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Abstract—Accurate and timely diagnosis of heart disease is a 

persistent challenge in healthcare, necessitating innovative 

diagnostic methodologies. This study investigates the efficacy 

of Differential Evolution (DE) for hyperparameter 

optimisation in machine learning algorithms, targeting 

improved performance in heart disease binary classification. 

DE was selected for its robustness and ability to efficiently 

navigate high-dimensional parameter spaces, essential 

attributes for the fine-tuning of complex models. Employing 

the Cleveland Heart Disease dataset, the study optimised 

three machine learning classifiers: Random Forest, AdaBoost, 

and Gradient Boosting. Post-optimization, the DE-enhanced 

Random Forest Classifier achieved a standout performance 

with an accuracy of 93.3% and an F1−Score of 90.9%. 

Likewise, AdaBoost and Gradient Boosting classifiers also 

exhibited performance gains, reaching accuracies of 88.9% 

and 86.7%, and F1−Scores of 85.7% and 83.3%, respectively. 

These results not only outperform various existing models 

but also offer insights into the differential impacts of DE on 

multiple algorithms. The study lays a solid foundation for 

future research and clinical applications, indicating that DE-

optimised machine learning algorithms hold significant 

promise for advancements in cardiovascular disease 

diagnostics. 
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I. INTRODUCTION

Cardiovascular diseases remain a critical health issue 

globally, with an increasing impact on both mortality and 

healthcare systems. Influenced by a complex interplay of 

genetic, lifestyle, and environmental factors, these 

diseases present an urgent need for early and accurate 

diagnosis. 

Traditional diagnostic methods such as 

electrocardiograms and angiography often require 

specialised medical expertise and equipment, thus 

increasing the cost and time for diagnosis. In contrast, 

machine learning offers a pathway to automated, efficient, 

and potentially more accurate diagnostic processes. 

Various algorithms have been applied to heart disease 

diagnosis with different levels of success. For instance, 

Chandrasekhar et al. used an ensemble classifier to achieve 

93.44% accuracy [1], while Alizadehsani et al. reported an 

86.6% accuracy using a hybrid decision support system [2]. 

However, such models often demand significant 

computational resources or lack interpretability. 

In our study, we present a novel machine learning 

methodology for cardiovascular disease diagnosis, 

focusing on the integration of the Random Forest 

algorithm with Differential Evolution (DE) for 

hyperparameter optimization. The following points 

highlight the structure of our methodology, the innovations 

introduced, and the specific results and findings of our 

algorithm: 

A. Structure of the Methodology

• Data Preprocessing: Utilizing the Cleveland

Heart Disease dataset, we preprocess the data,

handling missing values and normalizing features.

• Model Training and Evaluation: We employ

Random Forest Classifier, comparing its

performance with and without the integration of

DE for hyperparameter tuning.

• Statistical Analysis: The results from multiple

iterations are compiled for statistical analysis,

offering a thorough assessment of the model's

performance.

B. Innovations Introduced

• We apply DE for hyperparameter optimisation of

the Random Forest Classifier. This approach is

relatively unexplored in cardiovascular disease

diagnosis using machine learning.

• The DE algorithm is used to fine-tune critical

hyperparameters such as the number of estimators,

maximum depth, minimum samples split, and

Manuscript received September 27, 2023; revised November 11, 2023; 

accepted November 27, 2023; published April 9, 2024. 

467

Journal of Advances in Information Technology, Vol. 15, No. 4, 2024

doi: 10.12720/jait.15.4.467-479



 

minimum samples leaf in the Random Forest 

Classifier. 

• Enhanced Model Performance: By using DE, we 

aim to improve the balance between  model 

accuracy and computational efficiency, which is 

crucial for practical healthcare applications. 

C. New Findings and Specific Results 

• Improved Accuracy and F1−Score: Our method 

achieves a peak accuracy of 93.3% and an 

F1−Score of 90.9%, a significant improvement 

over the model without DE optimisation (accuracy 

of 88.9% and F1−Score of 85.7%). 

• Consistency in Performance: The standard 

deviation in accuracy and F1−Score for the model 

with DE is extremely low (0.0 for both), indicating 

consistent performance across multiple runs. To 

ensure this consistency did not result from 

overfitting, we implemented cross-validation 

during the hyperparameter optimisation process 

and maintained a rigorous split between training 

and testing data. 

• Efficient Computational Performance: Despite the 

enhanced accuracy, the training time for the model 

with DE remains practical (mean training time of 

approximately 393 s), showcasing the method’s 

efficiency. 

These contributions represent significant advancements 

in the application of machine learning to cardiovascular 

disease diagnosis. Our approach not only surpasses many 

existing models in accuracy and efficiency but also offers 

a novel, optimised solution with practical implications in 

healthcare diagnostics. 

Following these contributions, the remainder of the 

paper is structured as follows: Section II reviews existing 

diagnostic algorithms, their mathematical workings, and 

limitations. Section III elaborates on the Differential 

Evolution algorithm and its integration into our research 

methodology. Section IV details the experiments 

conducted and their results. Section V discusses these 

results, their implications, and how they compare to 

existing literature. Finally, Section VI concludes the 

research, summarising key findings and suggesting 

directions for future research. 

II. LITERATURE REVIEW 

This section rigorously examines the prevalence of heart 

diseases, key works in heart disease detection, machine 

learning in healthcare, and the utilisation of Differential 

Evolution. The objective is to provide an academic 

backdrop against which the contributions and research 

gaps of this study can be understood. 

Heart disease continues to be a leading cause of 

mortality and morbidity worldwide. The rapid and 

accurate detection of heart-related conditions is crucial for 

effective treatment and management [3]. In healthcare 

settings, especially in hospitals with high patient inflow, 

the ability to quickly assess and prioritise patients based on 

the severity of their condition is vital. This need has given 

rise to the exploration of innovative methods to enhance 

heart disease detection so that healthcare workers can 

spend more time treating patients, effectively saving lives.  

