastFix;

hoursToLastResolution; monthOpened; yearOpened;

monthYearOpened; monthYearLastFixed.

The previously mentioned features include the specific

information and components contained inside each bug

report. Fig. 3 presents an example of a bug report

document.

Fig. 3. Sample report of eclipse bugs.

0

500

1000

1500

2000

1 2 3 4 5 6 7

Occurrences of bugs within each classification

Class number of bugs

Data
Acquisition

Optimization/

Feature

Selection

ML/DL

Engine

Group relations

and Priorities

Output/

Appropriate
group

557

Journal of Advances in Information Technology, Vol. 15, No. 4, 2024

B. Optimization/Feature Selection

Employing a dataset for training classifiers can result in

inaccurate classifications and extend the duration of the

training process. Including explanatory and clarifying

elements inside the classification is considered excessive

and contradictory, thus lacking meaningful contribution.

To improve the precision of categorization, it is crucial to

eliminate redundant and inconsistent attributes [23].

Feature selection approaches are employed to classify

feature combinations that maximize the information

acquired efficiently. To prevent any potential excessive

influence on the performance of our dataset, the study

opted to eliminate the last twenty attributes that exhibited

the lowest correlation. Table I illustrates the effects of the

correlations among the different factors. The algorithms

have been constructed by leveraging the principles of

natural selection and the mechanics of natural genetics.

Genetic algorithms solve string structures resembling

biological structures and undergo temporal development

via survival filtering [24]. This objective is accomplished

by utilizing a randomized yet synchronized exchange of

information. As a result, a unique combination of genetic

material is produced in each following generation, with

only the most well-suited individuals being able to pass on

their genes to future generations [25]. The essential

attributes of the Genetic Algorithm (GA) and Harris

Hawks Optimization (HHO) [26] are given below. The

genetic algorithm employs the parameter set coding

technique instead of directly altering individual parameters.

• Search from a population of points rather than a

single point.

• Employ a reward as opposed to derivatives.

• Transformation laws that are probabilistic rather

than deterministic.

A genetic algorithm is a stochastic algorithm that

employs probabilistic principles. The determination of the

search mechanism is achieved by implementing a random

search strategy on a step-by-step superstructure model [27].

The optimal global solution can be achieved with a level

of certainty of x%. The search process is initiated by

selecting initial stochastic solutions called the

“population”. The structures in question are referred to as

chromosomes. Chromosomes consist of genetic material

known as genes [28]. The term “Gene” refers to the key

parameters inside the network, such as rates of hot and cold

canals. This study employed the Genetic Algorithm (GA)

to perform feature reduction for classification purposes.

Specifically, traits shown to have no impact on the

outcome were eliminated from consideration [29, 30].

The concept of HHO draws inspiration from the

predatory behavior of Harris hawks, namely their hunting

techniques involving target exploration, surprise pouncing,

and diverse attacking styles. HHO, also known as the

Harris Hawks Optimization, is an optimization technique

that operates on a population-based framework and does

not rely on gradient information. It has the following

phases [26]:

• Exploration phase

When examining the characteristics of Harris’ hawks, it

is evident that they possess the ability to locate and identify

prey effectively through their formidable visual acuity.

However, there are instances where the prey may prove

challenging to spot. Therefore, the hawks patiently engage

in the activities of waiting, observing, and monitoring the

desert location to identify potential prey, which may occur

after a considerable time. In the context of the Harris’

Hawks Optimization (HHO) algorithm, the Harris’ Hawks

are seen as the potential solutions, with the most optimal

solution being identified as the intended prey or

approximate optimum in each iteration [26].

• Exploitation phase

Prey individuals consistently tend to evade and avoid

circumstances that pose a potential threat to their well-

being. Let us consider the probability, denoted as r, of prey

either escaping (r < 0.5) or not successfully escaping (r ≥

0.5) before a surprise pounce occurs. Regardless of the

actions taken by the prey, the hawks will engage in either

a forceful or gentle pursuit to capture the victim. This

behavior entails multiple individuals’ coordinated

encirclement of the prey, employing varying degrees of

forcefulness or gentleness, contingent upon the prey’s

remaining energy levels. In practical scenarios, hawks

gradually approach their chosen prey to enhance their

likelihood of successfully collaborating in killing the

rabbit by executing an unexpected pouncing maneuver.

After a prolonged period, the prey that is attempting to

escape will have a gradual depletion of energy. As a result,

the hawks will increase their efforts in surrounding and

capturing the prey that is now fatigued. The E parameter is

employed to implement this technique and facilitate the

HHO’s transition between gentle and strong besiege

procedures. In this context, soft besiege is observed when

the absolute value of E is greater than or equal to 0.5.

