
 

Efficient MLTL Calibration Model for 

Monitoring the Real-Time Pollutant Emission 

from Brick Kiln Industry 
 

Sahaya Sakila V. * and Manohar S. 

Department of Computer Science and Engineering, College of Engineering and Technology,  

SRM Institute of Science and Technology, Vadapalani Campus, Tamil Nadu, India  

Email: sv5969@srmist.edu.in (S.S.V.); manohars@srmist.edu.in (M.S.) 

*Corresponding author 

 

 

 
Abstract—Coal-ablaze Brick Kiln industries are the major 

contributors of Particulate Matter (PM2.5, PM10) emissions 

that endanger the environment and pose a variety of health 

risks to all the living beings. Current static ambient pollutant 

monitoring stations are sparsely located due to their 

expensive deployment. Recent advancements in Internet of 

Things (IoT) technology tends to have portable sensors which 

could be easily deployed at any location to monitor the quality 

of air. Calibration for these portable sensors requires 

training data from static reference monitoring stations. In 

this study, Brick Kiln industry, which are usually remotely 

located from the reference stations, is chosen to monitor its 

emission through the IoT devices, and the calibration for the 

portable sensors are performed using data from a reference 

sensor. Calibration of the sensor reading is performed using 

proposed Meta Learning based Transfer Learning (MLTL) 

and its performance is evaluated utilizing evaluation metrics 

of various Machine Learning (ML) and Deep Learning (DL) 

based regression models. The proposed model shows the most 

significant scores 0.992236, 0.0002, 0.0048 for the evaluation 

metrics, R-squared, Root Mean Squared Error (RMSE), and 

Mean Absolute Error (MAE), respectively, as compared to 

other ML models while calibrating the Particulate Matter 

(PM) pollutant’s emission rate obtained from the industry. 

 

Keywords—brick kiln industry, meta learning-based transfer 

learning, machine learning, deep learning  

 

I. INTRODUCTION 

High levels of air pollution are thought to pose the 

greatest threat to global environmental health [1]. The two 

most significant air pollutants worldwide are the 

Particulate Matter Pollutants PM2.5 and PM10 [2]. They 

have a much greater hovering tenacity, exhibit clearly 

optimized consequences on airborne gases and toxic 

chemicals, and are primarily responsible over the 

formation of strontium, resulting in decreased sight at the 

surface and leads to Low Birth Weight amid kids. They are 

also capable of permeating the bronchi and alveoli, lung 

tissues, and blood by means of the nostrils, which can 

trigger relentless pulmonary diseases, asthma, 

and cardiovascular glitches [3−6].  

Industries are the important sources of Particulate 

Matter pollutants. Small-scale organizations, like the brick 

industry, contribute significantly to deteriorating the 

environment by disseminating substantial quantities of gas 

and particulate pollution during the season of brick 

production [2, 7, 8]. During the brick-making period of 

time, residing 2 km offshore from a brick industry leads to 

a spike in daily mean PM2.5 concentration, that is about 

five times greater than the World Health Organization 

(WHO) recommendation for 24-hour exposure 

(15  µg/m3)  [9]. The National Air Quality Index (AQI) of 

the Environmental Protection Agency (EPA) is one of the 

most widely used methods for evaluating air quality [10]. 

Typically, the traditional static air pollution monitoring 

stations which have a high degree of data accuracy and can 

measure a wide range of contaminants are used to assess 

the quality of the air. These stations are built with elegant, 

and time-tested equipments which employs sophisticated 

measuring techniques, includes auxiliary devices like 

temperature regulators, relative humidity controllers, air 

filters, and calibrators to boost the accuracy of the data. As 

an outcome, the price of a single station frequently exceeds 

$100,000 which is very expensive to operate and hence 

sparsely deployed. It also requires frequent service from 

qualified engineers, provides an inaccurate representation 

of the city's air quality because they ignore regional 

differences as most of the metropolitan regions possess a 

single monitoring station [11−13], and hence it underlines 

the need for affordable installation which can still measure 

accurate pollutant rates and be easy to deploy at several 

different places [14].  

The latest developments in wireless networking 

technologies like the Internet of Things (IoT) and low-cost 

sensor equipment’s provides us the chance to employ 

arrayed sensor networks to assess the air pollution in real 

time at a wide range of destinations [10]. They provide a 

cost-effective alternative due to their increased mobility, 

smaller size, lesser demands on upkeep, and offers 

scalability by aiding in the establishment of omnipresent 

monitoring networks, which will address the problem of 
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geographical sparseness that the current network of static 

air monitoring stations faces. Among all the available less 

expensive technologies, they use, nephelometry, Optical 

Particle Counters (OPC), Non-Dispersive Infrared (NDIR), 

Metal Oxide Semiconductor (MOS), Electrochemical Cell 

(EC), and Light-Scattering Particle Sensors (LSPS) which 

is the most predominantly deployed technique in existing 

in-expensive sensors [1, 13, 15, 16].  

These sensors are, however, known to be somewhat 

inaccurate and less dependable than static monitoring 

stations due to characteristics like weak repeatability, 

susceptibility to cross-sensitivities between various 

pollutants, frequent recalibration prerequisite, fluctuation 

in metrics with altering ambient conditions like 

temperature and humidity, limited life spans, potential for 

interference from traffic and weather oscillations, and lack 

of maturity [11, 13, 15]. Also, Concas et al. [13] 

investigated the impacts of temperature and humidity on 

inexpensive Particulate Matter (PM) sensors and 

discovered that relative humidity had an impact on sensor 

accuracy, but temperature had no discernible effect but it 

does affect the concentration of particles, which implies, 

calibration is required on the field to obtain a reliable and 

accurate sensor reading [1]. In this study, it focuses on the 

calibration of sensor data to provide better reliability and 

accuracy of the measured pollutant readings while 

monitoring the air quality near the Brick Kiln industry. 