Traditional methods of heart disease detection rely 

heavily on medical expertise and manual evaluation, 

which can be time-consuming and prone to human error. 

These methods include medical examination, laboratory 

tests, Electrocardiograms (ECGs), and imaging techniques 

such as angiography. These methods often require 

substantial medical expertise and the use of specialised 

equipment, leading to increased costs and time [3]. 

Machine Learning (ML) approaches offer a potential 

solution to these challenges by automating and optimising 

the detection process. The automation can significantly 

reduce the time taken for diagnosis, allowing medical 

professionals to focus more on treatment and patient 

care  [3].  

Moreover, the ability to accurately diagnose heart 

disease in its early stages can lead to timely interventions, 

potentially saving lives. ML models can be trained on large 

datasets, improving accuracy and reducing reliance on 

expensive medical equipment, thereby making the process 

more cost-effective. 

A. Theoretical Background 

In order to appreciate the mathematical intricacies of the 

machine learning algorithms used in this study, it’s 

important to delve into their theoretical foundations. 

• Random Forest: Random Forest operates by 

generating an ensemble of decision trees during 

training and outputting the majority class for 

classification problems. The general equation for a 

decision tree 𝑇(𝑥) is: 

 𝑇(𝑥) = ∑ 𝑤𝑚𝐼(𝑥 ∈ 𝑅𝑚)𝑀
𝑚=1  (1) 

where 𝑤𝑚 are the terminal node weights, and 𝑅𝑚 are the 

terminal node regions [4]. 

• AdaBoost: The AdaBoost algorithm combines 

weak classifiers to form a strong classifier. The 

final classifier 𝐻(𝑥) is a weighted sum of 𝑇 weak 

classifiers ℎ𝑡(𝑥): 

 𝐻(𝑥) = ∑ 𝛼𝑡ℎ𝑡(𝑥)𝑇
𝑡=1  (2) 

where 𝛼𝑡  are the weights assigned to each weak 

classifier  [5]. 

• Gradient Boosting: Similar to AdaBoost, 

Gradient Boosting optimises a cost function 𝐽 over 

the function space. It constructs an additive model 

𝐹(𝑥) in a stage-wise manner: 

 𝐹(𝑥) = 𝐹(𝑥) + 𝜌𝑚ℎ(𝑥; 𝑎𝑚)   (3) 

where 𝜌𝑚 is the learning rate and ℎ(𝑥; 𝑎𝑚) is the weak 

learner [6]. 

B. Machine Learning Approaches 

Machine learning algorithms have shown considerable 

promise in heart disease detection, especially ensemble 

methods like Random Forest, AdaBoost, and Gradient 
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Boosting [7−9]. On the dataset utilized in this study, 

previous research has shown promising but varying results. 

Dua et al. achieved an accuracy of 83% using machine 

learning techniques [10]. Khan et al. [11] improved 

performance by 5% through feature selection, and 

Shouman et al. [12] demonstrated the benefits of hybrid 

models. These results indicate room for improvement, 

particularly for methods that balance accuracy and 

computational efficiency. 

Recent advances in machine learning have introduced 

more sophisticated methods for heart disease detection. 

One such method is the use of Naïve Bayes with a 

weighted approach, which has shown promise in 

predicting heart disease [13]. Another approach involves 

the automatic analysis of ischemic heart disease 

localization/detection based on the features of frequency 

domain, time domain, and information theory. This 

method employs two classifiers, Support Vector Machine 

(SVM) and XGBoost, which have demonstrated superior 

performance [14]. 

An improved SVM based on the duality optimisation 

scheme has also been used for automatic identification of 

heart failure [14]. Furthermore, an effective Heart Disease 

Prediction Model (HDPM) has been developed for a 

Clinical Decision Support System (CDSS). This model 

includes Density-Based Spatial Clustering of Applications 

with Noise (DBSCAN) for outlier detection and 

elimination, a hybrid Synthetic Minority Over-sampling 

Technique-Edited Nearest Neighbor (SMOTE-ENN) for 

balancing the training data distribution, and XGBoost for 

heart disease prediction [14]. 

These modern approaches have the potential to integrate 

large numbers of variables from large populations to allow 

for individualized risk prediction [13]. As a result, they can 

provide clinicians with a tool to help diagnose heart 

problems early on, making it easier to treat patients 

effectively and avoid serious repercussions [14]. 

C. Chosen Approach 

This study aims to amalgamate the merits of Random 

Forest, AdaBoost, and Gradient Boosting by optimising 

them through Differential Evolution (DE) [9, 11, 15]. This 

novel approach seeks to drastically enhance the binary 

classification accuracy for heart disease while minimising 

the computational demand and time to train accurate 

models [16]. 

D. Theoretical Foundation of Differential Evolution 

Differential Evolution (DE) is an algorithmic method 

used for optimisation, particularly effective in tackling 

complex problems where finding the best solution can be 

challenging. It operates on a “population-based” approach, 

meaning that it simultaneously considers multiple 

solutions (or candidates) at a time, rather than focusing on 

just one. Since DE is a stochastic, population-based 

optimisation algorithm it is particularly well-suited for 

solving complex optimisation problems [17]. The 

algorithm was initially conceived for real-valued function 

optimisation but has since found applications in various 

domains, including healthcare [15, 18−20]. 

The basic components of Differential Evolution include: 

• Population: A set of potential solutions to the 

optimisation problem. Each individual in the 

population is a vector of real numbers. 

• Objective Function: A function that evaluates the 

fitness or quality of a given solution. 

• Mutation: DE uses the difference between two 

randomly selected vectors from the population to 

perturb another vector, creating a mutant vector. 

• Crossover: The mutant vector undergoes 

crossover with another target vector to produce a 

trial vector. 

• Selection: The trial vector is then compared to the 

original target vector, and the one with the better 

fitness is selected to proceed to the next 

generation. 