Conversely, the manifestation of a hard besiege is noted

when the absolute value of E is less than 0.5 [26].

C. Feature Correlation

This study utilized the information gain technique to

ascertain the traits that are most strongly correlated. The

goal was to get valuable insights from these attributes,

which align with the columns of the dataset. The primary

objective of identifying correlations among the

characteristics is to eliminate any redundant features that

may impact the ultimate performance of our model. Given

the presence of strong correlations between two features

and the desire to streamline calculations, one of the

features was eliminated. Table I presents the rankings of

each attribute.

D. Engine

A wide variety of machine learning strategies are

utilized by the recommendation engine. These strategies

include Naive Bayes, Decision Trees, Support Vector

Machines, and unsupervised machine learning algorithms

such as Expectation Maximization. Initially, in the

framework of recommendation systems, an investigation

was carried out on several machine learning and deep

learning algorithms. These algorithms included C4.5,

Random Trees, and artificial neural networks. Through the

employment of genetic algorithms in feature selection

algorithms, the process of selecting ideal features has been

558

Journal of Advances in Information Technology, Vol. 15, No. 4, 2024

made easier, which has positively contributed to the

training of the model. A bi-directional selection technique

was utilized by the researchers to choose the most

advantageous characteristics, and the Naive Bayes

algorithm was included in the process [31]. MATLAB

machine learning and deep learning techniques [32] and

Weka [33]. were utilized in order to classify elements of

the dataset. The machine learning algorithm and/or deep

learning technique are the components that make up the

ML/DL engine. These components are explicated in the

subsequent subsections.

TABLE I. ATTRIBUTE CORRELATION RANKER

Rank Attributes

0.64949 component3Days

0.47267 PredictedProbability_1

0.47267 PredictedProbability_2
0.36122 bugID

0.24057 os3Days

0.23763 PredictedProbability_1_1
0.22175 PredictedProbability_2_1

0.11869 status30Days

0.07545 nrActivities30Days
0.07222 nrActivities

0.07206 hoursLastFixAfterPreviousRelease

0.06964 nrActivities14Days
0.06582 nrActivities7Days

0.05873 status3Days

0.05732 hoursLastFixBeforeNextRelease
0.05713 nrActivities3Days

0.04461 nrActivities1Days

0.03219 hoursToLastFix
0.02681 monthOpened

0.02491 hoursToLastResolution

0.02247 priority30Days
0.02222 peopleCC

0.02163 filter_$
0.02082 nrPeopleCC30Days

0.02055 nrPeopleCC14Days

0.01949 hTLFix2Bins7Days
0.01898 hTLFix2Bins3Days

0.01892 nrPeopleCC7Days

0.01799 nrComments30Days
0.01752 nrPeopleCC3Days

0.01686 nrPeopleCC1Days

0.01621 platform3Days
0.01617 hTLFix2Bins14Days

0.01360 hTLFix2Bins1Days

0.01152 hTLFix2Bins30Days

0.00947 nrComments

0.00935 hTLFix2Bins0Days

0.00863 nrPeopleCC0Days
0.00863 initPeopleCC

0.00792 nrComments14Days

0.00658 severity3Days
0.00622 nrComments7Days

0 nrComments3Days

0 nrComments0Days
0 nrComments1Days

0 nrActivities0Days

0 nrDependentBugs
0 nrKeywords

0 esolution3Days

1) C4.5 algorithm with optimization

The C4.5 algorithm categorizes the dataset into seven

distinct classes [34]. The main configuration of the C4.5

model is shown in Table II.

TABLE II. C4.5 PARAMETERS

Parameter Value

Batch size 100

Confidence factor 0.25

Number of folds 3

2) Random trees with optimization

The novel occurrence of a particular entity is derived

from the collective assemblage of trees cultivated inside

the forested region. Every individual node produces a

categorization for unknown cases, which are subsequently

recorded as votes. The majority voting method involves

aggregating the votes from many decision trees, and the

class that obtains the most significant number of votes is

designated as the predicted outcome for the new instance.

According to Breiman [34, 35], the majority voting

process in Random Forests serves as a categorization

voting mechanism. Experiments are conducted on the

voting behaviour of individuals.

The parameters employed in the RF algorithm are as

follows:

• maxDepth = 0; The value assigned to the variable
“maxDepth” represents the maximum depth of the
trees. A value of 0 indicates that there is no limit on
the depth.

