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Abstract—This study aims to develop a recommendation 

engine methodology to enhance the model’s effectiveness and 

efficiency. The proposed model is commonly used to assign or 

propose a limited number of developers with the required 

skills and expertise to address and resolve a bug report. 

Managing collections within bug repositories is the 

responsibility of software engineers in addressing specific 

defects. Identifying the optimal allocation of personnel to 

activities is challenging when dealing with software defects, 

which necessitates a substantial workforce of developers. 

Analyzing new scientific methodologies to enhance 

comprehension of the results is the purpose of this analysis. 

Additionally, developer priorities were discussed, especially 

their utility in allocating a problem to a specific developer. 

An analysis was conducted on two key areas: first, the 

development of a model to represent developer prioritizing 

within the bug repository, and second, the use of hybrid 

machine learning techniques to select bug reports. Moreover, 

we use our model to facilitate developer assignment 

responsibilities. Moreover, we considered the developers’ 

backgrounds and drew upon their established knowledge and 

experience when formulating the pertinent objectives. An 

examination of two individuals’ experiences with software 

defects and how their actions impacted their rankings as 

developers in a software project is presented in this study. 

Researchers are implementing developer categorization 

techniques, assessing severity, and reopening bugs. A suitable 

number of bug reports is used to examine the model’s output. 

A developer’s bug assignment employee has been established, 

enabling the program to successfully address software 

maintenance issues with the highest accuracy of 78.38%. Best 

engine performance was achieved by optimizing and 

cleansing data, using relevant attributes, and processing it 

using deep learning. 

Keywords—bugs, fusion of intelligent optimization, artificial 

neural networks, machine and deep learning 

I. INTRODUCTION

Open-source bug reports play a significant role in 

software development cycles, accounting for up to 60% of 

reported issues within the software development system. 

The “10x Rule” posits that bugs that deviate significantly 

from the norm are typically more challenging to identify 

and rectify than other bugs. However, specific issues 

remain undetectable or unpatched based on our current 

understanding, bug identification, and resolution 

capabilities. In addition, there has been a substantial rise in 

software flaws. Furthermore, it is worth noting that 180 

issues were detected and documented within Eclipse’s bug-

tracking system during software development. In addition, 

Debian has generated approximately 140 unresolved bug 

reports [1]. Software developers employ bug-reporting 

tools to streamline the process of detecting and resolving 

software defects. Furthermore, assigning problem reports 

in the software development business is a significant 

difficulty, requiring careful attention to ensure proper 

allocation [2].  

Open-source project developers commonly utilize an 

open bug library to manage and track all reported software 

defects. The task of rectifying the bug necessitates the 

delegation of the error report to group members. Upon the 

arrival of a novel writing, a select cohort of developers is 

tasked with rectifying the software defect. Consequently, 

this assists bug triage personnel in determining the 

appropriate prioritization for bug resolution [3]. Bug 

repositories are problem-tracking systems encompassing a 

comprehensive database of software and programming 

codes. In contrast to proprietary business databases, open-

source bug libraries are accessible to all users without any 

cost. The utilization of repositories is crucial to facilitating 

cooperation among programmers and supporting the 

functionality of the associated project [4]. 

The study utilizes datasets sourced from the same open-

source project as Eclipse. A recommendation engine [5–7] 

is employed, incorporating optimization techniques 

through utilizing various machine learning algorithms, 

including C4.5, neural networks, deep learning 

architectures, and optimization techniques using the most 

recent evolutionary algorithm. Several researchers utilized 

support vector machines and explored the application of 

unsupervised learning techniques. Moreover, the 

researchers incorporated information derived from the 

Firefox browser, which is renowned for being an open-

source software initiative. After a brief introduction, the 

article discusses the background and methodology process 

in Section III. A detailed description of the methodology 
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used in this study is presented in Section IV of this work. 

In Section V, clustering is used to make the expected 

outcomes. The final section of this study discussed the 

study’s conclusion and prospects. 

II. BACKGROUND 

This section provides a concise overview of the diverse 

bug-fixing methodologies proposed by multiple scholars. 

Various methods have been proposed to identify the 

optimal bug framework that offers recommendations for 

the most effective bug-fixing applications. Xuan et al. [3] 

examined a social network-based methodology for 

prioritizing bug reports within the context of the Eclipse 

and Mozilla bug repositories. Shokripour et al. [8] 

employed a time-dependent bug identification technique in 

their study. The time metadata for each word in the 

database was examined. The statistical method known as 

Term Frequency-Inverse Document Frequency (TF-IDF, 

which is a metric utilized in machine learning and 

information retrieval) is employed to observe the syntactic 

variation of terms in documents. Jin et al. [9] employ an 

enhanced Linear Discriminant Analysis model to automate 

the classification of faults. The eligible bug reports were 

defined based on the distribution of bug problems, and the 

similarities between the bug fix creator and the distribution 

were examined. The proposed technique utilizes developer 

demographics to suggest a community of skilled 

developers who regularly participate in bug resolution and 

possess significant technical expertise.  