The mutation operation can be mathematically 

represented as follows: 

 𝑉 = 𝑋 + 𝐹 × (𝐴 − 𝐵)   (4) 

where V is the mutant vector, X is the target vector, A and 

B are randomly selected vectors, and F is a scaling factor. 

The crossover operation is often represented as: 

 𝑈𝑖 = {
𝑉𝑖 , 𝑖𝑓 𝑟𝑎𝑛𝑑(0,1) ≤ 𝐶𝑅 𝑜𝑟 𝑖 = 𝑟𝑎𝑛𝑑(1, 𝐷)

𝑋𝑖 ,         otherwise                                                    
 (5) 

where 𝑈 is the trial vector, 𝑉 is the mutant vector, 𝑋 is the 

target vector, 𝐶𝑅 is the crossover rate, 𝐷 is the number of 

dimensions, and 𝑖 is the 𝑖𝑡ℎ dimension as: 

 𝑋𝑛𝑒𝑤 = {
𝑈, 𝑖𝑓 𝑓(𝑈) ≤ 𝑓(𝑋)

𝑋,         otherwise          
 (6) 

where 𝑓(𝑈)  and 𝑓(𝑋)  are the objective function values 

for 𝑈 and 𝑋 respectively. 

Differential Evolution has garnered attention for its 

ability to efficiently navigate both continuous and discrete 

search spaces, making it ideal for fine-tuning 

hyperparameters in machine learning algorithms [17]. 

E. Differential Evolution in Healthcare 

Differential Evolution has found diverse applications in 

other healthcare areas, ranging from medical image 

analysis to hyperparameter tuning in machine learning 

models like Random Forest, AdaBoost, and Gradient 

Boosting [19−21]. The performance of these techniques in 

image classification tasks for other diseases presents 

promise for applying similar techniques towards the 

optimisation of classifying the presence of heart diseases 

accurately. 

F. Gaps and Research Opportunities 

In light of our study’s focus on integrating the Random 

Forest algorithm with Differential Evolution (DE) for 

hyperparameter optimisation in cardiovascular disease 

diagnosis, we identify several critical research gaps and 

opportunities in the domain: 

• Unexplored Synergies in Ensemble Methods 

and DE: While our study demonstrates the 

effectiveness of DE in enhancing the Random 
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Forest algorithm for cardiovascular disease 

diagnosis, there remains a largely untapped 

potential in exploring the synergistic relationship 

between DE and other ensemble methods like 

AdaBoost and Gradient Boosting. This is 

particularly pertinent in the context of binary 

classification for heart diseases, where such 

combinations may yield significant advancements. 

• Need for Comprehensive Optimisation Systems: 

Our research highlights the benefits of integrating 

advanced machine learning algorithms with robust 

optimisation techniques like DE. However, a 

significant research gap persists in developing 

comprehensive systems that amalgamate these 

advanced machine learning algorithms with 

optimisation techniques. Such systems could 

further enhance model accuracy and 

computational efficiency, crucial for practical 

healthcare applications. 

• Optimisation in Healthcare Diagnostics: Our 

methodology showcases a novel approach in 

employing DE for hyperparameter tuning in the 

context of healthcare diagnostics. This opens 

avenues for further research in optimising other 

machine learning models used in medical 

diagnostics, ensuring a balance between accuracy, 

computational efficiency, and practical application 

in healthcare settings. 

These identified gaps not only align with our study’s 

contributions but also underscore the need for continued 

research in this field to realise the full potential of machine 

learning in healthcare diagnostics. 

III. METHODOLOGY 

The methodology is structured as given in Fig. 1, 

serving as a comprehensive guide that outlines the data 

collection, preprocessing, and application of machine 

learning algorithms for heart disease classification. 

For the brevity of the discussion, we will focus on 6 

main elements: 

• Data Source and Preprocessing: Sets the 

foundation for the study. 

• Initial Model Evaluation (Random Forest): 

Establishes a baseline. 

• Feature Engineering: Enhances model 

performance. 

• Differential Evolution (DE) Hyperparameter 

Tuning: Optimizes model parameters. 

• Extending to AdaBoost and Gradient Boosting: 

Expands the study’s scope. 

• Model Evaluation: Assesses the effectiveness of 

the entire process. 

 
Pseudocode. 

BEGIN Process 

    Step 1: Data Source and Preprocessing 

    DATA_SOURCE_AND_PREPROCESSING 

        Load data from source 

        Clean data (e.g., handling missing values, removing outliers) 

        Normalize or standardize data if necessary 

        Split data into training and testing sets 

    END 

   Step 2: Initial Model Evaluation with Random Forest 

    INITIAL_MODEL_EVALUATION_RANDOM_FOREST 

        Initialize Random Forest model 

        Train model on training data 

        Evaluate model on testing data 

        Record baseline performance metrics 

    END 

   Step 3: Feature Engineering 

    FEATURE_ENGINEERING 

        Analyse data for potential new features 

        Create new features 

        Update training and testing data with new features 

    END 

     Step 4: Differential Evolution (DE) Hyperparameter Tuning 

    DE_HYPERPARAMETER_TUNING 

        Define parameter space for DE 

        Run DE to find optimal parameters for the model 

        Update model with optimal parameters 

    END 

    Step 5: Extending to AdaBoost and Gradient Boosting 

   EXTENDING_TO_ADABOOST_AND_GRADIENT_BOOSTING 

        Initialize AdaBoost model 

        Train and evaluate AdaBoost model 

        Initialize Gradient Boosting model 

        Train and evaluate Gradient Boosting model 

    END 

      Step 6: Model Evaluation and Statistical Analysis 

    MODEL_EVALUATION 

        Evaluate all models (Random Forest, AdaBoost, Gradient 

Boosting) 

        Run model >30 times and conduct statistical analysis.  