• numFeatures = 0; The number of qualities to be
employed in random selection; If the value is less
than 1 (the default), the logarithm of M plus 1 is
used, where M represents the number of inputs.
Various numbers of characteristics, such as 10 or
20, were experimented with, but no significant
impact on the accuracy results was observed.

• numTrees = 150; The number of trees to be
generated throughout the duration of the
experiment.

The random forest ensemble consists of thirty-five

decision trees, each constructed using five features. The

coefficient of variance for these features is measured to be

0.3347. After generating classifiers for each technique,

iterate through each (Xi, Yi) pair in the original training

set “T” and choose all “Tk” that do not contain the pair (Xi,

Yi). A null set refers to a dataset subset containing no

original records. The instances being referred to are the

out-of-bag cases. The random forest ensemble comprises a

total of thirty-five decision trees, each created based on a

set of five attributes. The coefficient of variation for these

features has been shown to be 0.3347. After producing

classifiers for each approach, it is necessary to cycle

through each pair (Xi, Yi) in the original training set “T”

and choose all “Tk” that do not include the pair (Xi, Yi).

A null set is defined as a subset of a dataset that does not

include any elements from the original records. The

instances being alluded to are the cases that are not

included in the bootstrap sample.

3) Simple logistic with optimization

Logistic regression analysis is a suitable statistical

method for analyzing a result that is dichotomous in nature.

The logistic regression model is a statistical technique used

for analyzing data. Logistic regression is a statistical

technique that explains the association between a single

559

Journal of Advances in Information Technology, Vol. 15, No. 4, 2024

dependent variable and one or more independent

variables [36].

4) CNN with optimization

The dynamics of intercellular communication and the

underlying mechanisms of brain functionality shaped the

development of this technique. The current methodology

was established to attain the capability to do various jobs

exclusively by analyzing training data samples. In image

recognition, the employed approach involves training a

model to distinguish between photos labeled as “keyboard”

and those labeled as “not keyboard.” This trained model is

subsequently utilized to identify keyboards inside other

photographs. No prerequisite knowledge or skills are

necessary as the system automatically generates and

differentiates features from the provided samples [37].

The development of this strategy was informed by the

mechanisms of brain-cell interaction and the functioning of

the brain. In the field of image recognition, the employed

approach involves training a model to distinguish between

photos labeled as “keyboard” and those labeled as “not

keyboard”. This trained model is subsequently utilized to

identify keyboards inside other photographs. No prior

knowledge or skills are necessary since the system

automatically generates and differentiates features based on

the inputted samples [38].

Typically, a Node is comprised of multiple levels. Each

layer consists of several nodes that execute operations on

diverse inputs. The transmission of signals progresses

across the many levels of a neural network, starting with

the input layer and concluding at the output layer. This

process involves traversing the intermediate layers multiple

times, with the number of iterations determined by the

threshold and precision required to achieve optimal

outcomes for the training model. The study also analyzed

the neural network model as a training mechanism and the

hybrid approach combining decision tree and naïve Bayes

to determine the optimal outcomes for assigning bug

reports from open-source systems to the appropriate

developer [39]. Some of CNN architectures are mentioned

below.

VGG16: VGG stands for the Visual Geometry Group; it

is a multi-layered deep Convolutional Neural Network

(CNN) standard architecture. The VGG16 architecture is a

Convolutional Neural Network (CNN) known for its 16-

layer depth. One can use a pre-trained neural network that

has been trained on a dataset of more than one million

photographs from the ImageNet database [40]. We

employed a mini batch size of 32 and utilized max pooling

with a stride of 2.

GoogLeNet: GoogLeNet is a convolutional neural

network consisting of 22 layers. It is a modified iteration of

the Inception Network. The Inception Network is a variant

of deep convolutional neural network that was initially

developed by academics associated with Google. The

GoogLeNet architecture, which was presented at the

ImageNet Large-Scale Visual Detection Challenge 2014

(ILSVRC14), effectively tackled computer vision tasks

such as image classification and object detection [41]. We

utilized a mini batch size of 32 and employed max pooling

with a stride of 2.

5) Group relations
The necessary time for each programmer in both the

training and testing sets has been computed, and the

demand of each programmer in the bug’s class has been

determined using the following methodology:

• The objective is to ascertain the amount of time

each programmer needs within the group.

• Identify the disparities in temporal measurements.

• The programmers should be arranged in ascending

order of their speed, with the fastest programmers

being assigned the highest rank.

IV. FINDINGS AND ANALYSIS

Accuracy is a quantitative measure used to assess the

performance of classification models. Informally, accuracy

refers to the proportion of correct predictions made by our

model. Accuracy is defined as the degree to which anything

is correct or precise, according to established standards or

criteria:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ()

For binary classification, accuracy can be computed by

considering the number of true positives and true negatives.

