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Abstract—The dynamic equilibrium of ecosystems can be 

maintained through controlled burning, but excessive 

wildfires can lead to severe consequences. Therefore, the use 

of Internet of Things (IoT) devices equipped with deep image 

processing models for wildfire detection has recently become 

a trend. Conventional deep image processing models suffer 

from accuracy issues and large model sizes, limiting their 

applicability on small IoT devices. To address this challenge, 

we utilized lightweight deep image processing models such as 

the MobileNet series to train a wildfire database. 

Furthermore, we evaluated three different versions of 

MobileNet (V2, V3 Large, and V3 Small) using a cross-

entropy loss function to compare their accuracy and training 

times. Through data analysis, recommendations for 

deploying MobileNet models on IoT devices are provided. 

The results indicate that the ranking of MobileNet’s accuracy 

from highest to lowest is V2, V3 Large, and V3 Small; the 

ranking of loss values from lowest to highest is V2, V3 Large, 

and V3 Small; and the ranking of training times from fastest 

to slowest is V3 Large, V2, and V3 Small.  

 

Keywords—wildfire detection, MobileNet model, deep 

learning, comparison and analysis  

 

I. INTRODUCTION 

In the natural forest ecosystem, wildfires are a major 

disrupting factor. Wildfires not only cause significant 

damage to ecosystems but also have a profound impact on 

human societies. With the influence of climate change, the 

trends, frequency, and severity of wildfires in many 

regions are astonishingly increasing. However, controlling 

wildfires comes with high costs, and firefighting itself is a 

risky task. Additionally, wildfires generate various 

airborne particles, affecting human health and contributing 

to atmospheric pollution. Tran et al. [1] described in their 

paper the airborne particles produced by recent wildfires 

on the west coast of the United States. These particles can 

remain suspended in the atmosphere for days to weeks, 

passing through Heating, Ventilation, and Air 

Conditioning (HVAC) systems of various buildings before 

settling on equipment and facilities inside buildings. As a 

result, wildfires pose a threat not only to human health but 

also lead to a decline in air quality. To address the issues 

of wildfire occurrence and prevention, researchers have 

proposed various methods for predicting and detecting 

wildfires. Xie et al. [2] mentioned that the Fuel Moisture 

Content (FMC) method used in assessing wildfire risk can 

greatly help understand fire behavior and conduct 

firefighting management activities by estimating the range 

of FMC. This method achieves real-time detection of FMC 

through satellite remote sensing, providing an effective 

means for early wildfire warning. Shah et al. [3] used 

CubeSats satellites with a modular and cost-effective 

architecture in Low Earth Orbit (LEO), achieved early 

detection of wildfires within 30 min using multispectral 

visible to infrared cameras. Shaik et al. [4] classified fuel 

types using high-resolution images from PRecursore 

IperSpettrale della Missione Applicativa (PRISMA), 

demonstrating the effectiveness of the Scott/Burgan fuel 

model system through ground assessments, satellite 

measurements, and simulated concentration displays of 

summer data. Remote sensing technology is a widely used 

and effective approach. While satellite remote sensing has 

demonstrated considerable efficacy in wildfire prevention 

and control, its applicability is limited across all countries 

due to high technical barriers and associated costs. 

Consequently, researchers are actively exploring 

alternative methods for wildfire detection and prediction. 

Ferreyra et al. [5] established a model predicting the 

emission of pollutants into the atmosphere from wildfires 

through simulating chemical and transport processes, 

aiding in the assessment and detection of wildfires. The 

research by Kotroni et al. [6] describes the DISARM 

project (Drought and fIre ObServatory and eArly waRning 

system), an atmospheric-fire model system that 

demonstrates strong support in suppressing wildfires, 

providing a crucial background for assessing wildfire risks 

in future climates. Zhang et al. [7] proposed a wildfire risk 

model that optimizes monitoring tower systems through 

integrating visual analysis, location allocation, and 

multiple coverage of high-risk wildfire areas, enhancing 

the effectiveness in multiple coverage of high-risk wildfire 

areas. 

With the development of deep learning technology, new 

object recognition and image processing techniques 
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continue to emerge. Kashika and Venkatapur [8] adopted 

the DarkNet-53 (a 53-layer Deep Convolutional Neural 

Network) method and integrated it into a safety helmet 

detection system based on You Only Look Once v3 

(YOLOv3), achieving better real-time detection of safety 

helmets. Xie et al. [9] proposed an image processing 

method based on three-frame difference, particle swarm 

optimization, and Otsu enhancement for detecting 

planktonic organisms. Experimental results showed that 

this method could rapidly and accurately acquire clear 

planktonic organism targets. Ye et al. [10] introduced a 

novel All-in-One Dehazing (AOD) Network based on 

Convolutional Neural Network (CNN) and Long Short 

Term Memory (LSTM) networks, demonstrating 

advantages in accuracy and efficiency for AOD tasks and 

providing good recommendations for robot action training. 