The first constraint or difficulty in this study's attempt 

to examine the quality of atmospheric air near brick 

industries is the use of stationary air examining stations, 

where samples of the air are only available from a small 

number of places and are only taken once every hour. 

Additionally, building and maintaining it cost a lot of 

money and manpower. Second, the SDS011 sensor used in 

this study is responsive to atmospheric factors such as 

temperature and humidity, and as a result, the maximum 

temperature and relative humidity for which the data are 

valid are 50 °C and 70%, respectively. As a result, 

calibrating the sensor values is necessary. To do this, the 

proposed Meta Learning based Transfer Learning (MLTL) 

is used. The effectiveness of MLTL is assessed using 

assessment metrics from various Machine Learning (ML) 

and Deep Learning (DL) based regression models. 

The following section of the article are structured as: 

Section II discusses several academic works and 

drawbacks of the current strategy. Section III describes the 

research area identified for monitoring the quality of air. 

The proposed MLTL model is described in Section IV, 

along with the calibration procedures used to validate the 

sensor readings, the distinct resources and 

techniques needed to complete the sensor calibration are 

thoroughly explained in Section V. Section VI describes 

the various calibration techniques for calibrating the sensor 

data using ML and DL algorithms. Sections VII and VIII 

describes the results obtained and model evaluation using 

various metrics and the study’s conclusions, difficulties 

encountered, and potential for future development are 

discussed in Section IX. 

II. RELATED WORK 

The traditional air monitoring stations, though, are very 

accurate and can measure wide range of contaminants, 

they are present in limited locations as they have huge 

infrastructure, costly to deploy, and require qualified 

engineers for frequent servicing. Hence, the presence of 

low-cost sensors which are easy to deploy at any needed 

sites, provides mobility, offers scalability, smaller 

infrastructure and easy to maintain are highly good at 

measuring PM pollution from brickyards which are 

situated far away from the presence of static air monitoring 

stations. However, they are sensitive to external factors in 

the environment like temperature, humidity, prone to 

unreliable readings, and unpredictable working 

conditions  [12]. Hence, calibrating these systems is 

essential for evaluating and affirming their 

performance  [14, 17]. 

Traditionally, these devices are calibrated by using 

conventional techniques such as moving average 

calculations or by affirming the readings with publicly 

accessible reference equipment. Nevertheless, this could 

result in an inaccurate index at the site of the measurement 

as well as an excessive smoothing of the signal [8, 18]. 

Calibration based on ML outperforms the traditional 

procedures, but it necessitates the deployment of a 

reference monitor along with a significant quantity of 

training data from the sensor. A variety of statistical 

techniques like ARIMA, Kalman filtering, and trained ML 

techniques including linear regression, Nearest Neighbors, 

and Support Vector Regression (SVR) have been 

investigated by Yadav et. al. [1] and Malyan et. al. [19]. 

For field calibration, the constructed sensor nodes were 

placed along with a precise reference sensor [10]. In 

comparison to the data from the reference sensor, Multi 

Linear Regression (MLR) based temperature and humidity 

rectification produced Mean Absolute Percentage Error 

(MAPE) of 48.71% and an R2 of 0.607. With a MAPE of 

38.89% and an R2 of 0.78 in comparison to the data from 

the reference sensor, Artificial Neural Network (ANN) 

based calibration has the potential for substantial 

additional improvement. PM1 and PM2.5 calibration using 

and Random Forest Regression (RFR) techniques, 

respectively produced excellent results, however, PM10 

calibration using RFR technique needed significant 

improvement. 

On-field calibration models for PM pollutants were 

performed through ML techniques using MLR, SVR, 

Gradient Boost Regression (GBR) algorithms and the 

assessment findings showed a substantial boost in the 

accuracy (sometimes exceeding up to R2 > 0.9) for the PM 

sensors that are based on light scattering technology [13]. 

Air quality monitoring for Carbon Monoxide (CO) and 

Nitrogen dioxide (NO2) pollutants were calibrated using 

MLR, RFR and ANN techniques and the evaluation 

metrics had shown significant improvement as R2 was 

greater than 0.9 for CO in all the three techniques whereas 

it needed much improvement as R2 dropped to even lesser 

than 0.7 for NO2 pollutant while using RFR  

technique [15, 20]. 
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TABLE I. INVESTIGATIONS ON DIFFERENT IOT RESOURCE CONSTRAINTS  

Ref No. Methodology 
Measured 

Pollutants 
Summary of Contribution 

Das et al. [21] 

Low-cost-

Innovative-Air-
Pollution-

Monitoring-

Device (LCI-
APMD) 

PM2.5, PM10, 

Carbon monoxide 
(CO), Sulphur 

dioxide (SO2), 

Nitrogen dioxide 
(NO2), Ozone (O3) 

As IoT devices have limits in power usage, the study has proposed LCI-APMD, 

where Particulate Matter and electrochemical sensors are installed and accessed 
versus a precise reference configuration. It was apparent that the implemented 

approach maintained a tolerable level of detecting errors while being 91% more 

power efficient than the precise reference configuration and having a much 
greater coverage area. 

Zaidan et al. [22] 

LCS-MLM-VS 

(Low-cost-sensors 
integrated with 

ML calibration 

models and virtual 
sensors) 

PM2.5, Carbon 

dioxide (CO2) 

The LCS-MLM-VS approach demonstrates how to calibrate PM2.5 and CO2 

pollutants using non-linear ML models and Virtual Sensors, respectively.  
Since it is not possible to calibrate the LCS of CO2 using ML models, 

mathematical models known as VS are established. As a result, LCS can be 

independently implemented in the field with high precision, which encourages 
scaling-up precise air pollution mapping suitable for smart cities. 