        Compare performance metrics against the baseline 

        Determine the best-performing model 

    END 

END Process 

 

A. Data Source and Preprocessing 

This block sets the foundation for the study. A reliable 

dataset is paramount for machine learning, and Texts in the 

figure should be clear and with high resolution. thus, we 

chose the well-validated Cleveland Heart Disease dataset 

from the UCI Machine Learning Repository [22]. 

The Cleveland Heart Disease dataset, often used in 

machine learning research for cardiovascular disease 

diagnosis, is a well-known public dataset from the UCI 

Machine Learning Repository. Here's a brief description: 

(1) Source: The dataset originates from the Cleveland 

Clinic Foundation and has been made publicly 

available through the UCI Machine Learning 

Repository, a popular resource for machine 

learning datasets [22]. 

(2) Size and Features: The dataset typically includes 

around 303 individual records, each representing a 

patient. It comprises 14 attributes or features, 

which include a mix of demographic, symptomatic, 

and laboratory data. These features cover aspects 

like age, sex, chest pain type, resting blood 

pressure, serum cholesterol levels, fasting blood 

sugar, resting electrocardiographic results, 

maximum heart rate achieved, exercise-induced 

angina, and others [22]. 

(3) Preprocessing steps applied: 

• Handling Missing Values: In our methodology, 

we first address any missing values in the dataset, 

which are common in real-world data. The dataset 

uses “?” to denote missing values, and we have 
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implemented procedures to identify and handle 

these appropriately, either by imputation or by 

removing records with missing data. 

• Data Normalisation: Given the range of different 

scales across various features (like age, cholesterol 

levels, etc.), we apply standard scaling to the data. 

This process involves adjusting the values so they 

have a mean of zero and a standard deviation of 

one, which is crucial for models like Random 

Forest Classifier to perform effectively. 

• Binary Classification Conversion: The original 

dataset includes the diagnosis of heart disease with 

values ranging from 0 (no presence) to 4. For the 

purpose of our study, we convert this into a binary 

classification task: “0” for no presence of heart 

disease and “1” for the presence (combining 

original values 1−4). 

The choice of this dataset for our study is due to its 

comprehensive coverage of relevant features for heart 

disease diagnosis, along with its balanced size, which 

makes it suitable for demonstrating the effectiveness of 

machine learning algorithms without being 

computationally prohibitive [23]. 

Data Normalisation: We used the Standard Scaler 

method to ensure that all features contribute equally to the 

model’s performance, particularly because it is robust 

against outliers [7]. 

Splitting the Dataset: The dataset was divided into an 

80−20 training-testing split. Stratified splitting was 

unnecessary because the dataset was sufficiently 

balanced  [8]. 

The baseline model performance from the UC Irvine 

Machine Learning Repository is shown in Figs. 1 and 2. 

This benchmark can be used to validate the accuracy and 

precision of the model used in the study. 

 

Fig. 1. Flowchart of the employed methodology combining feature 

engineering and Differential Evolution to selected classification models 

to enhance performance. 

 

Fig. 2. Baseline Accuracy of Models using varying classification algorithms [22]. 
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The benchmark accuracy for Random Forest algorithm 

is a mean value of 80.26% and a maximum of 88.16%. The 

highest overall accuracy is attributed to XGBoost 

classification with a mean of 83.19% and a maximum 

91.20% (see Fig. 3). 

 

 

Fig. 3. Baseline accuracy of models using varying classification algorithms [22]. 

The benchmark precision for Random Forest algorithm 

is a mean value of 82.2% and a maximum of 90.32%. The 

maximum overall precision is the XGBoost model with a 

maximum of 81.20%. 

B. Initial Model Evaluation (Random Forest) 

The second block establishes a baseline model using 

Random Forest, a robust algorithm known for its ability to 

handle high-dimensional data and provide insights into 

feature importance. This step allows us to measure against 

the baseline provided in the public domain as well as gauge 

the effectiveness of subsequent improvements. 

C. Feature Engineering 

In this block, we introduce domain-specific features like 

“AgeChol” and “AgeTrestbps”. These new features 

combine age with other critical health metrics such as 

cholesterol and blood pressure, thereby adding nuance to 

the model and enhancing its predictive power [24]. 

D. Differential Evolution (DE) Hyperparameter Tuning 

The hyperparameter tuning process using Differential 

Evolution (DE) in our methodology is a detailed procedure 

comprising three main sub-steps, each critical for 

enhancing the performance of the Random Forest 

Classifier. We have carefully chosen specific 

hyperparameters for optimisation based on their 

significant impact on the model’s performance: 

Objective Function Definition: Initially, we define an 

objective function specific to the Random Forest Classifier. 

This function is essential as it directs the DE algorithm in 

exploring the hyperparameter space. The objective 

function evaluates how well a set of hyperparameters 

performs, guiding the DE towards the most promising 

regions of the search space. 

Parameter Bounds Setting: We establish the search 

space for the hyperparameters, which determines the range 

within which DE will operate. Setting appropriate bounds 

is crucial to ensure that DE explores a viable and relevant 

range of values, thus enhancing the efficiency of the search 

process. 

DE Optimisation Process: In this step, DE is executed 

to optimise key hyperparameters of the Random Forest 

Classifier, including: 

• Number of Estimators: This refers to the number 

of trees in the forest. A higher number generally 

improves the model’s performance but also 

increases computational cost and risk of overfitting. 

• Maximum Depth: It determines the maximum 

depth of each tree. Deeper trees can model more 

complex patterns but might lead to overfitting. 

• Minimum Samples Split: This parameter dictates 

the minimum number of samples required to split 

an internal node. Higher values prevent the model 

from learning noise in the data but can underfit if 

set too high. 

• Minimum Samples Leaf: It is the minimum 

number of samples required to be at a leaf node. 

Setting this parameter can ensure that the tree does 

not create leaves with few samples, which can be 

a sign of overfitting. 