The present study examined two distinct methodologies 

in executing these investigations: social network 

measurements and machine learning algorithms. 

Considering the given characteristics, we elucidate the 

methodologies employed in summarizing the comparisons, 

considering the number of programs, variables considered, 

and specific techniques utilized. This paper provides a 

comprehensive overview of the existing knowledge about 

problem triaging. Bug repositories are problem-tracking 

systems encompassing a comprehensive database of 

hardware, software, and programming concerns. Open-

source bug repositories, in contrast to closed-source 

commercial repositories, are accessible to all individuals 

without any cost. These repositories play a crucial role in 

software development by facilitating progress exchange 

among programmers during the development process. 

Haruna et al. [10] utilized fine-tuned a pre-trained 

Bidirectional Encoder Representations from Transformers 

(BERT) triplet network that uses pairs. Duplicate-original 

bug reports made the positive class, and Original-Unrelated 

bug reports made the negative class. The original bug report 

was the same (anchor) in both positive and negative cases. 

In Lerch’s study [11], an analysis of existing bug reports 

containing similar stack traces was proposed based on stack 

traces available from execution. Therefore, the user does 

not need to fill out the whole bug report only to discover 

that it is a duplicate of another one. 

Wang et al. [12] utilized both the bug information, such 

as the summary and description, and the execution 

information to compute the similarities between the two 

bug reports. Utilizing execution information is a 

compelling technique. They attempt to duplicate the bug by 

following instructions to recreate it and monitor the 

functions invoked during the process. They use this data to 

construct a secondary collection of vectors and combine 

similarity ratings derived from bug report information and 

execution data. Their experiment attained a 90% recall rate 

for k = 5 on a significantly limited dataset consisting of only 

232 bug reports, with a mere 42 pairs of duplicates.  

Kukkar et al. [13] used a Convolutional Neural Network 

(CNN) for feature extraction, a deep learning model that 

captures the syntactic and semantic meaning of features for 

similarity computations. The study utilizes several openly 

available bug data sources, for example, Eclipse, Open 

Office, Firefox, etc. The paper reports 89%,83%, and 78% 

recall rates for k = 5 for Eclipse, Open Office, and Firefox, 

respectively. The formula for the recall is based on the 

classification approach. It also accounts for the correct 

classification of non-duplicate reports comprising 80% to 

90% of the data. Alipour et al. [14] incorporated more 

features based on bug reports and additional information 

already available. Contextual features improve the ability 

to identify duplicate bugs. Six contexts were created, each 

linked to a list of words used to define the context. The 

researchers used vectors from these new features and 

typical bug report details to compute the similarity between 

the two bugs. Kucuk and Tuzun [15] characterized Master, 

Duplicate, and Unique bug reports. Classification was also 

made of resolved master-duplicate bug reports and 

unresolved master-duplicate bug reports, along with 

measures that could be taken for each category. If the bug 

tracking system allows, the proposed actions suggest 

reopening the resolved bug report or creating a new scope. 

If there is still an open Master bug report, the new bug 

report cannot be submitted. Moreover, they identified 

severe differences between parent and child bug reports in 

both categories based on severity, the number of users 

involved, the bug surface time, and the lifecycle time. As 

part of the SiameseQAT, Rocha and Carvalho [16] 

considered information from individual bug reports and 

clusters of Parent-Child Reports in which each parent can 

have multiple children. As a result, the Parent Report 

becomes the collection’s centroid. In addition to syntactical 

and semantic learning, SiameseQAT extracts topic 

information from structured and unstructured texts. Their 

report found that 85% of the recall was accounted for in 

datasets from Eclipse, Netbeans, and Open Office. 

Mahfoodh and Hammad [17] employed Word2Vec and 

Tensorflow to construct a neural network-driven machine 

learning model to detect duplicate bug reports. A word-

matching technique is employed to ascertain the similarities 

between two phrases. In the study of Xiao et al. [18], a 

novel heterogeneous information network has been 

presented to integrate both structured and unstructured 

features of a bug report, such as version, priority, severity, 

etc. HINDBR, stands for Heterogeneous Information 

Network Based Duplicate Bug Report, an innovative Deep 

Neural Network (DNN) that detects duplicate defect reports 

that are semantically similar with high accuracy, utilizes 

representation learning to construct a complex neural 

network. Their findings indicate a notable 98% accuracy 
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rate in classifying a limited dataset consisting of pairs of 

bug reports that are either duplicates or non-duplicates. 