Let TP represent the number of true positives, TN

represent the number of true negatives, FP represent the

number of false positives, and FN represent the number of

false negatives.

Precision rates of 50% have been attained, and it has

been posited that these precision rates are sufficient for bug

triagers to discern the suitability of developers for

assignment to specific bug reports [42]. In this study, we

employed a 10-fold cross-validation technique and

conducted attribute correlation analysis to select and

evaluate features in the dataset. In formulating our bug

measures, we employed various machine learning

algorithms, including Naive Bayes, J48, Simplelogstic,

random trees, artificial neural networks, and deep learning

architectures. The utilization of an Intrinsic Network has

yielded optimal results.

Additionally, our findings indicate the presence of

certain features that are unsuitable for the classification task,

resulting in a further deterioration of the results. Conversely,

certain other features exhibited a greater classification

accuracy rate. Accuracy optimization was achieved by

selecting the top thirty characteristics with strong attribute

correlation values [43]. The model output of different

machine learning algorithms, namely Naïve Bayes, random

trees, Simple Logistic, and Artificial Neural Networks, are

presented in Table I. The algorithms were trained using a

learning rate of 0.2, momentum of 0.5, batch size of 100,

and not less than 500 iterations. With respect to the number

of trees within a random forest, the findings indicate that

frequently, an increased number of trees in a forest mostly

escalates its computational burden without yielding any

substantial benefits. This phenomenon was observed in the

dataset under investigation. When a quantity exceeding 150

trees was employed. We conducted experiments with 400

and 600 trees; however, no statistically significant

560

Journal of Advances in Information Technology, Vol. 15, No. 4, 2024

differences were discovered. We employed optimization

techniques to enhance the algorithms’ classification

accuracy and computational efficiency. The manipulation

of class labels within the clustering algorithm resulted in

improved outcomes. The demand for each programmer in

the class is determined based on the consumption of the

features from the previous hours. The corresponding

findings are presented in Table III. The results in Table III

demonstrate the accuracy outcomes and show the impact of

combining the Naïve Bayes algorithm and Artificial Neural

Networks (ANN) in the training set and utilizing C4.5 with

Simplelogistic (50% training, 50% validation) in the

dataset. The combined approach yields superior outcomes

compared to using each method individually. Specifically,

the optimization technique resulted in an approximate

improvement of 7.4%, while the hybrid optimization

approach achieved a gain of 8.2%. The HHO optimization

also improves the results by approximately 2.9%.

TABLE III. ACCURACY OUTCOMES

Method

Classification

accuracy (%) using

GE

Classification

accuracy (%) using

HHO

C4.5 60.87 63.14

Random Trees 51.04 52.94

Simple Logistic 60.97 63.24

Naïve Bayes 48.76 50.57

Artificial Neural
Networks (ANN)

62.66 64.99

VGG16 66.93 69.42

GoogLeNet 60.97 63.24

C4.5 optimization 65.14 67.57

Random Trees
optimization

54.81 56.86

Simple Logistic

optimization
65.44 67.88

Naïve Bayes optimization 52.33 54.28

Artificial Neural

Networks with

Optimization

67.33 69.83

Fusion Opt.C4.5 and
Opt.SimpleLogistic

66.13 68.60

Fusion Opt.ANN and

Opt.C4.5
67.13 69.63

Fusion Opt.Naïve Bayes
and Opt.ANN

60.67 62.93

Fusion Opt.ANN and

Opt.Random Trees
61.76 64.07

Fusion Opt. VGG16 and
Opt. GoogLeNet

61.76 64.07

A. Clustering Findings

Through the utilization of a K-means technique, in which

the value of K is set to 1000, it is possible to achieve the

enhancement of system efficiency. This may be

accomplished by modifying the classes or sets that the

programmer has created. It was decided to construct a total

of seven different groups, which are known as classes.

Every programmer is placed in the cluster that is

geographically closest to them, and this assignment is based

on the mean value of their scores. The information

presented in Table IV offers a comprehensive summary of

programmers and the cluster links that represent them.

Table V and Fig. 4 present the results of the accuracy tests

performed using the new classes.