In addition, IoT devices and temperature sensors play a 

crucial role in wildfire monitoring. These smart tools can 

track environmental temperature changes in real-time and 

identify potential signs of wildfires. Meanwhile, drones 

equipped with high-resolution cameras and infrared 

imaging technology have become crucial in wildfire 

detection. They can rapidly cover vast areas, providing 

real-time data on potential fire sources and significantly 

enhancing the capabilities of emergency response and 

wildfire management. In the context of drone-based forest 

fire detection, Xie and Huang [11] introduced an approach 

using a modified Faster Regions with Convolutional 

Neural Network (RCNN) algorithm based on transfer 

learning, improving performance by more than 18% 

compared to traditional methods. This technological 

advancement enhances monitoring and control of wildfires, 

strengthening our ability to address wildfire risks and 

effectively support prevention and management. 

In summary, as technology evolves, the ways of 

detecting and preventing wildfires have become 

increasingly diverse. When choosing a detection method, 

it is crucial to select the most effective one as based on the 

current situation. For wildfires, the current use of Internet 

of Things (IoT) or drone devices for real-time detection 

represents a cost-effective and balanced approach. 

Therefore, the use of devices equipped with lightweight 

deep image processing models for wildfire detection is 

receiving increased research attention. 

The main contribution of this paper can be given as the 

utilization of three versions of the lightweight deep image 

processing model MobileNet (V2, V3 Large, and V3 

Small) for training the wildfire database. Through a 

comprehensive evaluation, we analyzed the results, 

encompassing accuracy and loss values on both the 

training and testing datasets. Additionally, we conducted a 

comparative examination of the training times for these 

three models. Based on these results, we present 

recommendations for deploying them on IoT or drone 

devices that require robust deep image processing 

capabilities.  

The rest of the paper is structured as follows: Section II 

briefly summarizes the related work and provides a brief 

introduction to the MobileNet model. Section III provides 

details about the computer environment used for training 

the model and the methodology employed for evaluating 

the model in this study. In Section IV, we present the 

experimental results and analysis. Finally, Section V 

contains the conclusions and recommendations. 

II. RELATED WORKS 

In the rapidly advancing field of deep image processing 

technology today, employing deep image processing 

models to identify wildfire events has become a significant 

trend. Wu and Zhang [12] utilized classical object 

detection methods, including Faster RCNN, various 

variants of YOLO, and Single Shot MultiBox Detector 

(SSD), for forest fire detection. They introduced new 

categories for smoke and changes in fire areas to reduce 

false alarms, enhancing the accuracy of fire detection by 

modifying the YOLO structure. Bai and Wang [13] 

proposed a precise method for forest fire recognition, 

combining classification and anomaly detection models. 

They optimized an algorithm based on the Visual 

Geometry Group (VGG) network, trained smoke and 

flame recognition models through transfer learning, and 

improved early flame detection with an optimized YOLO 

network. This method achieved an average precision 

(mAP) of 96.5%, meeting the requirements for real-time 

wildfire detection. 

However, traditional deep learning models, including 

VGG, typically face challenges of significant model size 

when deployed on resource-constrained portable mobile 

devices, especially in fields requiring real-time 

applications such as wildfire recognition. To address this 

challenge, with the continuous progress in the field of 

computer vision, lightweight deep image processing 

models, such as the MobileNet series, have emerged. 

These models are specifically designed to operate 

efficiently on mobile devices by reducing model size and 

the number of parameters while maintaining relatively 

high-performance levels. Therefore, the image processing 

technology of MobileNet models has also been applied in 

various fields. 

In agriculture, Dan et al. [14] proposed the SE-

MobileNet V2 model by combining MobileNet V2 and 

Squeeze-and-ExcitationNetworks (SENet), effectively 

identifying pests in crops. Masykur et al. [15] used 

MobileNet as a framework to develop a rice plant disease 

and pest classification model and an object detection 

method based on leaf color, achieving a detection accuracy 

of 97%. Rajbongshi et al. [16] utilized the MobileNet 

model to study four types of rose diseases, achieving an 

accuracy of 95.63%. Yao et al. [17] proposed an 

underwater sea cucumber detection method based on an 

improved MobileNet-SSD (MD-SSD) to enhance the 

accuracy of MobileNet-SSD in sea cucumber detection. 