III. METHODOLOGY 

Fig. 1 presents the technique flowchart, which will be 

briefly clarified in the subsequent parts. 
 

 

Fig. 1. Proposed methodology flowchart. 

A. Data Acquisition 

The dataset was acquired through a data error monitor 

on Eclipse’s official website, eclipse.org. The kit 

comprises a dataset sample representing the results of bug 

measures in the Eclipse platform. The bug identification 

number is specified in the initial column of the table. 

Lastly, the provided columns contain 48 group labels 

ranging from one to seven. Each group inside the dataset 

corresponds to a specific group of developers that their 

respective firms have allocated to address and resolve 

defects in particular components of the software project. 

We conducted tests using MATLAB [19] and Weka [20] 

to evaluate the effectiveness of various machine-learning 

algorithms [20]. These tests involved classifying 

characteristics based on group labels and relying on such 

features. The accomplishment has been attained using a 

ten-fold cross-validation method. The data exhibits 

multiple dimensions, and the irrelevant columns should be 

removed. Certain features, also known as variables, have 

the potential to exhibit redundancy, noise, or a lack of 

relevance to the desired outcome. The inclusion of 

irrelevant features within machine learning models has the 

potential to reduce their accuracy, efficiency, and 

clarity  [21]. The following figure illustrates the 

developers engaged in the project and reported software 

defects. An institutional framework delineates every 

cohort of software developers, and each group rectifies the 

quantity of software defects. Fig. 2 depicts the occurrence 

of bugs for each group of developers, The bug reports are 

classified into seven categories, with each category being 

a class that includes many bug reports and the individuals 

that resolved or marked the bugs. Our situation entails a 

collection of over 7,000 bug reports that include many 

developers. Fig. 2 displays the categories and the 

respective number of defects in each category. 

The dataset comprises various groups representing 

distinct organizations engaged in application development 

and their respective total counts. The whole dataset 

containing Eclipse bugs is accessible at the following URL: 

https://data.mendeley.com/datasets/t6d9y7yt54/1 [22]. 
 

  

Fig. 2. Occurrences of bugs within each classification. 

The following columns represent the features (columns) 

of the Eclipse bug report dataset. Each column in the 

dataset contains information about the bug, such as the 

platform from where the bug occurred. BugID; component; 

assignee Email; os; platform; milestone; nrKeywords; 

nrDependentBugs; peopleCC; 

openedhoursOpenedBeforeNextRelease; lastModified; 

priority; severity; resolution; firstFix; lastFix; 

hoursLastFixBeforeNextRelease; hoursLastFixAfter 

PreviousRelease; status;firstActivity; nrActivities; 

lastResolution; nrComments; hoursToLastFix; 

hoursToLastResolution; monthOpened; yearOpened; 

monthYearOpened; monthYearLastFixed. 

The previously mentioned features include the specific 

information and components contained inside each bug 

report. Fig. 3 presents an example of a bug report 

document. 

 

 

Fig. 3. Sample report of eclipse bugs. 
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B. Optimization/Feature Selection 

Employing a dataset for training classifiers can result in 

inaccurate classifications and extend the duration of the 

training process. Including explanatory and clarifying 

elements inside the classification is considered excessive 

and contradictory, thus lacking meaningful contribution. 

To improve the precision of categorization, it is crucial to 

eliminate redundant and inconsistent attributes [23]. 

Feature selection approaches are employed to classify 

feature combinations that maximize the information 

acquired efficiently. To prevent any potential excessive 

influence on the performance of our dataset, the study 

opted to eliminate the last twenty attributes that exhibited 

the lowest correlation. Table I illustrates the effects of the 

correlations among the different factors. The algorithms 

have been constructed by leveraging the principles of 

natural selection and the mechanics of natural genetics. 

Genetic algorithms solve string structures resembling 

biological structures and undergo temporal development 

via survival filtering [24]. This objective is accomplished 

by utilizing a randomized yet synchronized exchange of 

information. As a result, a unique combination of genetic 

material is produced in each following generation, with 

only the most well-suited individuals being able to pass on 

their genes to future generations [25]. The essential 

attributes of the Genetic Algorithm (GA) and Harris 

Hawks Optimization (HHO) [26] are given below. The 

genetic algorithm employs the parameter set coding 

technique instead of directly altering individual parameters. 