TABLE IV. NEW CLASSES AND THEIR DEVELOPERS

New class Number of developers

1 1572

2 1223

3 1180
4 1089

5 949

6 902
7 855

TABLE V. ACCURACY OF CLUSTERED CLASSES

Method

Classification

accuracy (%)

using GE

Classification

accuracy (%)

using HHO

C4.5 67.03 69.53

Random Trees 58.49 60.67

Simple Logistic 66.73 69.22

Naïve Bayes 56.30 58.40

Artificial Neural Networks
(ANN)

70.60 73.23

VGG16 75.57 78.38

GoogLeNet 68.81 71.38

C4.5 optimization 71.79 74.47

Random Trees optimization 62.76 65.10

Simple Logistic

optimization
71.69 74.37

Naïve Bayes optimization 60.47 62.73

Artificial Neural Networks
with Optimization

75.37 78.18

Fusion Opt.C4.5 and

Opt.SimpleLogistic
74.28 77.04

Fusion Opt.ANN and

Opt.C4.5
74.57 77.35

Fusion Opt.Naïve Bayes

and Opt.ANN
68.02 70.56

Fusion Opt.ANN and

Opt.Random Trees
61.76 64.07

Fusion Opt. VGG16 and
Opt. GoogLeNet

71.79 74.47

Fig. 4. Accuracy of clustered classes.

B. Analysis

Following the implementation of the new classes, we

applied the same approaches in conjunction with a 10-fold

cross-validation procedure, which resulted in significant

gains of 11% being observed in the outcomes. This was

after the new classes were introduced. During the duration

of our experiments, we saw that there were limitations. The

fact that the data are distributed in a random fashion makes

it necessary to do substantial preprocessing processes

before they can be employed. This is one of the limitations.

Because of this, the utilization of real-time data would

present difficulties, as it would necessitate a big amount of

561

Journal of Advances in Information Technology, Vol. 15, No. 4, 2024

hardware resources and a substantial amount of electricity

due to the high level of processing complexity involved. In

addition, it is a difficult task to choose the most effective

method of artificial intelligence to use to power the system.

The assertion that only deep neural networks will do

incredibly well with this kind of data is not something that

can be considered accurate. One reason for this is because

the complexity of the model, such as in deep neural

networks, as well as its configurations that involve many

running parameters, also influence the hardware resources

that are required to implement these models. In the process

of analyzing the results of different artificial intelligence

models, it is essential to always take into consideration the

selection of the best model and the fine-tuning of its

hyperparameters. In terms of the performance of the model,

ANN demonstrates positive results with a score of 73.23%;

nevertheless, the architecture with the highest score was

VGG16, which scored 78.38%. As a result of its ease of use

in determining the classes among the dataset, Naïve Bayes

demonstrated the least successful results, with a percentage

of 58.4%.

V. FUTURE ASPECTS

Subsequent investigations may employ exclusive

selection filtering algorithms to focus on the salient terms

utilized in bug reports [44]. Utilizing the chi-square

selection method is appropriate for evaluating the

computational criteria of the experiment. Developing a

unique optimization algorithm is crucial for achieving

accurate results that align with the specific dataset and

methodology. It is advisable to explore alternative

methodologies rather than solely relying on the current

strategy [45]. The efficiency of the framework is measured

in terms of time. Our methodology examines the correlation

between the attributes of an exemplary software developer

and the level of severity in bug reports. Current developers

are not required to undergo retraining of prediction models

when fresh data is received [46]. This approach reduces the

duration required for updating the framework. However,

leveraging the system’s knowledge and understanding of

each time is crucial to uphold its effectiveness [47]. Various

potential enhancements and effective resolutions can be

contemplated, given the imperative requirement for the

system to operate autonomously in terms of evaluation,

recognition, and suitable feature selection [48]. This

includes activities such as code testing and time

management during the execution of diverse tasks,

enabling the system to automatically adapt and resolve

incoming new tasks [37, 49].

VI. CONCLUSION

The framework technique helps bug triage programmers

manage and choose solutions for issue reports. The open-

source bugs repository is used for bug report assignments.

Nave Bayes, J48, random forests, and simple logistic

models were utilized. Information benefit values were used

to identify decision-making features during feature

collection. Therefore, we excluded the 20 least informative

features. We used a method for each class using the 30 most

important attributes.

Bug reports were identified by random forest and neural

networks. Multiple scholarly papers propose algorithms

that support the conclusion. Decision trees and SVMs are

frequently inferior to the classification described above

method. Two essential advantages come from choosing a

random forest. One advantage of this strategy is its

independence from interactive functions. Decision Trees do

well on considerable datasets in tree ensembles. The

random forest’s features suggest 150 trees for this ensemble

technique. Tree classifiers’ effectiveness and dependence

determine random forest accuracy. Top-voted tree ranking

method. More random forest trees increase computing time

but not per-second output. Machine learning techniques use

hybrid and optimization methods to create a bug

assignment framework that meets objectives.