Li et al. [23] 

RCM-HD  

(Robust 

Calibration 
Methodology 

using Historical 

Data)  

NO2 (Nitrogen 
dioxide) 

The low-cost sensors are calibrated using historical information by the RCM-

HD methodology, and the sensor slip is subsequently corrected by adjusting 
their sensitiveness and drift based on the concentration dispersion of the 

pollutant. RCH can improve the precision and uniformity of low-cost air quality 

sensors with no aid of real-time and close by data sources, according to analysis 
in this study, and it performs similarly to field calibration techniques currently 

in use that use spatially adjacent real-time references. 

Ghosh et al. [24] 

HCSS-MSN 

(Autocalibration 
methodology of 

low-cost 

Miniature Sensing 
Nodes, with the 

help of High-Cost 

Sensing Stations) 

PM (Particulate 

Matter) 

The HCSS-MSN technique uses an appropriate ML regression model to 

automatically calibrate the data from the low-cost sensors with the information 

gathered from the HCSS. This study suggests a design for a low-cost, low-
power PM sensor to achieve auto-calibration and avoid the need to take MSN 

offline to calibrate or recalibrate. This sensor was found to be 91% more 

affordable and 57% more energy-efficient than the commercial, high-cost PM 
sensor, while still keeping its detection error inside a predetermined limit. 

Ali et al. [25] 

LC-ECS-IR 

(Low-Cost 
Electrochemical 

Sensor and 

Infrared sensor) 

CO (Carbon 
monoxide), NO2 

(Nitrogen dioxide) 

and PM 
(Particulate 

Matter) 

In this article, an LC-ECS-IR has been developed that measures CO and NO2 

concentrations using inexpensive electrochemical sensors and PM levels with 

an infrared sensor. For field calibration, the created sensor nodes were placed 
close to an exact standard CO sensor. Data from the low-cost sensor that had 

been offset and gain calibrated had high agreement with data gathered from the 

standard sensor. In comparison to the data from the standard sensor, the 
Multiple Linear Regression-based calibration model had a Mean Absolute 

Percentage Error (MAPE) of 48% and an R2 of 0.6, but the Artificial Neural 

Network calibration model had an opportunity for improvement with a MAPE 
of 38% and an R2 of 0.8. 

Apostolopoulos  
et al. [26] 

AQ-ENSENSIA 
(An air quality 

monitoring device 

developed in the 
Institute of 

Chemical 

Engineering 
Sciences, Greece) 

NO2 (Nitrogen 

dioxide) and O3 

(Ozone) 

The reference apparatus was employed as the assessment standard in this study 

as it looked into several methods for the field calibration of NO2 and O3 
measured by the ENSENSIA air quality monitoring system. For two years, the 

sensors were placed in the same places. Several Machine Learning (ML) and 

Deep Learning (DL) algorithms were trained using data from the first year 
(2021) of seven ENSENSIA sensors (NO2, NO, O3, CO, PM2.5, temperature, 

and relative humidity), and the resulting calibration algorithms were evaluated 

using details from the following year (2022). The O3 and NO2 calibration 
performed best with the Random Forest algorithm, with mean errors of 4.3 ppb 

and R2 of 0.69 for O3 and 3 ppb and R2 of 0.86 for NO2 respectively. 

III. STUDY AREA 

In India, particularly in southern districts, Brick kilns 

that burn coal have proliferated quickly and are one of the 

leading causes of air pollution. Despite the widespread 

documentation of the detrimental impacts of air pollution, 

there is scant concrete information on the repercussions of 

this crucial industry. It was observed that there are cluster 

of brick industries around Aralvaimozhi, a small town in 

Kanyakumari, Tamil Nadu as captured in the Fig. 1. Field 

study was conducted at a brick kiln in Aralvaimozhi to 

measure the PM2.5 and PM10 pollutants emitted through 

them in the process of brick-making. 

Various environmental factors such as temperature, 

humidity, wind speed and direction, precipitation, 

atmospheric pressure, dust and pollen, and geographical 

locations tend to have an impact on the measured PM 

pollutants. In this study, calibration of measured PM 

readings is performed against its sensitivity towards 

temperature and humidity. 

IV. PROPOSED SYSTEM 

The process of meta-learning entails teaching a model 

how to learn. When referring to sensor calibration, it refers 

to teaching a meta-model to swiftly adjust to various 

calibration jobs. Various steps involved in the Meta-

Learning processes are, initially, the data input layer 

receives input data from SDS011 and DHT11 in the form 

of csv file, which includes time-stamp, sensed PM 

pollutant readings, AQI of the corresponding PM 

pollutants, temperature and humidity data. When referring 

to meta-learning-based calibration, the term “ground truth” 

describes the information from the reference sensor 

(DHT11) that is utilised as a training signal to instruct the 

model how to carry out calibration. This information acts 

as a stand-in or replacement for the actual ground truth 
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values, which could be acquired through more 

sophisticated and pricey reference equipment. A fixed-size 

feature vector is created by a neural network after it learns 

to gather pertinent data from the SDS011 and DHT11 

sensors. The meta-learner gains the ability to correspond 

the proper calibration parameters with the input data 

(SDS011 and DHT11 measurements). To ensure that the 

meta-learner generalizes successfully to various 

environmental variables, this procedure is performed for a 

variety of scenarios. The meta-learner does not formally 

“identify” faulty sensor readings. Instead, it discovers from 

instances and patterns in the training data that there is 

typically a constant difference between SDS011 and 

DHT11 values when temperature and humidity surpass 

particular thresholds. In order to increase the accuracy of 

SDS011 measurements in real-time, even when traditional 

ground truth values for faulty situations are not available, 

it learns to forecast calibration modifications based on 

these observed associations.  

Transfer learning is a strategy that involves transferring 

or adapting knowledge obtained from a meta-learner 

(Origin location) to enhance performance on a target 

location. The next stage is to transfer this knowledge to the 

transfer learning algorithm when the origin location has 

completed training and acquired knowledge about how to 

calibrate the SDS011 sensor. Transfer learning enables the 

meta-learner's calibrated features and insights to be used in 

future calibration tasks utilizing the SDS011 sensor. 