This is important for the rapid promotion of autonomous 

sea cucumber harvesting robots. In the medical field,  

Gasa et al. [18] introduced a skin disease diagnosis system 

and used the MobileNet CNN on a Raspberry Pi to identify 

types of skin lesions. Reddy et al. [19] proposed and 

compared an automatic melanoma cancer detection system 

based on the MobileNet architecture algorithm and CNN 

algorithm, showing that the MobileNet architecture 
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provided 75% accuracy, while CNN provided 65% 

accuracy. In other fields, Sun and Luo [20] proposed using 

a fine-tuned MobileNet V2 model as a feature extraction 

method for palm vein recognition, while Zhou et al. [21] 

and Tang et al. [22] respectively proposed an improved 

MobileNet model and an enhanced Mobilenet-SSD 

method for face recognition. They all mentioned that these 

methods are not only accurate but also more convenient to 

deploy on IoT devices.  

The mentioned MobileNet models have a common 

advantage across different fields, namely, their small 

model size, making them convenient for deployment on 

IoT devices. In the study by Kavyashree et al. [23], the 

baseline architecture was modified to further reduce its 

size to 2.3 MB while maintaining an outstanding accuracy 

of 89.13%. This streamlined model is currently applicable 

to a wide range of mobile devices and embedded visual 

platforms. Additionally, Thin MobileNet and Slim 

MobileNet models were proposed separately by  

Sinha et  al. [24] and Bouguezzi [25]. The size of the Thin 

MobileNet model is 9.9 MB, achieving an accuracy of 

85.61%. The Slim MobileNet model, with a size of 7.3 MB, 

achieves an accuracy of 73.12% while reducing parameter 

count by over 41%. Compared to traditional image 

recognition models, these MobileNet models are more 

suitable for deployment on IoT devices. The compact size 

and high accuracy of these models are of significant 

importance for devices involved in wildfire recognition in 

wilderness environments. 

A. MobileNet V1 and MobileNet V2 

Howard et al. [26] introduced MobileNet V1, the first 

generation of MobileNet, featuring the DepthWise 

Separable Convolution technique. This technique 

significantly reduces computational complexity and model 

parameters through two key steps: DepthWise convolution, 

applying filters to each input channel, and pointwise 

convolution, effectively combining channel results while 

preserving model performance. DepthWise Separable 

Convolution includes DepthWise Convolution, applying 

filters separately to input channels, reducing 

computational load while retaining channel feature 

information, and Pointwise Convolution, combining 

DepthWise Convolution results to produce the final output 

feature map, as illustrated in Fig. 1. 

 

 

Fig. 1. DepthWise convolution and pointwise convolution. 

Sandler et al. [27] introduced MobileNet V2, which 

brought forth a series of significant improvements to 

enhance the performance and versatility of deep learning 

models. This version of the MobileNet series inherits the 

advantages of its predecessor, MobileNet V1, and 

introduces innovative design elements that bolster its 

performance, non-linearity, and applicability. A crucial 

improvement in MobileNet V2 is the introduction of the 

Inverted Residuals structure, as depicted in Fig. 2 [28]. 

This structure represents a major architectural 

improvement in deep learning models. The core of this 

design is to reevaluate the traditional residual structure, 

making the model more nonlinear and performance-

oriented. 

 

 

Fig. 2. Inverted residuals. 

The release of MobileNet V2 not only represents the 

continuous evolution of the MobileNet series but also 

provides the deep learning community with more powerful 

tools to meet the growing demands of applications. Its 

improvements in performance, non-linearity, and 

versatility have opened up new possibilities for research 

and applications in the field of computer vision. As a result, 

MobileNet V2 has become a top choice for numerous deep 

learning research and practical applications. 

B. MobileNet V3 Large & Small 

Howard et al. [28] introduced MobileNet V3, featuring 

a key innovation known as the Squeeze-and-Excitation 

(SE) module, aimed at improving the model’s 

performance. The SE module is another key component of 

MobileNet V3 with significant functionality. As depicted 

in Fig. 3 [30], its role is to adaptively readjust the 

importance of different channel features within the neural 

network, thereby enhancing the model’s performance. 

 

 

Fig. 3. Squeeze-and-Excitation (SE) block. 