Choosing the most suitable approach is a complex task

requiring careful consideration of various factors, including

available hardware resources, user experience, and the

volume of the data needed to train the engine. Generally,

Machine Learning (ML) approaches do not necessitate a

large amount of data for training, whereas Deep Learning

(DL) approaches require a substantial amount of data.

Preprocessing significantly improves performance by

acting as a filter for subsequent processes in the approach.

Utilizing optimal and relevant characteristics, optimizing

and cleansing the data, and processing it through a deep

learning approach yielded superior engine performance.

Nevertheless, it necessitated a substantial amount of time to

execute and demanded high hardware specs.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

J.S.H. conducted the research and methodology, M. A.

analyzed the data, and F.N.T. wrote the paper. All authors

have approved the final version.

ACKNOWLEDGEMENT

We express our gratitude to our colleagues for their

valuable assistance in our study, and we extend our thanks

to the University of Baghdad for their support during the

duration of this research effort.

REFERENCES

[1] T. Zimmermann and A. C. Artís, “Impact of switching bug trackers:

a case study on a medium-sized open source project,” in Proc.
International Conference on Software Maintenance and Evolution,

Cleveland, 2019.
[2] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo, “Towards more

accurate severity prediction and fixer recommendation of software

bugs,” Journal of Systems and Software, vol. 117, pp. 166–184,

2016. https://doi.org/10.1016/j.jss.2016.02.034
[3] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer prioritization in

bug repositories,” in Proc. 34th International Conference on
Software Engineering, 2012.

[4] S. Singh, “Analysis of bug tracking tools,” International Journal of

Scientific & Engineering Research, vol. 4, no. 7, Jul. 2013.

562

Journal of Advances in Information Technology, Vol. 15, No. 4, 2024

[5] S. A. Qader and A. R. Abbas, “Dual-stage social friend

recommendation system based on user interests,” Iraqi Journal of

Science, pp. 1759–1772, Jul. 2020. doi: 10.24996/ijs.2020.61.7.25
[6] A. L. Bakri et al., “A study on the accuracy of prediction in

recommendation system based on similarity measures,” Baghdad

Science Journal, vol. 16, no. 1, 0263, Mar. 2019.
doi: 10.21123/bsj.2019.16.1(Suppl.).0263

[7] A. R. A. S. A. Mohammed and A. Kareem, “Design

recommendation system in e-commerce site,” Iraqi Journal of
Science, vol. 57, no. 4A, pp. 2549–2556, 2022.

[8] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani, “A time-

based approach to automatic bug report assignment,” Journal of
Systems and Software, vol. 102, pp. 109–122, Apr. 2015.

doi: 10.1016/j.jss.2014.12.049

[9] G. Jin, T. Wang, Y. Amirat, Z. Zhou, and T. Xie, “A layering linear
discriminant analysis-based fault diagnosis method for grid-

connected inverter,” J. Mar. Sci. Eng., vol. 10, no. 7, 939, Jul. 2022.

doi: 10.3390/jmse10070939
[10] H. Isotani, H. Washizaki, Y. Fukazawa, T. Nomoto, S. Ouji, and S.

Saito, “Duplicate bug report detection by using sentence embedding

and fine-tuning,” in Proc. 2021 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Sep. 2021, pp. 535–

544. doi: 10.1109/ICSME52107.2021.00054

[11] J. Lerch and M. Mezini, “Finding duplicates of your yet unwritten
bug report,” in Proc. 2013 17th European Conference on Software

Maintenance and Reengineering, IEEE, Mar. 2013, pp. 69–78.

doi: 10.1109/CSMR.2013.17
[12] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to

detecting duplicate bug reports using natural language and

execution information,” in Proc. 13th International Conference in
Software Engineering, 2008, pp. 461–470.

[13] A. Kukkar, R. Mohana, Y. Kumar, A. Nayyar, M. Bilal, and K.-S.

Kwak, “Duplicate bug report detection and classification system
based on deep learning technique,” IEEE Access, vol. 8, pp.

200749–200763, 2020. doi: 10.1109/ACCESS.2020.3033045

[14] A. Alipour, A. Hindle, and E. Stroulia, “A contextual approach
towards more accurate duplicate bug report detection,” in Proc.

2013 10th Working Conference on Mining Software Repositories
(MSR), IEEE, May 2013, pp. 183–192.

doi: 10.1109/MSR.2013.6624026

[15] B. Kucuk and E. Tuzun, “Characterizing duplicate bugs: An
empirical analysis,” in Proc. 2021 IEEE International Conference

on Software Analysis, Evolution and Reengineering (SANER), Mar.