We selected DE for hyperparameter tuning due to its 

proficiency in global optimisation. Unlike local 
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optimisation techniques that may get trapped in local 

optima, DE explores the global hyperparameter space 

more thoroughly. This is particularly beneficial for 

complex models like Random Forest, where the interaction 

between hyperparameters can be intricate and non-linear. 

The DE-optimised Random Forest achieved up to 88% 

accuracy in our tests, indicating its superiority in fine-

tuning the model compared to standard benchmarks. This 

improved accuracy demonstrates the effectiveness of DE 

in navigating the hyperparameter space and selecting 

values that significantly enhance the model’s predictive 

power. 

E. Extending to AdaBoost and Gradient Boosting 

This block aims to test the versatility of DE in 

hyperparameter tuning across various algorithms. The 

same DE process used in Random Forest is replicated for 

AdaBoost and Gradient Boosting classifiers. 

F. Model Evaluation and Statistical Analysis 

In the final stage of our methodology, we conduct a 

thorough evaluation and statistical analysis of our model, 

including those versions optimised with Differential 

Evolution (DE). This dual approach, encompassing 

performance metrics and statistical analysis, ensures a 

comprehensive assessment of the model’s effectiveness. 

1) Performance metrics 

• Accuracy: This metric evaluates the overall 

correctness of the model by measuring the 

proportion of true results (both true positives and 

true negatives) in the total number of cases. It’s a 

fundamental metric for assessing the general 

effectiveness of a classification model. 

• F1−Score: Given the critical nature of medical 

diagnostics, where false negatives or positives can 

have serious implications, we use the F1−Score. 

This metric is the harmonic mean of precision (the 

ratio of correctly predicted positive observations to 

total predicted positives) and recall (the ratio of 

correctly predicted positive observations to all 

actual positives). It provides a more nuanced view 

of the model’s performance, especially in 

imbalanced datasets. 

2) Statistical analysis 

• Data Distribution Analysis: Before applying the 

model, we analyse the distribution of data to 

understand any inherent biases or imbalances. This 

step is crucial for interpreting the model’s 

performance metrics correctly. 

• Variability Assessment: We assess the variability 

in the model’s performance across multiple runs. 

This involves calculating standard deviations for 

the accuracy and F1−Score, providing insight into 

the model’s consistency and reliability. 

• Benchmark Comparison: To contextualise our 

results, we compare the model’s performance 

against benchmarked algorithms. This comparison 

is not just based on raw performance metrics but 

also includes an analysis of how consistently each 

model performs across different iterations and 

potentially different subsets of data. 

• Significance Testing: We employ statistical tests 

to ascertain the significance of the differences 

observed between the models. This step is crucial 

to determine whether the improvements in 

performance metrics are statistically significant or 

could be attributed to random variations in the data. 

By refraining from evaluating our model on multiple 

datasets due to the variability in attributes and sources of 

public datasets, we instead focus on a more controlled 

comparison against benchmarked algorithms. This 

approach allows us to provide a direct, meaningful 

comparison of our algorithm’s performance, ensuring that 

our evaluation is both consistent and comparable. 

Through this detailed model evaluation and statistical 

analysis, we aim to validate the reliability and efficacy of 

our model comprehensively. We strive not only to match 

but potentially exceed the performance standards of 

existing algorithms in cardiovascular disease diagnosis. 

G. Technical Improvements for Classifier Tuning 

These are the granular steps that are iteratively applied 

to each main block in the flow chart: 

• Feature Engineering: Additional domain-

specific features are incorporated into the data 

frame by evaluating the impact of existing features. 

• Target Variable Transformation: The target 

variable is converted to binary form. 

• Parameter Tuning: The DE algorithm is 

employed for hyperparameter tuning. 

• Ensemble Methods: AdaBoost and Gradient 

Boosting classifiers are implemented. 

• Model Evaluation: Performance metrics like 

accuracy and F1−Score are calculated for all 

classifiers. 

IV. RESULTS 

A. Data Split and Benchmarking 

The model was trained on 252 data points and tested on 

45 data points from the Cleveland Heart Disease dataset 

(see Table I).  

TABLE I. PERFORMANCE OF THE BASELINE CLASSIFIERS 

Algorithm 
Baseline 

Accuracy (%) 

Baseline 

F1−Score (%) 

Random Forest Classifier 62.0% 55.0% 

AdaBoost Classifier 64.0% 64.0% 

Gradient Boosting Classifier 53.0% 55.0% 

 

B. Performance of Optimised Models 

Following feature engineering, fine-tuning and 

advanced data preprocessing with domain-specific 

features, the performance metrics of all algorithms 

improved significantly (see Table II). 
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TABLE II. PERFORMANCE OF ALGORITHMS AFTER OPTIMISATION (BEFORE DE) AND % CHANGE 

Algorithm 
Optimised Accuracy 

(%) 

Change in 

Accuracy (%) 

Optimised F1−Score 

(%) 

Change in 

F1−Score (%) 

Random Forest Classifier 88.9% +26.9% 85.7% +30.7% 

AdaBoost Classifier 88.9% +24.9% 85.7% +21.7% 

Gradient Boosting Classifier 84.4% +31.4% 81.1% +26.1% 

 

C. Comparative Analysis of DE’s Effect on 

Performance 

Once the models were optimised, Differential Evolution 

was applied to tune the hyperparameters of each algorithm. 

Apart from the AdaBoost classifier, where no change was 

perceived, all other models showcased improvements in 

both accuracy and F1−Score (see Tables III and IV). 

TABLE III. ACCURACY OF CLASSIFIERS BEFORE AND AFTER DE 

Algorithm 
Without 

DE (%) 

With 

DE (%) 

Change in 

Accuracy (%) 

Random Forest Classifier 88.9% 93.3% +4.4% 

AdaBoost Classifier 88.9% 88.9% 0.0% 

Gradient Boosting Classifier 84.4% 86.7% +2.3% 

TABLE IV. F1−SCORE OF CLASSIFIERS BEFORE AND AFTER DE 

Algorithm 
Without 

DE (%) 

With 

DE (%) 

Change in 

F1−Score (%) 

Random Forest Classifier 85.7% 90.9% +5.2% 

AdaBoost Classifier 85.7% 85.7% 0.0% 

Gradient Boosting Classifier 81.1% 83.3% +2.2% 

 

D. Comparative Analysis 

The application of Differential Evolution (DE) yielded 

various impacts on the performance of the machine 

learning classifiers used in this study. 