• Search from a population of points rather than a 

single point.  

• Employ a reward as opposed to derivatives.  

• Transformation laws that are probabilistic rather 

than deterministic. 

A genetic algorithm is a stochastic algorithm that 

employs probabilistic principles. The determination of the 

search mechanism is achieved by implementing a random 

search strategy on a step-by-step superstructure model [27]. 

The optimal global solution can be achieved with a level 

of certainty of x%. The search process is initiated by 

selecting initial stochastic solutions called the 

“population”. The structures in question are referred to as 

chromosomes. Chromosomes consist of genetic material 

known as genes [28]. The term “Gene” refers to the key 

parameters inside the network, such as rates of hot and cold 

canals. This study employed the Genetic Algorithm (GA) 

to perform feature reduction for classification purposes. 

Specifically, traits shown to have no impact on the 

outcome were eliminated from consideration [29, 30]. 

The concept of HHO draws inspiration from the 

predatory behavior of Harris hawks, namely their hunting 

techniques involving target exploration, surprise pouncing, 

and diverse attacking styles. HHO, also known as the 

Harris Hawks Optimization, is an optimization technique 

that operates on a population-based framework and does 

not rely on gradient information. It has the following 

phases [26]: 

• Exploration phase 

When examining the characteristics of Harris’ hawks, it 

is evident that they possess the ability to locate and identify 

prey effectively through their formidable visual acuity. 

However, there are instances where the prey may prove 

challenging to spot. Therefore, the hawks patiently engage 

in the activities of waiting, observing, and monitoring the 

desert location to identify potential prey, which may occur 

after a considerable time. In the context of the Harris’ 

Hawks Optimization (HHO) algorithm, the Harris’ Hawks 

are seen as the potential solutions, with the most optimal 

solution being identified as the intended prey or 

approximate optimum in each iteration [26]. 

• Exploitation phase 

Prey individuals consistently tend to evade and avoid 

circumstances that pose a potential threat to their well-

being. Let us consider the probability, denoted as r, of prey 

either escaping (r < 0.5) or not successfully escaping (r ≥ 

0.5) before a surprise pounce occurs. Regardless of the 

actions taken by the prey, the hawks will engage in either 

a forceful or gentle pursuit to capture the victim. This 

behavior entails multiple individuals’ coordinated 

encirclement of the prey, employing varying degrees of 

forcefulness or gentleness, contingent upon the prey’s 

remaining energy levels. In practical scenarios, hawks 

gradually approach their chosen prey to enhance their 

likelihood of successfully collaborating in killing the 

rabbit by executing an unexpected pouncing maneuver. 

After a prolonged period, the prey that is attempting to 

escape will have a gradual depletion of energy. As a result, 

the hawks will increase their efforts in surrounding and 

capturing the prey that is now fatigued. The E parameter is 

employed to implement this technique and facilitate the 

HHO’s transition between gentle and strong besiege 

procedures. In this context, soft besiege is observed when 

the absolute value of E is greater than or equal to 0.5. 

Conversely, the manifestation of a hard besiege is noted 

when the absolute value of E is less than 0.5 [26]. 

C. Feature Correlation  

This study utilized the information gain technique to 

ascertain the traits that are most strongly correlated. The 

goal was to get valuable insights from these attributes, 

which align with the columns of the dataset. The primary 

objective of identifying correlations among the 

characteristics is to eliminate any redundant features that 

may impact the ultimate performance of our model. Given 

the presence of strong correlations between two features 

and the desire to streamline calculations, one of the 

features was eliminated. Table I presents the rankings of 

each attribute.  

D. Engine 

A wide variety of machine learning strategies are 

utilized by the recommendation engine. These strategies 

include Naive Bayes, Decision Trees, Support Vector 

Machines, and unsupervised machine learning algorithms 

such as Expectation Maximization. Initially, in the 

framework of recommendation systems, an investigation 

was carried out on several machine learning and deep 

learning algorithms. These algorithms included C4.5, 

Random Trees, and artificial neural networks. Through the 

employment of genetic algorithms in feature selection 

algorithms, the process of selecting ideal features has been 
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made easier, which has positively contributed to the 

training of the model. A bi-directional selection technique 

was utilized by the researchers to choose the most 

advantageous characteristics, and the Naive Bayes 

algorithm was included in the process [31]. MATLAB 

machine learning and deep learning techniques [32] and 

Weka [33]. were utilized in order to classify elements of 

the dataset. The machine learning algorithm and/or deep 

learning technique are the components that make up the 

ML/DL engine. These components are explicated in the 

subsequent subsections. 