Various steps involved in the Transfer-Learning processes 

are, the meta learner (Origin Location) has already frozen 

the feature selection process, and the target location 

(Target Location) receives the knowledge directly. The 

transfer learning approach refines the model using the new 

dataset based on the knowledge learned from the origin 

location. For any new input received from SDS011 and 

DHT11 sensors, it performs calibration by modifying the 

learned features and calibration information from the 

meta-learner. Thus, the sensor's accuracy and adaptability 

to different environmental circumstances are improved by 

the Meta Learning based Transfer Learning (MLTL) 

approach, even in situations where reference data may be 

scarce or nonexistent. 

Any learning algorithm are enhanced through the 

process of “Meta Learning,” commonly referred to as 

“acquisition of knowledge to acquire knowledge,” so that 

it may quickly pick up novel abilities or cope with 

unfamiliar settings with only a modest amount of data used 

as training. It seeks to hone a model across a variety of 

challenges in order to develop a versatile approach that is 

capable of being versatile across tasks, perhaps even 

unidentified ones. Every task performed has a related S 

and ʆS, which represents the data collected and a loss 

function, respectively. Consequently, obtaining the most 

ideal variables for the model becomes the mantra for ML, 

which are holistically assessed as in Eq. (1). 

 ð∗ = arg minð ES~p(S) [ ʆS (ð)]  (1) 

where, p(S) is the likelihood spread among the datasets. 

Any sort of model that evolves via gradient descent is 

interoperable with MLTL, which is a very universal meta 

learning approach based on optimization. The algorithm’s 

key principle is to acquire the model’s initial variables so 

that it may be efficiently modified for optimum efficiency 

on a fresh assignment. It is a dual-step approach to 

optimization that entails training a base model after 

acquiring a meta-learner. The meta-learner looks for the 

best initial variables for each base model dependent on its 

task, to ensure that the base model could be coached 

rapidly with minimal data. 

A. Calibration of Sensor through MLTL 

The proposed MLTL approach of meta-learning that 

leverages the data from multiple origin locations, to coach 

the base model that is positioned at the target site by 

utilizing the scant training data available there. Meta 

learner is universal across all the sites, whereas the base 

model is subjected to appropriate sites. In this study, a 

function 𝛉Si with a parameter 𝛉Si are used to represent the 

base model, that is executed as a completely integrated 

neural network. It uses the assistance from meta learner 

which is similarly integrated completely with the neural 

network, represented by fð with parameter ð, to efficiently 

and swiftly coach the base model at any site s. The 

fundamental structure of fð and fθs is identical. Fig. 1 

represents the Details of Proposed Calibration Model. To 

begin with, the meta learner is coached using the origin 

data, where the data are split into Prefer Array and Reserve 

Array from the origin location S0. The Prefer Array are 

helpful to leverage the different variables present in the 

base model, whereas the Reserve Array helps in assessing 

the base model’s efficiency. Followed by this, the base 

model is coached using the restricted coaching data 

available through meta learner and target site. The fθs of 

base model is gets launched through the meta learner fð, as 

explained in Fig. 1 

 

 

Fig. 1. Proposed Meta Learning-based Transfer Learning (MLTL) 
model for calibrating the sensor readings. 

B. Priming the Model at Origin Location  

The fð of meta learner and 𝛉Si  ð of base model gets 

launched erratically. The base model is coached through 

gradient descent represented as, where λ ∈ R is the rate of 
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learning. MAE evaluation metric is used by the loss 

function. 

 𝛉Si 𝛉Si  λ Δ𝛉Si ʆ𝑇𝑆𝑖
𝑃   (𝛉Si) (2) 

The base model is assessed through the Reserve Array 

by determining loss ʆ𝑇𝑆𝑖
𝑅   (𝛉Si). At all the origin locations, 

the complete process is put on loop as shown in Fig. 1. By 

limiting the meta loss, the meta learner is coached, which 

is the entirety of all the distinct losses  ʆ𝑇𝑆𝑖
𝑃   (𝛉Si), performed 

with the reserve array, followed by the process of 

optimizing. 

  ð  ð − µ∑ Δð𝑖   ʆ𝑇𝑆𝑖
𝑅   (𝛉Si) (3) 

where learning rate is defined by µ∈ R. At the end, the base 

models from various origin sites are dumped out and the 

meta learner alone is preserved. 

C. Priming the Model at the Target Location 

The model is launched again with ð and in Eq. (2). and 

Eq. (3). are utilized to coach θSj, to better forecast at the 

target site Sj ∈ St, with little coaching data. The train set 

performs as the coaching data, but the efficiency of 

calibration is evaluated by the test set. The pseudocode of 

the complete coaching algorithm is pictured in the 

Algorithm 1. 

 

Algorithm 1. MLTL Based PM Sensor Reading Calibration 

with reference sensor device 

Input: So → set of origin location, St → set of target location, 

λ, µ: hyperparameters 

1: erratically initiate ð 

2: while not performed do 

3:     Represent a set of location from So 

4:     for sensor deployment location Si do 

5: Initiate the base model 𝛉Si  ð 

6: Represent prefer Array 𝑇𝑆𝑖
𝑃 = {Xs, Ys} from Si 

7: Assess Δ𝛉Si ʆ𝑇𝑆𝑖
𝑃   (𝛉Si) 

8: Calculate parameter with gradient descent             

optimizer: 𝛉Si 𝛉Si  λ Δ𝛉Si ʆ𝑇𝑆𝑖
𝑃   (𝛉Si) 

9: Sample Reserve set:  𝑇𝑆𝑖
𝑅 = {Xs, Ys} 

10: Evaluate  ʆ𝑇𝑆𝑖
𝑅   (𝛉Si) 

11: end for 

12: reform ð  ð - µ∑ Δð𝑖   ʆ𝑇𝑆𝑖
𝑅   (𝛉Si) 