2021, pp. 661–668. doi: 10.1109/SANER50967.2021.00084
[16] T. M. Rocha and A. L. D. C. Carvalho, “SiameseQAT: A semantic

context-based duplicate bug report detection using replicated

cluster information,” IEEE Access, vol. 9, pp. 44610–44630, 2021.
doi: 10.1109/ACCESS.2021.3066283

[17] H. Mahfoodh and M. Hammad, “Word2Vec duplicate bug records

identification prediction using tensorflow,” in Proc. 2020
International Conference on Innovation and Intelligence for

Informatics, Computing and Technologies (3ICT), IEEE, Dec. 2020,

pp. 1–6. doi: 10.1109/3ICT51146.2020.9311954
[18] G. Xiao, X. Du, Y. Sui, and T. Yue, “HINDBR: Heterogeneous

information network based duplicate bug report prediction,” in Proc.

2020 IEEE 31st International Symposium on Software Reliability
Engineering (ISSRE), IEEE, Oct. 2020, pp. 195–206.

doi: 10.1109/ISSRE5003.2020.00027

[19] MATLAB. (January 2021). [Online]. Available:
https://www.mathworks.com/products/matlab.html

[20] Weka 3: Machine Learning Software in Java. (May 2022). [Online].

Available: https://www.cs.waikato.ac.nz/ml/weka/
[21] M. Afshar and H. Usefi, “Optimizing feature selection methods by

removing irrelevant features using sparse least squares,” Expert Syst.

Appl., vol. 200, 116928, Aug. 2022.
doi: 10.1016/j.eswa.2022.116928

[22] L. Çarkacıoğlu. (March 2023). Dataset on eclipse bug records on

bugzilla. Mendeley Data [Online]. Available:
https://data.mendeley.com/datasets/t6d9y7yt54/1

[23] E. Lughofer and M. Pratama, “Evolving multi-user fuzzy classifier

system with advanced explainability and interpretability aspects,”
Information Fusion, vol. 91, pp. 458–476, Mar. 2023.

doi: 10.1016/j.inffus.2022.10.027

[24] M. A. Albadr, S. Tiun, M. Ayob, and F. Al-Dhief, “Genetic
algorithm based on natural selection theory for optimization

problems,” Symmetry (Basel), vol. 12, no. 11, 1758, Oct. 2020.

doi: 10.3390/sym12111758

[25] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic
algorithm: past, present, and future,” Multimed Tools Appl., vol. 80,

no. 5, pp. 8091–8126, 2021. doi: 10.1007/s11042-020-10139-6

[26] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and H.
Chen, “Harris hawks optimization: Algorithm and applications,”

Future Generation Computer Systems, vol. 97, pp. 849–872, Aug.

2019. doi: 10.1016/j.future.2019.02.028
[27] A. Shafiee, M. Nomvar, Z. Liu, and A. Abbas, “A new genetic

algorithm based on Prenatal Genetic Screening (PGS-GA) and its

application in an automated process flowsheet synthesis problem
for a membrane based carbon capture case-study,” Chemical

Engineering Research and Design, vol. 128, pp. 265–289, Dec.

2017. doi: 10.1016/j.cherd.2017.10.009
[28] K. Park, D. Shin, and S. Chi, “Variable chromosome genetic

algorithm for structure learning in neural networks to imitate human

brain,” Applied Sciences, vol. 9, no. 15, 3176, Aug. 2019.
doi: 10.3390/app9153176

[29] Y. Masoudi-Sobhanzadeh, H. Motieghader, Y. Omidi, and A.

Masoudi-Nejad, “A machine learning method based on the genetic
and world competitive contests algorithms for selecting genes or

features in biological applications,” Sci. Rep., vol. 11, no. 1, 3349,

Feb. 2021. doi: 10.1038/s41598-021-82796-y
[30] S. Y. Hera and M. Amjad, “Prediction of explicit features for

recommendation system using user reviews,” Iraqi Journal of

Science, pp. 5015–5023, Nov. 2022.
doi: 10.24996/ijs.2022.63.11.36

[31] H. Chen, S. Hu, R. Hua, and X. Zhao, “Improved naive Bayes

classification algorithm for traffic risk management,” EURASIP J.
Adv. Signal Process, vol. 2021, no. 1, 30, Dec. 2021. doi:

10.1186/s13634-021-00742-6

[32] C. Warren, “MATLAB for engineers: Development of an online,
interactive, self-study course,” Engineering Education, vol. 9, no.