TABLE I. ATTRIBUTE CORRELATION RANKER  

Rank Attributes 

0.64949 component3Days 

0.47267  PredictedProbability_1 

0.47267  PredictedProbability_2 
0.36122  bugID 

0.24057  os3Days 

0.23763  PredictedProbability_1_1 
0.22175  PredictedProbability_2_1 

0.11869  status30Days 

0.07545  nrActivities30Days 
0.07222  nrActivities 

0.07206  hoursLastFixAfterPreviousRelease 

0.06964 nrActivities14Days 
0.06582  nrActivities7Days 

0.05873  status3Days 

0.05732  hoursLastFixBeforeNextRelease 
0.05713  nrActivities3Days 

0.04461  nrActivities1Days 

0.03219  hoursToLastFix 
0.02681  monthOpened 

0.02491  hoursToLastResolution 

0.02247  priority30Days 
0.02222  peopleCC 

0.02163  filter_$ 
0.02082  nrPeopleCC30Days 

0.02055  nrPeopleCC14Days 

0.01949  hTLFix2Bins7Days 
0.01898  hTLFix2Bins3Days 

0.01892  nrPeopleCC7Days 

0.01799  nrComments30Days 
0.01752  nrPeopleCC3Days 

0.01686  nrPeopleCC1Days 

0.01621  platform3Days 
0.01617  hTLFix2Bins14Days 

0.01360 hTLFix2Bins1Days 

0.01152  hTLFix2Bins30Days 

0.00947  nrComments 

0.00935  hTLFix2Bins0Days 

0.00863  nrPeopleCC0Days 
0.00863  initPeopleCC 

0.00792  nrComments14Days 

0.00658  severity3Days 
0.00622  nrComments7Days 

0  nrComments3Days 

0  nrComments0Days 
0  nrComments1Days 

0  nrActivities0Days 

0  nrDependentBugs 
0  nrKeywords 

0  esolution3Days 

 
1) C4.5 algorithm with optimization  

The C4.5 algorithm categorizes the dataset into seven 

distinct classes [34]. The main configuration of the C4.5 

model is shown in Table II. 

 

TABLE II. C4.5 PARAMETERS  

Parameter Value 

Batch size 100 

Confidence factor 0.25 

Number of folds 3 

 

2) Random trees with optimization  

The novel occurrence of a particular entity is derived 

from the collective assemblage of trees cultivated inside 

the forested region. Every individual node produces a 

categorization for unknown cases, which are subsequently 

recorded as votes. The majority voting method involves 

aggregating the votes from many decision trees, and the 

class that obtains the most significant number of votes is 

designated as the predicted outcome for the new instance. 

According to Breiman [34, 35], the majority voting 

process in Random Forests serves as a categorization 

voting mechanism. Experiments are conducted on the 

voting behaviour of individuals.  

The parameters employed in the RF algorithm are as 

follows: 

• maxDepth = 0; The value assigned to the variable 
“maxDepth” represents the maximum depth of the 
trees. A value of 0 indicates that there is no limit on 
the depth. 

• numFeatures = 0; The number of qualities to be 
employed in random selection; If the value is less 
than 1 (the default), the logarithm of M plus 1 is 
used, where M represents the number of inputs. 
Various numbers of characteristics, such as 10 or 
20, were experimented with, but no significant 
impact on the accuracy results was observed. 

• numTrees = 150; The number of trees to be 
generated throughout the duration of the 
experiment. 

The random forest ensemble consists of thirty-five 

decision trees, each constructed using five features. The 

coefficient of variance for these features is measured to be 

0.3347. After generating classifiers for each technique, 

iterate through each (Xi, Yi) pair in the original training 

set “T” and choose all “Tk” that do not contain the pair (Xi, 

Yi). A null set refers to a dataset subset containing no 

original records. The instances being referred to are the 

out-of-bag cases. The random forest ensemble comprises a 

total of thirty-five decision trees, each created based on a 

set of five attributes. The coefficient of variation for these 

features has been shown to be 0.3347. After producing 

classifiers for each approach, it is necessary to cycle 

through each pair (Xi, Yi) in the original training set “T” 

and choose all “Tk” that do not include the pair (Xi, Yi). 

A null set is defined as a subset of a dataset that does not 

include any elements from the original records. The 

instances being alluded to are the cases that are not 

included in the bootstrap sample.  

3) Simple logistic with optimization  

Logistic regression analysis is a suitable statistical 

method for analyzing a result that is dichotomous in nature. 