13: end while 

14: for target location Sj £ St do 

15:  Initiate the model with 𝛉Sj  ð 

16: Calculate the prime parameters  θ𝑠𝑗
∗  with gradient 

descent on the prefer /priming set:  

𝛉Sj 𝛉Sj  λ Δ𝛉Sj ʆ𝑇𝑆𝑗
𝑃   (𝛉Sj) 

17: Assess on Reserve/test Array 

18:  end for 

output: Calibrated Sensor Reading 

V. MATERIALS AND METHODS 

A. Experimental Design 

At the chosen Brick kiln, the necessary gear, including 

a SDS011 sensor, DHT11 sensor, Raspberry Pi Model 3, 

cables as well as Wi-Fi or mobile data access is setup to 

measure PM pollutants in real-time, released by the brick 

kilns. The SDS011 sensor, which is effective and 

reasonably priced, is used to measure the PM 

concentrations emitted near the brick kiln. Temperature 

and humidity are two atmospheric variables that are 

measured using a DHT11 sensor, which is incredibly 

energy-efficient, relatively simple to set up and use, allows 

for blending into different devices and systems, 

streamlines data acquisition and processing, offers real-

time data on temperature and humidity, enables 

applications to constantly monitor and react to variations 

in environmental conditions, operates at low voltage levels, 

and uses little power while providing accurate temperature 

and humidity measurements. After receiving a power 

source, the SDS011 and DHT11 sensors are connected to 

a Raspberry Pi Model 3 via UART and GPIO pins, 

respectively to gather data on the concentration of PM 

pollutants, temperature, and humidity. A Wi-Fi or mobile 

data source is also enabled on the Raspberry Pi model. As 

shown in the Fig. 2, the DHT11 sensor's ground connection 

is attached to GPIO pin 6 via a brown wire, its data pin is 

connected to GPIO pin 4 via a white cable, and its power 

connector (5V power supply) is connected to the 

Raspberry Pi’s physical pin 2 for power via a black cable. 

The real-time sensor data were collected between May 

2023 and June 2023 from the Brick Kiln Industry, where 

the SDS011 and DHT11 sensors recorded values for every 

60 s.  The data is preserved as a CSV file with information 

including the date and time stamp, the PM2.5 and PM10 

concentrations, the AQI values for the two concentrations, 

the humidity, and the temperature. The unprocessed data 

from the SDS011 sensor is transformed into AQI data, as 

indicated in section V-C. The air quality will be assessed 

using the resulting AQI data, where the calibration of 

sensor data is carried out utilizing ML and DL algorithms 

to make the data more reliable and accurate. 

 

 

Fig. 2. Picture of the deployment set up, to examine the quality of 
atmospheric air in brick kiln industry. 

B. Data Acquisition 

The Nova SDS011 PM Sensor is employed for 

identifying the PM pollutants since it offers the best 
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price/accuracy ratio. With a detection range of 0.3 to 

10  μm, it takes advantage of the light scattering theory. 

DHT11 is considered as the reference sensor in this study, 

which is effective in measuring atmospheric factors like 

temperature and humidity. 

Data collection involves gathering a dataset made up of 

pairs of sensor measurements and related values of 

reference. By using an SDS011 sensor, real-time PM 

concentration emitted from the Brick kiln are gathered and 

stored as a csv file. As this sensor is sensitive to 

atmospheric factors such as temperature, when it is greater 

than 50 ºC, and humidity, when it is greater than 70%, the 

SDS011 sensor readings obtained above these threshold 

values, in this study, are trained to be calibrated using ML 

and DL algorithms to avoid falsification of data and to 

provide accurate and precise level of PM concentrations 

emitted from the Brick Kiln industries. In Fig. 3, the entire 

work flow for data collection and calibration of sensor 

readings is described. 

 

 

Fig. 3. The proposed workflow for monitoring particulate matter pollutants emitted in brick kiln industry. 

C. Decrypting the Raw Pollutant Concentration Data 

A tool for gauging air quality is the Air Quality Index 

(AQI). As indicated in Table II, it is an evaluation scale 

which is devoid of units, which serves in the purpose of 

rating the quality of air as Good, Satisfactory, Moderate, 

Poor, Very Poor and Severe for breathing. It is a value 

derived from the Eq. (4). 

 𝐴𝑄𝐼(𝑃𝑀2.5,10) = [{
(∅𝑚𝑎𝑥−∅𝑚𝑖𝑛)

(𝜃𝑚𝑎𝑥−𝜃𝑚𝑖𝑛)
}  (𝜇 − 𝜃𝑚𝑖𝑛)] + ∅𝑚𝑖𝑛   (4) 

where, 

𝐴𝑄𝐼(𝑃𝑀2.5,10) = Particulate Matter’s Air Quality Index 

𝜃𝑚𝑎𝑥   = Highest threshold value in accordance to 

pollutant’s raw data 

𝜃𝑚𝑖𝑛 = Lowest threshold value in accordance to pollutant’s 

raw data 

∅𝑚𝑎𝑥  = Highest AQI value in accordance to 𝜃𝑚𝑎𝑥 

∅𝑚𝑖𝑛  = Lowest AQI value in accordance to 𝜃𝑚𝑖𝑛 

𝜇 = Pollutant’s raw concentration rate 

Few instances like, if the sensor measures the 

concentration of PM2.5 as 58 µg/m3, its AQI will be 

calculated from Eq. (4) as, 𝐴𝑄𝐼𝑃𝑀2.5 = [{
100−51

60−31
} (58 −

31)] + 51, which is approximately estimated to be 97, and 

falls within the “Satisfactory” category as mentioned in 

Table II, which implies that the level of air quality is 

deemed adequate, with only a very small chance that those 

with exceptionally high sensitivity to air pollution would 

have cause for worry and minor health consequences may 

be experienced by sensitive populations. 