The SE block operates through the following four key 

steps: 

(1) Ftr (Feature Map): This step involves transforming 

the input feature map 𝑿 into a new feature map 𝑼 

using standard convolution. This convolutional 

operation helps capture various features from the 

input data. 

(2) Fsq (Squeeze): The “squeeze” operation performs 

global average pooling on the 𝑼  feature map, 

resulting in a 1 × 1 × 𝐶  output 𝒁 , where 𝐶 

represents the number of channels. 𝒁 is a 1 × 1 ×
𝐶 tensor containing global information. This step 

aggregates global information from all feature 

layers. 
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(3) Fex (Excitation): The excitation step comprises 

two fully connected layers and a sigmoid 

activation function. It applies a non-linear 

transformation to the 𝒁  tensor and produces a 

1 × 1 × 𝐶 output 𝑠, where 𝑠 is a tensor containing 

channel weight information. This step is designed 

to learn the importance of each feature layer by 

modeling the relationships between them. 

(4) Fscale (Scale): In this step, a channel-wise 

multiplication operation scales each feature layer 

in 𝑼 by its corresponding weight 𝑠. This results in 

an output tensor �̃�  with dimensions 𝐻 × 𝑊 × 𝐶 . 

The purpose of this step is to adjust the importance 

of each feature layer based on the learned 

importance values. 

The SE block enhances the model’s performance and 

representation through four key steps. It adaptively adjusts 

channel feature weights, capturing crucial features, and 

improving effectiveness across diverse tasks. Within the 

SE module recalibrates features through two steps: 

squeezing and exciting. Squeezing involves global average 

pooling, compressing channel features into a single value, 

representing the average importance. In the exciting step, 

a small neural network redistributes these importance 

values. This allows the SE module to learn channel 

importance and adjust feature responses. SE modules 

make MobileNet V3 more intelligent and efficient. By 

dynamically adjusting channel feature importance, the 

model focuses on informative features and suppresses less 

relevant ones. This adaptability improves overall 

performance, making it versatile across tasks and data 

distributions, leading to continuous development. 

MobileNet V3 comes in two versions, MobileNet V3 

Large and MobileNet V3 Small, catering to different needs 

and application scenarios. This provides users with more 

choices and flexibility.  

• MobileNet V3 Large: Suited for tasks demanding 

high model accuracy. It is meticulously designed 

to excel in applications requiring high precision, 

such as image classification and object recognition. 

• MobileNet V3 Small: Optimized for low-latency 

real-time applications. This version is designed to 

be lightweight, ensuring efficient performance in 

resource-constrained environments. MobileNet 

V3 Small is an ideal choice for real-time tasks on 

mobile devices with limited computational 

resources. 

In summary, MobileNet V3 offers users the choice to 

find an ideal balance for different application scenarios. 

MobileNet V3 Large excels in tasks requiring high 

accuracy, while MobileNet V3 Small focuses on low 

latency and efficiency, making it particularly suitable for 

real-time applications on resource-constrained devices. 

In the context of IoT devices dedicated to wildfire 

recognition in outdoor environments, careful consideration 

of computational resources is crucial. Therefore, choosing 

lightweight deep learning models is a critical strategy. 

Lightweight models have smaller model sizes and fewer 

parameters, allowing them to operate efficiently in 

resource-constrained environments. This is extremely 

important for outdoor applications, as IoT devices need to 

recognize wildfires in real-time, respond quickly to 

potential hazards, and take the necessary actions. Thus, 

IoT devices deployed in the outdoors must strike a balance 

between performance and computational resources to 

ensure their reliability and practicality. Choosing 

lightweight deep learning models has become a key 

strategy in achieving this goal. 

III. MATERIALS AND METHODS 

A. Experimental Environments and Wildfire Database 

In this study, we used the MobileNet model from the 

PyTorch library for wildfire database feature recognition. 

The hardware setup for the experiments includes a 

computer equipped with a 12th Gen Intel(R) Core(TM) i7-

12700KF 3.61 GHz processor and an NVIDIA GeForce 

RTX 3060 Ti graphics card. The operating system used for 

the experiments is Windows 11 Professional, and GPU 

acceleration was utilized for training. The software 

environment includes NVIDIA CUDA 11.8 and PyTorch 

2.0.1, with the programming language being Python 3.10. 