The logistic regression model is a statistical technique used 

for analyzing data. Logistic regression is a statistical 

technique that explains the association between a single 
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dependent variable and one or more independent  

variables [36]. 

4) CNN with optimization  

The dynamics of intercellular communication and the 

underlying mechanisms of brain functionality shaped the 

development of this technique. The current methodology 

was established to attain the capability to do various jobs 

exclusively by analyzing training data samples. In image 

recognition, the employed approach involves training a 

model to distinguish between photos labeled as “keyboard” 

and those labeled as “not keyboard.” This trained model is 

subsequently utilized to identify keyboards inside other 

photographs. No prerequisite knowledge or skills are 

necessary as the system automatically generates and 

differentiates features from the provided samples [37].  

The development of this strategy was informed by the 

mechanisms of brain-cell interaction and the functioning of 

the brain. In the field of image recognition, the employed 

approach involves training a model to distinguish between 

photos labeled as “keyboard” and those labeled as “not 

keyboard”. This trained model is subsequently utilized to 

identify keyboards inside other photographs. No prior 

knowledge or skills are necessary since the system 

automatically generates and differentiates features based on 

the inputted samples [38]. 

Typically, a Node is comprised of multiple levels. Each 

layer consists of several nodes that execute operations on 

diverse inputs. The transmission of signals progresses 

across the many levels of a neural network, starting with 

the input layer and concluding at the output layer. This 

process involves traversing the intermediate layers multiple 

times, with the number of iterations determined by the 

threshold and precision required to achieve optimal 

outcomes for the training model. The study also analyzed 

the neural network model as a training mechanism and the 

hybrid approach combining decision tree and naïve Bayes 

to determine the optimal outcomes for assigning bug 

reports from open-source systems to the appropriate 

developer [39]. Some of CNN architectures are mentioned 

below. 

VGG16: VGG stands for the Visual Geometry Group; it 

is a multi-layered deep Convolutional Neural Network 

(CNN) standard architecture. The VGG16 architecture is a 

Convolutional Neural Network (CNN) known for its 16-

layer depth. One can use a pre-trained neural network that 

has been trained on a dataset of more than one million 

photographs from the ImageNet database [40]. We 

employed a mini batch size of 32 and utilized max pooling 

with a stride of 2. 

GoogLeNet: GoogLeNet is a convolutional neural 

network consisting of 22 layers. It is a modified iteration of 

the Inception Network. The Inception Network is a variant 

of deep convolutional neural network that was initially 

developed by academics associated with Google. The 

GoogLeNet architecture, which was presented at the 

ImageNet Large-Scale Visual Detection Challenge 2014 

(ILSVRC14), effectively tackled computer vision tasks 

such as image classification and object detection [41]. We 

utilized a mini batch size of 32 and employed max pooling 

with a stride of 2. 

5) Group relations  
The necessary time for each programmer in both the 

training and testing sets has been computed, and the 

demand of each programmer in the bug’s class has been 

determined using the following methodology:  

• The objective is to ascertain the amount of time 

each programmer needs within the group. 

• Identify the disparities in temporal measurements. 

• The programmers should be arranged in ascending 

order of their speed, with the fastest programmers 

being assigned the highest rank. 

IV. FINDINGS AND ANALYSIS 

Accuracy is a quantitative measure used to assess the 

performance of classification models. Informally, accuracy 

refers to the proportion of correct predictions made by our 

model. Accuracy is defined as the degree to which anything 

is correct or precise, according to established standards or 

criteria: 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
  () 

For binary classification, accuracy can be computed by 

considering the number of true positives and true negatives. 

Let TP represent the number of true positives, TN 

represent the number of true negatives, FP represent the 

number of false positives, and FN represent the number of 

false negatives. 

Precision rates of 50% have been attained, and it has 

been posited that these precision rates are sufficient for bug 

triagers to discern the suitability of developers for 

assignment to specific bug reports [42]. In this study, we 

employed a 10-fold cross-validation technique and 

conducted attribute correlation analysis to select and 

evaluate features in the dataset. In formulating our bug 

measures, we employed various machine learning 

algorithms, including Naive Bayes, J48, Simplelogstic, 

random trees, artificial neural networks, and deep learning 

architectures. The utilization of an Intrinsic Network has 

yielded optimal results. 