If the sensor measures the concentration of PM2.5 as 

189  µg/m3, its AQI will be calculated from Eq. (4) as, 

𝐴𝑄𝐼𝑃𝑀2.5 = [{
400−301

250−121
}  (189 − 121)] + 301 , which is 

approximately estimated to be 353, and falls within the 

“Very Poor” category as mentioned in Table II, which 

impacts the people who are members of sensitive groups 

to have a higher risk of suffering worse health effects and 

has a greater chance that adverse health effects may affect 

the entire population. 

If the sensor measures the concentration of PM10 as 

42  µg/m3, its AQI will be calculated from Eq. (4) as, 

𝐴𝑄𝐼𝑃𝑀10 = [{
50−0

50−0
} (42 − 0)] + 0,  which is 

approximately estimated to be 42, and falls within the 

“Good” category as mentioned in Table II, which implies 

that the air quality is in a favorable range and presents 

either no risk or a negligible risk to health and this 

condition is optimal for engaging in outdoor activities and 

exercises. 
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If the sensor measures the concentration of PM10 as 

285  µg/m3, its AQI will be calculated from Eq. (4) as, 

𝐴𝑄𝐼𝑃𝑀10 = [{
300−201

350−251
}(285 − 251)] + 201 , which is 

approximately estimated to be 235, and falls within the 

“Poor” category as mentioned in Table II, which implies 

that there is a possibility that the general population might 

have health impacts as a result of the deteriorating air 

quality and the members of vulnerable groups can suffer 

worse health effects. 

Likewise, if the calculated AQI falls under “Moderate” 

category, it implies that the air quality is somewhat 

polluted and could impact individuals in sensitive groups, 

those with respiratory or heart conditions might encounter 

health effects, while the general public is relatively less 

susceptible to these effects. And, if the calculated AQI falls 

under the “Severe” category, it implies that there is an 

increased likelihood that the entire population will be 

impacted, and more severe health effects could be 

experienced by everyone. 

TABLE II. AQI BASED PM2.5 AND PM10 CONCENTRATION BREAKPOINT 

GIVEN BY CENTRAL POLLUTION CONTROL BOARD (CPCB) 

AQI Range Observation PM10 (24 h) PM2.5 (24 h) Colour Code 

0−50 Good 0−50 0−30  

51−100 Satisfactory 51−100 31−60  

101−200 Moderate 101−250 61−90  

201−300 Poor 251−350 91−120  

301−400 Very Poor 351−430 121−250  

401−500 Severe 430+ 250+  

 

D. Data Preprocessing and Feature Selection 

The dataset is first cleaned by dealing with outliers, 

missing numbers, and any other data quality concerns. 

Reference values of temperature and humidity are 

regarded as independent variables since it is expected that 

they will affect the readings from the SDS011 sensor. Only 

essential features that are required for regression analysis, 

such as atmospheric variables temperature and humidity, 

PM AQI values, time stamps, dates, etc., are taken into 

account during the calibration process. Any other 

irrelevant or non-informative features from the dataset are 

excluded. Then, in order to eliminate bias in the regression 

model caused by variations in magnitude, the SDS011 

sensor data, temperature, and humidity variables are 

standardized to a single scale. The whole collection of data 

that is required for calibration is structured correctly, and 

it has been verified that it is compatible for regression 

analysis. 

E. Regression Training Algorithms 

To rectify or adjust unprocessed sensor readings, sensor 

calibration involves forecasting numerical values. 

Regression models are a suitable choice because they 

produce continuous numerical data and are created 

expressly for this use. They are designed to provide 

accurate estimates across the entire range of sensor values, 

handle any varying scales and ranges without the need for 

extensive preprocessing, and provide a direct measure of 

error or residual, all of which are critical in calibration 

tasks where precision matters. They are also less sensitive 

to class imbalances and data distribution, ensuring stable 

performance even when dealing with varying data patterns. 

A comparison study which shows the better methodology 

to calibrate sensor readings using ML methods is discussed 

in Table III. 

TABLE III. MERITS AND DEMERITS OF VARIOUS METHODOLOGIES 

USED FOR CALIBRATION  

S.No. Methodologies Description 

1 
Regression 

Algorithms 

Outputs continuous numerical data, allowing 

for accurate mapping of sensor readings. 
Regression models, which are crucial for 

calibration with numerous variables, can 

capture complex correlations between sensor 

readings and physical values. Gives 

quantifiable error measurements (such R2, 

RMSE, and MAE) for measuring calibration 
accuracy. More resistant to anomalies and 

erratic data. Allows for continuous calibration 

and updates and modifications to the model as 
new data is gathered. 

2 
Classifier 

Algorithms 

Outputs Discrete class labels for classification 

tasks may not readily correspond to the 
numerical range of sensor data, restricting 

interpolation capabilities. Calibration 

activities don't immediately relate to 
classification error measures like accuracy and 

F1-score. Less capable of capturing complex 

interactions, especially when nonlinear 
modelling is needed for sensor calibration. 

3 

CART 

(Decision 

Trees) 

Outputs Discrete classes or continuous values, 

according to the job, but because decision 

trees divide data into discrete regions, they 
may not efficiently capture continuous 

relationships. The accuracy of the calibration 

may not line up with error metrics since they 
may be related to classification accuracy or 

Gini impurity. Complex relationships might 
not be modelled well, especially when a linear 

divide is insufficient. Decision tree topologies 

offer interpretability, but deep trees can lead to 
complexity. 

 

After performing data cleaning, critical feature selection, 

and normalization, the entire data is divided into 2 data sets, 

for coaching and evaluation. In this study, 70% of the data 

is allocated for coaching and 30% of it is allocated for 

evaluating. The regression model will be created using the 

training data, and its effectiveness will be assessed using 

the test data set. Various regression algorithms like Radial 

Basis Function Gaussian Process Regression (RBF-GPR), 

Dot Product Gaussian Process Regression (DP-GPR), 

Radial Basis Function Kernel Regression (RBF-KR), 

Polynomial Function Kernel Regression (PF-KR). Neural 

Network (NN), and Meta Learning based Transfer 

Learning (MLTL) are used to calibrate the SDS011 sensor 

reading obtained from Brick Kiln industry.  