1, pp. 86–93, Jul. 2014. doi: 10.11120/ened.2014.00026

[33] Y. Dou and W. Meng, “Comparative analysis of weka-based
classification algorithms on medical diagnosis datasets,”

Technology and Health Care, vol. 31, pp. 397–408, Apr. 2023.
doi: 10.3233/THC-236034

[34] N. Khanna. (September 2023). J48 classification (C4.5 algorithm)

in a nutshell. Medium [Online]. 3. Available:
https://medium.com/@nilimakhanna1/j48-classification-c4-5-

algorithm-in-a-nutshell-24c50d20658e

[35] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–
32, 2001. doi: 10.1023/A:1010933404324

[36] J. K. Harris, “Primer on binary logistic regression,” Fam. Med.

Community Health, vol. 9, no. 1, 001290, Dec. 2021.
doi: 10.1136/fmch-2021-001290

[37] O. Adebayo, A. Patel, and J. Summers, “ANN crowds in early-stage

design: An investigation of influence of small training sets on
prediction,” Procedia CIRP, vol. 119, pp. 589–595, 2023.

doi: 10.1016/j.procir.2023.02.153

[38] O. A. M. López, A. M. López, and J. Crossa, “Fundamentals of
artificial neural networks and deep learning,” Multivariate

Statistical Machine Learning Methods for Genomic Prediction,

2022, pp. 379–425. doi: 10.1007/978-3-030-89010-0_10
[39] M. Gallo, G. D. Luca, L. D. Acierno, and M. Botte, “Artificial

neural networks for forecasting passenger flows on metro lines,”

Sensors, vol. 19, no. 15, 3424, Aug. 2019. doi: 10.3390/s19153424
[40] J. Tao, Y. Gu, J. Sun, Y. Bie, and H. Wang, “Research on vgg16

convolutional neural network feature classification algorithm based

on transfer learning,” in Proc. 2021 2nd China International SAR
Symposium (CISS), IEEE, Nov. 2021. pp. 1–3.

doi: 10.23919/CISS51089.2021.9652277

[41] X. Wang et al., “SpikeGoogle: Spiking neural networks with
GoogLeNet‐like inception module,” CAAI Trans. Intell. Technol.,

vol. 7, no. 3, pp. 492–502, Sep. 2022. doi: 10.1049/cit2.12082

[42] M. Samir, N. Sherief, and W. Abdelmoez, “Improving bug
assignment and developer allocation in software engineering

through interpretable machine learning models,” Computers, vol.

12, no. 7, 128, Jun. 2023. doi: 10.3390/computers12070128
[43] S. Kumar and I. Chong, “Correlation analysis to identify the

effective data in machine learning: prediction of depressive disorder

and emotion states,” Int. J. Environ Res. Public Health, vol. 15, no.
12, 2907, Dec. 2018. doi: 10.3390/ijerph15122907

563

Journal of Advances in Information Technology, Vol. 15, No. 4, 2024

[44] H. Mahmud, A. K. M. N. Islam, S. I. Ahmed, and K. Smolander,

“What influences algorithmic decision-making? A systematic

literature review on algorithm aversion,” Technol. Forecast Soc.
Change, vol. 175, 121390, Feb. 2022.

doi: 10.1016/j.techfore.2021.121390

[45] D. P. M. Abellana and D. M. Lao, “A new univariate feature
selection algorithm based on the best–worst multi-attribute

decision-making method,” Decision Analytics Journal, vol. 7,

100240, Jun. 2023. doi: 10.1016/j.dajour.2023.100240
[46] M. M. Taye, “Understanding of machine learning with deep

learning: Architectures, workflow, applications and future

directions,” Computers, vol. 12, no. 5, 91, Apr. 2023.
doi: 10.3390/computers12050091

[47] A. M. Abubakar, H. Elrehail, M. A. Alatailat, and A. Elçi,

“Knowledge management, decision-making style and
organizational performance,” Journal of Innovation & Knowledge,

vol. 4, no. 2, pp. 104–114, Apr. 2019.

doi: 10.1016/j.jik.2017.07.003

[48] N. Pudjihartono, T. Fadason, A. W. Kempa-Liehr, and J. M. O.
Sullivan, “A review of feature selection methods for machine

learning-based disease risk prediction,” Frontiers in Bioinformatics,

vol. 2, Jun. 2022. doi: 10.3389/fbinf.2022.927312
[49] Y. Xu et al., “Artificial intelligence: A powerful paradigm for

scientific research,” The Innovation, vol. 2, no. 4, 100179, Nov.

2021. doi: 10.1016/j.xinn.2021.100179

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

564

Journal of Advances in Information Technology, Vol. 15, No. 4, 2024

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V15N4-555