Additionally, our findings indicate the presence of 

certain features that are unsuitable for the classification task, 

resulting in a further deterioration of the results. Conversely, 

certain other features exhibited a greater classification 

accuracy rate. Accuracy optimization was achieved by 

selecting the top thirty characteristics with strong attribute 

correlation values [43]. The model output of different 

machine learning algorithms, namely Naïve Bayes, random 

trees, Simple Logistic, and Artificial Neural Networks, are 

presented in Table I. The algorithms were trained using a 

learning rate of 0.2, momentum of 0.5, batch size of 100, 

and not less than 500 iterations. With respect to the number 

of trees within a random forest, the findings indicate that 

frequently, an increased number of trees in a forest mostly 

escalates its computational burden without yielding any 

substantial benefits. This phenomenon was observed in the 

dataset under investigation. When a quantity exceeding 150 

trees was employed. We conducted experiments with 400 

and 600 trees; however, no statistically significant 
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differences were discovered. We employed optimization 

techniques to enhance the algorithms’ classification 

accuracy and computational efficiency. The manipulation 

of class labels within the clustering algorithm resulted in 

improved outcomes. The demand for each programmer in 

the class is determined based on the consumption of the 

features from the previous hours. The corresponding 

findings are presented in Table III. The results in Table III 

demonstrate the accuracy outcomes and show the impact of 

combining the Naïve Bayes algorithm and Artificial Neural 

Networks (ANN) in the training set and utilizing C4.5 with 

Simplelogistic (50% training, 50% validation) in the 

dataset. The combined approach yields superior outcomes 

compared to using each method individually. Specifically, 

the optimization technique resulted in an approximate 

improvement of 7.4%, while the hybrid optimization 

approach achieved a gain of 8.2%. The HHO optimization 

also improves the results by approximately 2.9%. 

TABLE III. ACCURACY OUTCOMES  

Method 

Classification 

accuracy (%) using 

GE 

Classification 

accuracy (%) using 

HHO 

C4.5 60.87 63.14 

Random Trees 51.04 52.94 

Simple Logistic 60.97 63.24 

Naïve Bayes 48.76 50.57 

Artificial Neural 
Networks (ANN) 

62.66 64.99 

VGG16 66.93 69.42 

GoogLeNet 60.97 63.24 

C4.5 optimization 65.14 67.57 

Random Trees 
optimization 

54.81 56.86 

Simple Logistic 

optimization 
65.44 67.88 

Naïve Bayes optimization 52.33 54.28 

Artificial Neural 

Networks with 

Optimization 

67.33 69.83 

Fusion Opt.C4.5 and 
Opt.SimpleLogistic 

66.13 68.60 

Fusion Opt.ANN and 

Opt.C4.5 
67.13 69.63 

Fusion Opt.Naïve Bayes 
and Opt.ANN 

60.67 62.93 

Fusion Opt.ANN and 

Opt.Random Trees 
61.76 64.07 

Fusion Opt. VGG16 and 
Opt. GoogLeNet 

61.76 64.07 

 

A. Clustering Findings 

Through the utilization of a K-means technique, in which 

the value of K is set to 1000, it is possible to achieve the 

enhancement of system efficiency. This may be 

accomplished by modifying the classes or sets that the 

programmer has created. It was decided to construct a total 

of seven different groups, which are known as classes. 

Every programmer is placed in the cluster that is 

geographically closest to them, and this assignment is based 

on the mean value of their scores. The information 

presented in Table IV offers a comprehensive summary of 

programmers and the cluster links that represent them. 

Table V and Fig. 4 present the results of the accuracy tests 

performed using the new classes. 

TABLE IV. NEW CLASSES AND THEIR DEVELOPERS 

New class Number of developers 

1 1572 

2 1223 

3 1180 
4 1089 

5 949 

6 902 
7 855 

TABLE V. ACCURACY OF CLUSTERED CLASSES 

Method 

Classification 

accuracy (%) 

using GE 

Classification 

accuracy (%) 

using HHO 

C4.5 67.03 69.53 

Random Trees 58.49 60.67 

Simple Logistic 66.73 69.22 

Naïve Bayes 56.30 58.40 

Artificial Neural Networks 
(ANN) 

70.60 73.23 

VGG16 75.57 78.38 

GoogLeNet 68.81 71.38 

C4.5 optimization 71.79 74.47 

Random Trees optimization 62.76 65.10 

Simple Logistic 

optimization 
71.69 74.37 

Naïve Bayes optimization 60.47 62.73 

Artificial Neural Networks 
with Optimization 

75.37 78.18 

Fusion Opt.C4.5 and 

Opt.SimpleLogistic 
74.28 77.04 

Fusion Opt.ANN and 

Opt.C4.5 
74.57 77.35 

Fusion Opt.Naïve Bayes 

and Opt.ANN 
68.02 70.56 

Fusion Opt.ANN and 

Opt.Random Trees 
61.76 64.07 

Fusion Opt. VGG16 and 
Opt. GoogLeNet 

71.79 74.47 

 

 

Fig. 4. Accuracy of clustered classes. 