F. Performance Indexes 

Metrics like Mean Square Error (MSE), Root Mean 

Square Error (RMSE), and coefficient of determination 

(R2) are used to evaluate the effectiveness of the regression 

model. The model’s ability to depict the link between the 

sensor readings and the independent variables is evaluated. 

Then, depending on the assessment measures, the most 

effective model is chosen, and it is then utilized to calibrate 

the fresh set of sensor values.  
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VI. CALIBRATION TECHNIQUES 

A. Gaussian Process Regression (GPR) 

Two kernels are utilized with Gaussian Process 

regression, namely, Radial Basis Function (RBF) and Dot 

product (linear) Kernel. GPR forecasts a range of 

probabilities across potential functions rather than an 

individual point projection, allowing for the measurement 

of prediction ambiguity.  

1) Radial Basis Function Gaussian Process 

Regression (RBF-GPR)  

RBF, also referred as squared exponential kernel, 

assesses the degree of resemblance across data points in 

the feature space depending on their Euclidean distance. It 

functions as based on the Eq. (5). 

 𝑅𝐵𝐹𝑘(𝐷𝑥 , 𝐷𝑦) = exp (−
∥𝐷𝑥−𝐷𝑦∥2

2𝜔2 ) (5) 

where, 𝐷𝑥  𝑎𝑛𝑑 𝐷𝑦   are the datapoints, Euclidean distance 

between the data points is defined as ∥ 𝐷𝑥 − 𝐷𝑦 ∥ , and 𝜔 

represents the bandwidth parameter. Smooth patterns in 

the data can be captured effectively by the RBF kernel. 

2) Dot Product Gaussian Process Regression (DP-

GPR) 

Dot Product, also referred as Linear kernel, assesses the 

resemblance of two data points by looking at the inner 

product of each. As it is represented in Eq. (6): 

 𝐿𝑖𝑛𝑒𝑎𝑟𝑘(𝐷𝑥 , 𝐷𝑦) = 𝐷𝑥
𝑇  𝐷𝑦   (6) 

where, 𝐷𝑥
𝑇   and 𝐷𝑦   are the respective transposed and 

original vectors of the two data points. It is based on the 

data points' absolute placements inside the feature space 

and helpful when it is assumed that the characteristics and 

the target variable are connected linearly to form the 

underlying function. 

B. Kernel Regression (KR) 

Two kernels are utilized with Kernel Regression, 

namely, Radial Basis Function (RBF) and Polynomial 

Kernel. RBF kernel, as explained in Eq. (5) is commonly 

used in both KR and GPR. 

It calculates the degree of resemblance between data 

points relying on the polynomial of their inner product and 

can be represented as in Eq. (7). 

 𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙𝑘(𝐷𝑥 , 𝐷𝑦) = (𝛽 𝐷𝑥
𝑇  𝐷𝑦 + 𝛾)

𝑑
 (7) 

where, 𝐷𝑥
𝑇  𝑎𝑛𝑑 𝐷𝑦   are the respective transposed and 

original vectors of the two data points, 𝛽  is used as a 

parameter for scaling, 𝛾  represents a bias or offset term 

and 𝑑 represents the polynomial’s degree. The flexibility 

of the polynomial kernel, which could capture non-linear 

correlations between features, relies on the polynomial’s 

degree and they are very effective in handling non-linearly 

separable data. 

C. Neural Network (NN) 

TensorFlow libraries being the architect of Neural 

Network model are used in the process of tuning 

hyperparameters like number of epochs, neurons present 

in each layer, number of layers that are hidden, and sample 

size. Relation between each of these parameters could be 

presented as in Eq. (8). 

  𝐻𝑛 =
∆ 

𝛽×(𝜃𝑖+ 𝜃𝑜)
    (8) 

where, 𝐻𝑛 represents the number of layers that are hidden, 

∆ represents the dataset’s size, 𝜃𝑖 represents the number of 

neurons that are given as input, 𝜃𝑜 represents the number 

of neurons received as output, and 𝛽  represents the 

randomly chosen scaling factor between 2 to 10. Various 

test results revealed that the model produced superior 

outcomes, when, there were 5 number of hidden layers, 64 

neurons for each layer, 750 epochs, and for a sample size 

of 10. ReLu and adam are used as an activation function to 

train the model effectively and as an optimizer, 

respectively. 

D. Meta-Learning Based Transfer Learning (MLTL) 

A PM sensor along with a reference sensor is installed 

at the research area. For the sensors installed at a certain 

location S, Ts = (Xs, Ys) Where Xs represents the data 

gathered from the PM sensor's period of time and Ys stands 

for the period of time data acquired from the collectively 

placed reference sensor, respectively. Because Xs and Ys 

are the same length, they are identified by the symbol |Ts|. 

In the proposed model, the Origin location is referenced as 

Ss and the Target location as St; “θ” is referenced as a 

parameter which encodes the output from the findings, and 

in order to put Fθ into execution, we employ a neural 

network as described in Fig. 2. 

VII. MODEL SELECTION 

A model with higher R², lower RMSE, and lower MAE 

is considered more accurate and better at predicting the 

sensor readings based on its sensitive parameters’ 

temperature and humidity values. 

A. R-Squared (R2) Metric  

A mathematical measure called R-squared shows how 

much of the variation in a dependent variable, in this case, 

sensor readings, could be predicted based on the 

independent variables’ values for temperature and 

humidity. It is a score between 0 and 1 that indicates how 

well the model matches the data. An R² value of 1 denotes 

an impeccable fit, whereas a value of 0 shows that the 

model does not explain any variation. A greater R2 value 

suggests, that the model reflects the data more closely. 