The wildfire database is a compilation of data from 

various sources, including the “Forest fire” photo 

collection from the Kaggle website and data obtained by 

searching for wildfire-related photos. In total, there are 

4,526 wildfire photos and 10,799 non-wildfire photos. To 

conduct training and testing, the wildfire database was 

divided into two main categories: “Train” and “Test”. The 

Train set comprises 3,168 wildfire photos and 7,478 non-

wildfire photos, while the Test set contains 1,358 wildfire 

photos and 3,321 non-wildfire photos. The Train set is 

primarily utilized for training the wildfire model, while the 

Test set is used to evaluate the model’s performance. 

Fig.  4 is the samples from wildfire database.  

 

 

Fig. 4. Samples from wildfire database. 

B. Evaluation of Model Performance 

Ruby and Yendapalli [29] recommended that the 

evaluation metrics used for assessing model performance 

include accuracy and the cross-entropy loss function.  

C. Accuracy 

Accuracy is an important indicator for measuring the 

classification performance of a model. It measures the 
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proportion of the number of samples correctly classified 

by the model to the total number of samples. After each 

training and testing epoch, we extract predictions from the 

model’s output. The output of the model is a vector 

containing the predicted probabilities for each class, where 

each element represents the probability of the 

corresponding class. Next, we find the category label 

corresponding to the highest probability by comparing the 

predicted probabilities of each category. This can be 

achieved with the following code: 

preds = torch.max(outputs, 1) 

where outputs represent the model’s prediction output, and 

preds are the model’s predicted class labels. 

Then, we compare the predictions of the wildfire 

detection model with the actual labels to determine which 

wildfire samples were correctly classified. For each 

sample, if the model’s prediction matches the actual label, 

we consider it correctly classified. Finally, in each iteration 

cycle, we accumulate the count of samples that were 

correctly classified. This can be achieved with the 

following code: 

train_acc + = torch.sum(preds == labels.data) 

where train_acc is the number of correct classifications 

used to accumulate the training set. 

Regarding the calculated accuracy value of the wildfire 

detection model, once we accumulate the number of 

correctly classified samples, we can calculate the accuracy. 

The accuracy is calculated by 

 𝑇𝑟𝑎𝑖𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑟𝑎𝑖𝑛_𝑎𝑐𝑐

𝑡𝑟𝑎𝑖𝑛_𝑠𝑢𝑚
  (1) 

 𝑇𝑒𝑠𝑡 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑒𝑠𝑡_𝑎𝑐𝑐

𝑡𝑒𝑠𝑡_𝑠𝑢𝑚
   (2) 

This is a very common performance metric used to 

evaluate a model’s performance in classification tasks. The 

higher the accuracy, the better the model’s performance.  

For the training set, we divide train_acc by the total 

number of samples in the training set to calculate the 

training set’s accuracy. For the test set, we divide test_acc 

by the total number of samples in the test set to calculate 

the test set’s accuracy. The accuracy value is a proportion 

between 0 and 1: when accuracy is close to 1, it means the 

model correctly classifies most of the samples, and when 

it is close to 0, it indicates a poorer performance.  

In our experiments, accuracy is an important 

performance evaluation metric used to assess the wildfire 

detection model’s performance. We monitor both the 

training set accuracy and the test set accuracy, providing 

insights into the model’s classification performance on 

different datasets. The training set accuracy reflects the 

model’s classification ability on the training data. As 

training progresses, the training set accuracy gradually 

improves, indicating that the model is continuously 

enhancing its classification performance on the training 

data. This is a positive sign because it means the model is 

learning more features and patterns from the known data. 

In contrast, the test set accuracy is more general because it 

evaluates the model’s performance on previously unseen 

new data, demonstrating its generalization ability. When 

the test set accuracy increases, it indicates that our wildfire 

detection model performs exceptionally well on new data 

and can effectively generalize to different situations and 

scenarios. This is crucial for practical applications because 

the model needs to detect wildfires in unknown 

environments. 

Through the calculation and analysis of accuracy, we 

can quantitatively assess the performance of the wildfire 

detection model to determine its effectiveness and 

accuracy in classification tasks. 

D. CrossEntropyLoss 

The cross-entropy loss function (CrossEntropyLoss) is 

a common loss function used for classification problems to 

measure the difference between the predicted probability 

distribution of the model and the actual label distribution. 

In the wildfire detection classification task, there are two 

classes for each sample: “fire” and “no fire”. The actual 

class label is represented by a vector 𝑦𝑖 of length 2, where 

only one element is 1, indicating the true class. The 

wildfire detection model’s prediction is represented by a 

probability distribution vector 𝑝𝑖 , also of length 2, 

representing the model’s predicted probabilities for each 

class. 