B. Analysis 

Following the implementation of the new classes, we 

applied the same approaches in conjunction with a 10-fold 

cross-validation procedure, which resulted in significant 

gains of 11% being observed in the outcomes. This was 

after the new classes were introduced. During the duration 

of our experiments, we saw that there were limitations. The 

fact that the data are distributed in a random fashion makes 

it necessary to do substantial preprocessing processes 

before they can be employed. This is one of the limitations. 

Because of this, the utilization of real-time data would 

present difficulties, as it would necessitate a big amount of 
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hardware resources and a substantial amount of electricity 

due to the high level of processing complexity involved. In 

addition, it is a difficult task to choose the most effective 

method of artificial intelligence to use to power the system.  

The assertion that only deep neural networks will do 

incredibly well with this kind of data is not something that 

can be considered accurate. One reason for this is because 

the complexity of the model, such as in deep neural 

networks, as well as its configurations that involve many 

running parameters, also influence the hardware resources 

that are required to implement these models. In the process 

of analyzing the results of different artificial intelligence 

models, it is essential to always take into consideration the 

selection of the best model and the fine-tuning of its 

hyperparameters. In terms of the performance of the model, 

ANN demonstrates positive results with a score of 73.23%; 

nevertheless, the architecture with the highest score was 

VGG16, which scored 78.38%. As a result of its ease of use 

in determining the classes among the dataset, Naïve Bayes 

demonstrated the least successful results, with a percentage 

of 58.4%. 

V. FUTURE ASPECTS 

Subsequent investigations may employ exclusive 

selection filtering algorithms to focus on the salient terms 

utilized in bug reports [44]. Utilizing the chi-square 

selection method is appropriate for evaluating the 

computational criteria of the experiment. Developing a 

unique optimization algorithm is crucial for achieving 

accurate results that align with the specific dataset and 

methodology. It is advisable to explore alternative 

methodologies rather than solely relying on the current 

strategy [45]. The efficiency of the framework is measured 

in terms of time. Our methodology examines the correlation 

between the attributes of an exemplary software developer 

and the level of severity in bug reports. Current developers 

are not required to undergo retraining of prediction models 

when fresh data is received [46]. This approach reduces the 

duration required for updating the framework. However, 

leveraging the system’s knowledge and understanding of 

each time is crucial to uphold its effectiveness [47]. Various 

potential enhancements and effective resolutions can be 

contemplated, given the imperative requirement for the 

system to operate autonomously in terms of evaluation, 

recognition, and suitable feature selection [48]. This 

includes activities such as code testing and time 

management during the execution of diverse tasks, 

enabling the system to automatically adapt and resolve 

incoming new tasks [37, 49]. 

VI. CONCLUSION 

The framework technique helps bug triage programmers 

manage and choose solutions for issue reports. The open-

source bugs repository is used for bug report assignments. 

Nave Bayes, J48, random forests, and simple logistic 

models were utilized. Information benefit values were used 

to identify decision-making features during feature 

collection. Therefore, we excluded the 20 least informative 

features. We used a method for each class using the 30 most 

important attributes. 

Bug reports were identified by random forest and neural 

networks. Multiple scholarly papers propose algorithms 

that support the conclusion. Decision trees and SVMs are 

frequently inferior to the classification described above 

method. Two essential advantages come from choosing a 

random forest. One advantage of this strategy is its 

independence from interactive functions. Decision Trees do 

well on considerable datasets in tree ensembles. The 

random forest’s features suggest 150 trees for this ensemble 

technique. Tree classifiers’ effectiveness and dependence 

determine random forest accuracy. Top-voted tree ranking 

method. More random forest trees increase computing time 

but not per-second output. Machine learning techniques use 

hybrid and optimization methods to create a bug 

assignment framework that meets objectives. 

Choosing the most suitable approach is a complex task 

requiring careful consideration of various factors, including 

available hardware resources, user experience, and the 

volume of the data needed to train the engine. Generally, 

Machine Learning (ML) approaches do not necessitate a 

large amount of data for training, whereas Deep Learning 

(DL) approaches require a substantial amount of data. 

Preprocessing significantly improves performance by 

acting as a filter for subsequent processes in the approach. 

Utilizing optimal and relevant characteristics, optimizing 

and cleansing the data, and processing it through a deep 

learning approach yielded superior engine performance. 

Nevertheless, it necessitated a substantial amount of time to 

execute and demanded high hardware specs. 
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