The Random Forest Classifier benefited significantly 

from DE optimisation, showing an increase in accuracy 

from 88.9% to 93.3%, and an improvement in F1−Score 

from 85.7% to 90.9%. This underscores the substantial role 

DE can play in enhancing the performance of machine 

learning algorithms, particularly Random Forest Classifier 

in this context. 

On the other hand, the AdaBoost Classifier did not 

experience any change in its performance metrics upon 

applying DE. Both its accuracy and F1−Score remained 

steady at 88.9% and 85.7%, respectively. This suggests 

that while AdaBoost is a strong classifier, DE did not 

contribute additional optimisation in this case. 

Lastly, the Gradient Boosting Classifier exhibited a 

moderate enhancement after the application of DE. Its 

accuracy improved from 84.4% to 86.7%, and its 

F1−Score increased from 81.1% to 83.3%. While the 

improvements were not as dramatic as those for the 

Random Forest Classifier, they indicate that DE can still 

offer incremental gains for Gradient Boosting. 

E. Statistical Analysis 

The model was trained a total of 30 times in order to 

statistically evaluate its performance. The results are 

depicted in Figs. 4−7 below. 

 

 

Fig. 4. Accuracy of classifiers before and after DE with % change in improvement. 
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Fig. 5. F1−Score of classifiers before and after DE with % change in improvement. 

Fig. 5 compares the accuracies and F1−Scores of each 

model before and after DE. Since each box-and-whisker 

shows a horizontal line, the range between results was 

extremely low. 

• Accuracy Comparison: This plot illustrates the 

distribution of accuracy values for both models. 

The model without DE show’s consistent accuracy, 

while the model with DE demonstrates a higher 

level of accuracy, also consistently achieved 

across all runs. 

• F1−Score Comparison: This graph compares the 

F1−Scores of the two models. Similar to the 

accuracy, the F1−Score is consistently higher for 

the model with DE optimisation compared to the 

model without it. 

 

 

Fig. 6. Stastisical comparison (box and whisker) of classifiers’ accuracy before and after DE. 

Fig. 7 shows the distribution of training times for each 

model before and after DE.  

The average training time for the model without DE was 

about 0.253 s, with a standard deviation of approximately 

0.070 s. The minimum and maximum training times 

observed were roughly 0.175s and 0.450 s, respectively. 

The average training time for the model with DE was 

significantly longer, at about 393.2 s. The standard 

deviation was around 28.9, with training times ranging 

from about 345.6 s to 470.1 s. 
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Fig. 7. Stastisical comparison (box and whisker) of classifiers; training 

time before and after DE. 

V. DISCUSSION 

The application of Differential Evolution (DE) for 

hyperparameter tuning in this study has demonstrated 

varying impacts across different machine learning 

classifiers used in heart disease diagnosis. The Random 

Forest Classifier showed the most significant improvement 

with DE, where the accuracy and F1−Score soared to 

93.3% and 90.9%, respectively.  

This remarkable enhancement underscores DE’s 

potential in boosting the performance of machine learning 

models. Conversely, the AdaBoost Classifier, already 

performing robustly with an accuracy and F1−Score of 

88.9% and 85.7%, saw no further improvement with DE. 

This outcome suggests that DE’s optimisation benefits 

might not be universally applicable across all algorithms. 

Meanwhile, the Gradient Boosting Classifier exhibited 

moderate performance gains with DE, its accuracy 

increasing from 84.4% to 86.7% and F1−Score from 

81.1% to 83.3%. While not as pronounced as the Random 

Forest Classifier’s improvements, these results still affirm 

the utility of DE in algorithm optimisation. 

A. Theoretical Analysis and Clinical Applicability 

The theoretical underpinnings of DE’s effectiveness in 

enhancing the Random Forest Classifier for heart disease 

diagnosis lie in its advanced approach to hyperparameter 

optimisation. DE operates by strategically exploring and 

exploiting the hyperparameter space, a complex multi-

dimensional grid where each point represents a possible 

configuration of the model’s parameters. By iteratively 

testing and refining these configurations, DE identifies an 

optimal set of hyperparameters that significantly improve 

the classifier’s performance. This process is particularly 

suited for Random Forest, a model inherently reliant on 

multiple decision trees and hyperparameters like the 

number of trees, tree depth, and node splits. DE’s ability to 

find an optimal balance among these parameters not only 

enhances the model’s accuracy but also its ability to 

generalise well to new, unseen data, a critical aspect in 

medical diagnostics. 

From a clinical perspective, the application of a DE-

optimised Random Forest Classifier in heart disease 

diagnosis translates into tangible benefits. The improved 

accuracy means that the model can more reliably 

distinguish between the presence and absence of heart 

disease, reducing the likelihood of both false positives and 

negatives. This is crucial in a clinical setting, where 

misdiagnosis can lead to either unnecessary treatment or a 

missed condition. Additionally, the speed of diagnosis is 

an essential factor in healthcare. The use of a highly 

accurate and efficient machine learning model can 

expedite the diagnostic process, enabling quicker decision-

making and, consequently, faster initiation of the 

appropriate medical intervention. This rapid response is 

particularly vital in heart disease cases, where early 

detection and treatment can significantly affect patient 

outcomes. 

Moreover, the enhanced precision and reliability of 

these algorithms could lead to more personalised patient 

care. By accurately assessing the risk and presence of heart 

disease, healthcare providers can tailor their treatment 

plans more effectively to individual patient needs. This 

could mean a shift towards more preventive care strategies, 

where high-risk patients are identified earlier and given 

appropriate interventions to avert the progression of the 

disease. 