The cross-entropy loss is calculated by 

 𝐿(𝑦𝑖 , 𝑝𝑖) = − ∑ 𝑦𝑖
𝑗

𝑙𝑜𝑔(𝑝𝑖
𝑗
)

2

𝑗=1
  (3) 

where 𝑦𝑖
𝑗
 is the j-th element of the actual label, and 𝑝𝑖

𝑗
 is 

the j-th element of the model’s predicted probability. 

Cross-entropy loss measures the loss by summing the log-

probability product of each element of the true label and 

the corresponding predicted probability. During training, 

we calculate the cross-entropy loss for all samples and 

average them to obtain the average loss for the entire 

dataset. The smaller the average loss, the closer the 

prediction of the wildfire detection model is to the true 

label, and the better the performance of the wildfire 

detection model. 

In summary, the cross-entropy loss function is used to 

evaluate the performance of the model on the classification 

task. By comparing the difference between the model’s 

predicted probability and the true label, we can measure 

the accuracy of the model. The smaller the loss value, the 

better the model performs in the classification task. 

IV. RESULT AND ANALYSIS 

In this study, we used three deep learning models for 

wildfire database recognition training: MobileNet V2, 

MobileNet V3 Large, and MobileNet V3 Small. These 

models were chosen on the basis of their widespread 

applications and performance in deep image processing. 

Training was performed for 60 rounds. Our main findings 

are discussed below. Figs. 5 and 6 respectively show the 

training accuracy and test accuracy, where the horizontal 

axis in both figures represents the number of training 

rounds, and the vertical axis represents accuracy.  
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Fig. 5. Train accuracy of three MobileNet models. 

 

Fig. 6. Test accuracy of three MobileNet models. 

MobileNet V2 exhibited the highest classification 

accuracy, indicating its outstanding performance in 

wildfire image recognition. MobileNet V3 Large followed, 

with MobileNet V3 Small ranking last in terms of 

performance. These results highlight the impact of model 

architecture on performance, especially in tackling the 

challenging task of wildfire image recognition. Figs. 7 

and  8 respectively show the training loss and test loss, 

where the horizontal axis in both figures represents the 

number of training rounds, and the vertical axis represents 

the loss values. 

 

 

Fig. 7. Train loss of three MobileNet models. 

MobileNet V2 exhibited the lowest loss during training, 

indicating that it converged to the optimal solution more 

quickly. MobileNet V3 Large followed, while MobileNet 

V3 Small performed less efficiently in this regard. These 

results have practical significance for the training and 

optimization of deep learning models. 

 

 

Fig. 8. Test loss of three MobileNet models. 

We also calculated the training times for the three 

models, as shown in Fig. 9. The horizontal axis represents 

the three different models (MobileNet V2, MobileNet V3 

Large, and MobileNet V3 Small), and the vertical axis 

represents the training time, specifically the time required 

for 60 rounds of training. By observing these time data, we 

can gain insight into the training speed of different models. 

In terms of time efficiency, MobileNet V3 Large exhibited 

an excellent performance, followed by MobileNet V2, 

while MobileNet V3 Small required more time to complete 

the same number of training rounds. These results provide 

valuable clarity as to the efficiency of these models during 

the training process. 

 

 

Fig. 9. Training times (for 60 epochs) of three MobileNet models. 

These findings on loss values and training times provide 

us with important information about the performance and 

training efficiency of different models, enabling the 

informed selection of the best model for specific needs. 

V. CONCLUSION 

The results of this study provide valuable insights on the 

selection and configuration of models used in IoT devices 

for deep image processing. For IoT devices deployed in 

outdoor environments, portability, ease of installation, and 

uninstallation are crucial factors.  

Depending on the varying performance and 

computational resource constraints of IoT devices, the 

following conclusions can be drawn: 
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• When IoT devices have sufficient computational 

resources, prioritizing the high-performance 

MobileNet V2 model is the best choice to achieve 

the highest accuracy and reliability. 

• When IoT devices have limited computational 

resources, MobileNet V3 Large becomes a more 

prudent choice, as it delivers good performance 

within a shorter training time. 

• For embedded IoT devices that require frequent 

updates of the wildfire detection model, the shorter 

training time of MobileNet V3 Large is a 

significant advantage. 

Further research and optimization can enhance the 

performance and efficiency of deep learning models on 

IoT devices to meet practical demands such as wildfire 

detection. 

These conclusions offer strong guidance for the 

selection and configuration of IoT devices, underscoring 

the flexibility and adaptability of deep learning models in 

different application scenarios. 
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