 𝑅2 = 1 −
∑ (𝛼𝑖−�̂�𝑖)2𝜃

𝑖=1

∑ (𝛼𝑖− �̅�𝑖)2𝜃
𝑖=1

  (9) 

As in Eq. (9), 𝜃 is the dataset’s number of data samples, 

𝛼𝑖 is the ith data point’s real sensor target value, �̂�𝑖 is the ith 

data point’s predicted sensor target value derived using 

regression model, �̅�𝑖 represents the average of the sensor's 

actual target value. 
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B. Root Mean Square Error (RMSE) Metric 

The average magnitude of the residuals is gauged using 

the statistic known as RMSE. It calculates the disparity 

among the initial sensor readings and the projected values 

by taking the square root of the mean of the squared 

discrepancies. The dependent variable’s (sensor readings) 

units are used to express RMSE. Lower RMSE values 

imply less residuals and a better fit of the model to the data. 

 𝑅𝑀𝑆𝐸(𝛼, �̂�) =  √
1

𝜃
∑ (𝛼𝑖 − �̂�𝑖)

2𝜃
𝑖=1   (10) 

C. Mean Absolute Error (MAE) Metric 

MAE estimates the average size of the residuals but 

ignores the squared difference. Similar to RMSE, MAE is 

measured in the same units as the sensor values that are the 

dependent variable. A mean absolute measure of errors in 

forecasting is provided by MAE. Compared to RMSE, it is 

less susceptible to outliers. 

 𝑀𝐴𝐸(𝛼, �̂�) =
1

|𝜃|
∑ |𝜃

𝑖=1 𝛼𝑖 − �̂�𝑖|  (11) 

VIII. RESULT AND DISCUSSION 

In this study, with the help of reference sensor device 

which is capable of recording the atmospheric influencers 

like temperature and humidity that affect the sensor 

reading, various Machine Learning and Deep Learning 

algorithms are used for calibrating the PM sensor data.  

Firstly, data obtained from PM sensor and reference 

device are stored in the form of .csv file which will include 

sub-items like Date and Time, raw values of PM2.5 and 

PM10, AQI values of PM2.5 and PM10, Temperature and 

Humidity. Calibration is necessary for the sensor readings 

that exceeds the threshold range of humidity >70% and 

temperature >50 ºC. Then, the data pre-processing happens 

as explained in Section IV.C, where the required features 

with the correlated values are chosen, undergoes one-hot 

encoding technique for categorical representation based on 

the threshold ranges of environmental factors and labelled 

numerically as “0” and “1”.  

Then, the data is fitted into the various ML and DL 

based models for the calibration of sensor readings and the 

results are evaluated based on the evaluation metrics as 

described in Section VII. Among the various ML and DL 

models (RBF-GPR, DP-GPR, RBF-KR, PF-KR, NN, and 

MLTL), Meta-learning-based Transfer Learning model has 

performed better and given more accurate readings.  

As shown in Fig. 4, it achieving low error levels is seen 

by the training loss gradually decreasing over time. It can 

be observed that the difference between training loss and 

validation loss is first noticeably smaller and then 

progressively expands, illustrating the precision of the 

model fitting. The performance of different calibration 

methods is shown in Table IV.  

 

 

Fig. 4. Estimation of low error rate in MLTL algorithm. 

TABLE IV. CALIBRATION RESULTS OBTAINED BY ML AND DL BASED 

ALGORITHMS 

No Algorithms R2 RMSE MAE 

1 RBF-KR 0.873251 0.0154 0.1196 

2 PF-KR 0.914461 0.0053 0.0153 
3 RBF-GP 0.940288 0.0102 0.0892 

4 DPF-GP 0.935665 0.0368 0.074 

5 NN 0.972057 0.0017 0.0045 
6 MLTL 0.992236 0.0002 0.0048 

 

Figs. 5−7 illustrates the calibrated sensor readings with 

the help of reference sensor device through various ML 

and DL based algorithms. 
 

 
(a)                                                                                                          (b) 

Fig. 5. Calibration of sensor data using ML algorithms: (a) RBF-KR and PF-KR; (b) RBF-GP and DPF-GP. 
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Fig. 6. Calibration of sensor data using MLTL. 

 

Fig. 7. Calibration of sensor data using NN deep learning based 

regression algorithms. 

IX. CONCLUSION 

In this study, it addresses the effective use of low-cost 

sensor for monitoring the real-time pollutant’s 

concentration level emitted from the Brick Kiln industry, 

which is remotely located from the fixed air quality 

monitoring station. The main contribution of this study is, 

when there is lack of data from authorized stationary air 

quality monitoring station to validate the data produced by 

the air quality monitoring sensors, a high-quality reference 

device is used to help in the process of calibrating the data 

obtained from the sensor, by analysing which atmospheric 

factor has influenced the sensor readings. Once the 

sensor’s sensitive factors are identified, various ML and 

DL based regression algorithms are used to calibrate the 

sensor’s readings along with the help from reference 

device to provide accurate and reliable readings. In the 

process of calibrating the sensor data measured from Brick 

Kiln industry, among the various regression algorithms 

used for calibration, the proposed method showed best-in-

class performance while evaluating it using all the 

necessary evaluation metrics followed by regression 

models. It is evident from this study, that, when there is no 

data from static monitoring stations which could be used 

as reference data to validate the sensor’s readings, by using 

this study’s reference device’s data, the proposed system is 

capable and very effective in calibrating the sensor data 

against its sensitivity to environmental factors. In future, 

proposed method could be extended to calibrate the 

various other pollutant’s concentration level (CO, O3, SO2, 

NO2, etc.,) that are emitted from industries in real-time, 

with the help of various IoT protocols. It could be further 

extended to secure the calibrated data against tampering 

using Blockchain Technology.  
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