B. Comparison to Literature 

(1) Affirmation of Ensemble Methods: Our study’s 

results resonate with the findings of 

Chandrasekhar and Peddakrishna, who reported a 

93.44% accuracy using a soft voting ensemble 

classifier. This parallel underlines the efficacy of 

ensemble methods in heart disease diagnosis, 

suggesting that combining multiple models can 

lead to more accurate predictions. However, it’s 

noteworthy that while ensemble methods like soft 

voting aggregate predictions from various models, 

our approach optimizes a single model using DE. 

This distinction is crucial as it highlights the 

efficiency of DE in enhancing a single model’s 

performance to levels comparable with ensemble 

approaches, potentially reducing the 

computational power and training time required in 

more complex ensemble systems [1]. 

(2) Synergy with Genetic Algorithms: The accuracy of 

86.6% achieved by Alizadehsani et al. using a 

Genetic Algorithm and Random Forest hybrid 

system is in line with our findings, underscoring 

the potential of combining various optimisation 

techniques. While their approach demonstrated 

effectiveness, the integration of DE, as seen in our 

study, suggests a possible avenue for further 

performance enhancement. However, the 

application of multiple complex algorithms like 

genetic algorithms and DE might increase the 

computational load and training time, which is a 

crucial consideration in practical applications [2]. 
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(3) Kaur and Wasan’s research, which achieved an 

86.67% accuracy by combining AdaBoost and 

Random Forest classifiers, supports our findings 

on the utility of ensemble methods. It also hints at 

the potential benefits of combining different 

classifiers for improved performance. However, 

our study shows that DE alone can significantly 

enhance a single classifier’s performance, 

potentially offering a simpler and more 

computationally efficient alternative to combining 

multiple classifiers [25]. 

(4) The work of Al-Shayea et al. achieving an 84.15% 

accuracy with Gradient Boosting and feature 

selection methods, aligns with our research in 

highlighting the importance of feature selection in 

improving model performance. This parallel 

suggests that integrating feature selection 

techniques with DE-optimised models could be a 

promising area for future research. However, it’s 

important to consider the additional computational 

resources that might be required for such 

integrated approaches, especially when dealing 

with large datasets [9]. 

C. Limitations and Challenges 

The implementation of Differential Evolution (DE) in 

optimizing machine learning models, as demonstrated in 

our study, brings forth several limitations and challenges 

that warrant attention. The primary concerns revolve 

around the computational resources and the time required 

for training models, especially when DE is applied for 

hyperparameter tuning. 

• Extended Training Time: The most noticeable 

challenge observed in our study was the 

significantly prolonged training time for the DE-

optimised Random Forest Classifier. While this 

model achieved superior accuracy and F1−Score, 

the time taken for training was markedly higher 

compared to the non-optimised version. In real-

time clinical settings, where rapid diagnosis and 

decision-making are critical, such extended 

training periods could be a substantial drawback. 

The time-sensitive nature of many medical 

diagnoses, particularly in emergency or critical 

care scenarios, necessitates quick and efficient 

model training and execution. 

• Computational Resource Demands: DE’s 

sophisticated approach to hyperparameter tuning 

demands considerable computational power. This 

can pose challenges, particularly in resource-

limited settings such as small clinics or in 

developing countries where advanced computing 

infrastructure might not be readily available or 

affordable. The requirement for high 

computational resources can limit the widespread 

adoption of these optimised models in diverse 

clinical environments. 

• Model Complexity and Overfitting: Another 

potential limitation of using DE for model 

optimisation is the risk of overfitting. As DE 

searches for the optimal combination of 

hyperparameters, there is a possibility of the model 

becoming too finely tuned to the training data, 

thereby losing its ability to generalize to new, 

unseen data. This is particularly concerning in 

healthcare, where models need to be robust and 

generalizable across diverse patient populations 

and conditions. 

• Integration into Clinical Workflow: Integrating 

DE-optimised models into existing clinical 

workflows presents another challenge. The 

healthcare sector often relies on legacy systems 

and established protocols, making the integration 

of advanced AI models a complex process that 

requires careful planning, training, and possibly 

significant changes to existing procedures. 

• Ethical Considerations: Lastly, ethical 

considerations around the use of advanced AI in 

healthcare, such as patient privacy, data security, 

and the transparency of algorithmic decisions, are 

crucial. Ensuring that DE-optimised models 

adhere to ethical standards and regulatory 

requirements is imperative to maintain trust and 

integrity in medical diagnostics. 

D. Potential Downsides and Trade-Offs 

While the accuracy and precision improvements with 

DE are clear, the trade-offs in terms of computational 

demand and extended training times are significant 

considerations. In a clinical environment, where prompt 

diagnosis is crucial, these trade-offs could hinder the 

practical application of DE-optimised models. 

E. Future Research Directions 

Future research in the field of machine learning and 

healthcare diagnostics, inspired by the findings of this 

study, should indeed place a significant emphasis on 

optimizing the efficiency of Differential Evolution (DE). 

The goals should be twofold: reducing the training times 

and expanding the applicability of DE-optimised 

algorithms to a wider range of medical conditions. 

An intriguing area for future research lies in the 

exploration of hybrid optimisation techniques. Combining 

DE with other optimisation methods, such as genetic 

algorithms or particle swarm optimisation, could 

potentially streamline the hyperparameter tuning process. 

This approach might reduce the computational burden and 

training time associated with DE, while potentially 

improving or maintaining the high levels of accuracy 

achieved. Research in this direction could focus on 

developing new, more efficient algorithms that capitalise 

on the strengths of multiple optimisation methods. 

The extended training time required for DE-optimised 

models, as observed in this study, presents a significant 

challenge, especially for real-time diagnostic applications 

in clinical settings. Future research should aim at 

modifying the DE algorithm to make it more time-efficient, 

perhaps by implementing parallel processing techniques or 

by improving the algorithm’s convergence rate. 

Investigations could also explore ways to streamline the 
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model’s complexity without compromising its predictive 

power. 

Another promising direction for future research is the 

application of DE in the diagnosis of a variety of medical 

conditions beyond heart disease. Exploring DE’s efficacy 

in conditions with complex diagnostic criteria, such as 

various types of cancers, neurological disorders, or rare 

diseases, could significantly broaden the impact of this 

research. This would not only validate the versatility of DE 

but also potentially contribute to advancements in the 

diagnosis and treatment of a wide range of diseases. 

Given the varied response of different algorithms to DE 

optimisation, as evidenced by the differential 

improvements in Random Forest, AdaBoost, and Gradient 

Boosting classifiers, future studies should also focus on 

algorithm-specific optimisations. Understanding why 

some algorithms respond better to DE than others could 

lead to more targeted and effective optimisation strategies. 

Lastly, future research should aim to balance the 

computational cost and practical clinical utility of DE-

optimised models. This involves not just improving 

algorithm efficiency but also ensuring that these models 

can be seamlessly integrated into clinical workflows 

without requiring prohibitively expensive or complex 

hardware setups. 

F. Generalisability and Broader Impacts 

The generalisability of the findings from this study to 

other medical conditions opens up a realm of possibilities 

for the application of Differential Evolution (DE) across 

various domains of healthcare diagnostics. The successful 

optimisation of machine learning models for heart disease 

diagnosis using DE suggests that this approach could be 

equally effective in tackling other complex medical 

conditions. This potential extends not only to diseases with 

similar diagnostic complexities but also to those where 

nuanced and intricate data interpretation is crucial. 

One area where DE could be particularly impactful is in 

the diagnosis of various types of cancer. Cancer diagnosis 

often involves interpreting complex patterns in imaging 

data, genetic information, and patient histories. DE could 

optimise machine learning models to more accurately 

identify patterns indicative of different cancer stages, 

leading to earlier and more precise diagnoses. 

Neurological disorders, such as Alzheimer’s and 

Parkinson’s disease, also present a promising area for the 

application of DE-optimised machine learning models. 

These conditions often require the analysis of intricate 

neurological data, where subtle variations can be 

indicative of disease progression. DE could enhance the 

accuracy of models used to detect these variations early on, 

potentially improving patient outcomes through earlier 

intervention. 

In the realm of rare diseases, where diagnosis is often 

challenging due to the scarcity of data, DE could be used 

to optimise models to make the most of limited 

information. By fine-tuning machine learning algorithms 

to identify patterns within small datasets, DE could aid in 

the early detection of rare conditions, which is often 

critical to effective treatment. 

Another promising application is in personalised 

medicine. By optimising models to interpret patient-

specific data, such as genetic profiles and individual health 

records, DE could play a vital role in tailoring treatments 

to individual patient needs. This could lead to more 

effective and targeted therapies, reducing the trial-and-

error approach often associated with treatment selection. 

The potential of DE in these diverse medical fields 

highlights its versatility and power as a tool in medical 

diagnostics. By applying this approach to various 

conditions, significant advancements in the accuracy, 

speed, and efficiency of diagnoses across healthcare could 

be achieved. This, in turn, would have profound impacts 

on patient care, treatment strategies, and overall health 

outcomes, thereby reinforcing the broad and 

transformative impacts of DE in healthcare diagnostics. 

VI. CONCLUSION 

This study embarked on an exploration of the efficacy 

of Differential Evolution (DE) in optimizing machine 

learning algorithms for heart disease diagnosis, utilizing 

the Cleveland Heart Disease dataset.  

The results vividly illustrate the transformative power 

of DE, especially in its application to the Random Forest 

Classifier. The DE-optimised Random Forest model, with 

its remarkable accuracy of 93.3% and an F1−Score of 

90.9%, serves as a testament to the substantial 

performance enhancements that DE can facilitate in 

hyperparameter tuning. 

However, the influence of DE varied among different 

machine learning algorithms. While the Random Forest 

Classifier exhibited significant improvements, the 

AdaBoost Classifier saw no marked change post-DE 

optimization, and the Gradient Boosting Classifier 

experienced moderate gains. These disparate outcomes 

highlight the necessity of customizing DE application 

based on the unique characteristics and requirements of 

each algorithm. 

Clinically, this study carries profound implications. The 

high accuracy rates achieved point to the possibility of 

machine learning models, optimised effectively with 

techniques like DE, becoming invaluable tools in the early 

diagnosis of heart disease. Such advancements could 

herald a new era in diagnostic methodologies, 

characterized by enhanced timeliness and accuracy, 

leading to improved patient outcomes. 

Looking ahead, this research paves the way for exciting 

future prospects. It suggests the untapped potential of 

amalgamating DE with other algorithmic optimisation 

methods, like genetic algorithms, to develop a more 

holistic approach to model enhancement. Additionally, the 

study establishes a foundation for further investigations 

into the applicability of DE across various machine 

learning algorithms and datasets. 

Nevertheless, the study is not without its limitations. 

The reliance on a specific dataset like the Cleveland Heart 

Disease dataset underscores the need for broader research 

to validate and expand upon these findings. Future 

endeavours could concentrate on applying DE in 

algorithm-specific feature selection and engineering, and 
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in understanding how DE can contribute to enhancing 

model explainability. This is particularly crucial 

considering the ethical dimensions inherent in healthcare 

applications. 

In conclusion, this study not only showcases the potent 

capabilities of DE in refining machine learning algorithms 

for heart disease diagnosis but also offers valuable insights 

into the nuanced impact of DE on different algorithms. It 

sets a promising stage for future research, aiming to 

develop even more effective, efficient, and ethically sound 

models for clinical use. The potential of DE-optimised 

machine learning in healthcare is vast, and this study 

marks a significant step forward in realizing that potential. 
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