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Abstract—Wireless sensor networks have become an 

important element of technologies such as the Internet of 

Things due to their ability to obtain sensory data from the 

physical world in tracking and monitoring applications. 

However, such networks are susceptible to the presence of 

outliers mainly due to errors or failures in the sensor nodes 

or the presence of events that alter the reading patterns. To 

address this problem, many researchers have turned their 

efforts to the development of outlier detection techniques 

that achieve maximum detection rate with the highest 

possible efficiency, given the limited resources typical of this 

type of networks. In this study, 33 papers on outlier 

detection techniques in wireless sensor networks between 

2018 and 2023 were analyzed with the aim of describing the 

characteristics of these techniques, their metrics and test 

conditions, application areas, and possible limitations. The 

results showed mostly hybrid, distributed, online and 

multivariate sensing proposals in addition to the 

exploitation of spatiotemporal correlations of the data. In 

terms of efficiency, almost all of them reported detection 

rates above 85% and in several cases up to 100% but in 

specific conditions; with application areas especially related 

to environmental monitoring and care. Finally, the most 

relevant limitations encountered include high computational 

complexity and high resource consumption, sensitivity to 

parameters, lack of scalability, and dependence on specific 

assumptions about data distribution.  

Keywords—Wireless Sensor Network (WSN), outlier 

detection, Outlier Detection Techniques (ODTs), fault 

detection, event detection, distributed detection 

I. INTRODUCTION

In emerging areas such as the Internet of Things (IoT), 

the tracking and monitoring capabilities of Wireless 

Sensor Networks (WSNs) are integrated with Internet-

based services and applications, thus facilitating informed 

decision-making in controlled environments [1]. These 

WSNs are composed of devices called sensor nodes. 

These nodes are deployed for the purpose of collecting 

environmental data, providing accurate representation of 

monitored phenomena or tracked targets, functioning as 

the digital skin of the IoT by delivering real-world 
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information [2]. Specifically, WSNs have been widely 

used in applications related to personal, industrial, 

commercial, and military domains [3], such as 

environmental and habitat monitoring [4], structural 

monitoring [5], precision agriculture [6], medical and 

health monitoring [7]; and military applications such as 

defense, survival, target tracking, among many other 

fields [8]. 

Low-cost sensor nodes present serious memory, energy, 

bandwidth, and computational capacity limitations [9], 

which make them susceptible to producing abnormal 

readings known as anomalies or outliers. Of the many 

definitions in the literature for the term “anomaly”, one of 

the most common is “patterns in the data that do not 

conform to a well-defined notion of normal 

behavior” [10]. In WSN, anomalies can be defined as 

“measurements in the detected data that significantly 

deviate from the normal data detection profile” [2]. In the 

same context, Jurdak and Wang et al. [11] identifies three 

types of anomalies: (1) network anomalies, (2) node 

anomalies, and (3) data anomalies. Data anomalies refer 

to an observation or a subset of observations that, 

compared to the rest of the dataset, appear to be 

inconsistent [12]; hence, they are often called 

“outliers” [13], although the terms anomaly and outlier 

are commonly used interchangeably in the literature [14]. 

However, the latter (outlier), in the context of WSN, 

serves to identify unusual behavior compared to most 

sensor readings [15]; that is, measurements that 

significantly differ from the normal pattern of the 

detected data [16]. 

In datasets from WSNs, outliers are common. This 

prevalence is largely due to the harsh and unattended 

environments in which these networks operate. Two 

primary reasons contribute to this: (1) the propensity of 

sensor nodes to fail, and (2) the influence of noisy 

wireless signals and malicious attacks [17]. Additionally, 

unusual phenomena within the monitored area’s reach are 

added to these reasons [18]. In this regard, many studies 

such as [1, 9, 15, 19] address three main sources of 

outliers in WSNs: (1) noise or errors, (2) events, and (3) 

malicious attacks. It is important to clarify that, as treaties 

in [3, 20], this work, which consisted of a comprehensive 

review of outlier detection techniques in WSNs whose 
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methodology is explained in more detail in Section II, 

only considers outliers caused by errors and events, since 

malicious attacks are related to network security, a field 

of study that is beyond this study. 

As a result, the problem is that the observations 

collected by sensor nodes are often of low quality and 

unreliable. This limitation hampers real situational 

awareness for decision-making and motivates the need 

for efficient outlier detection techniques in WSNs that 

guarantee the quality of sensor data [21]. Outlier 

detection in the context of WSNs has been extensively 

researched in various disciplines, such as statistics, data 

mining, and machine learning [3]. Chandola et al. [10] 

refers to the problem of finding patterns that do not agree 

well with known and expected behavior. In the field of 

WSNs, it refers to the problem of finding data 

observations that deviate significantly from normal 

measurements over a specific period [22]. 

The purpose of using a WSN extends beyond merely 

collecting data from the field of implementation. More 

importantly, the analysis of this data at the opportune 

time that allows making some significant decisions, 

which is why data quality is the main concern in a WSN 

application [2]. In this context, outliers greatly influence 

the quality of the collected data, so they are usually more 

interesting than normal data [15]. For example, forest 

fires, earthquakes, or chemical spills cannot be accurately 

detected using inaccurate and incomplete data; therefore, 

ensuring the reliability and accuracy of sensor data is 

extremely important [3] and crucial for decision 

making  [15]. 

Therefore, outliers hold significant potential value 

because they can represent changes in the monitoring 

objects or environments [23]. The importance of 

detecting them accurately lies in the fact that outliers 

translate into meaningful and often critical actionable 

information across application domains [10], which has 

greatly driven the efforts of previous studies to develop 

Outlier Detection Techniques (ODTs), both to provide 

reliability and quality to the data, and to report events of 

interest in the monitored area [2]. As a result, many 

techniques, methods, frameworks, and algorithms based 

on statistics, classification, and clustering among other 

approaches have been proposed in the literature. These 

techniques optimize the quality of sensor measurements 

and provide the best information to end users while 

maintaining low power consumption [15]. 

The aim of this paper is to describe the characteristics, 

test conditions, metrics used, application areas, and 

limitations of the outlier detection proposals for WSNs 

addressed in the literature. To this end, as mentioned 

previously, Section II outlines the questions that will 

guide the study and provides a synthesis of the review 

process undertaken. Section III provides extensive 

information on WSNs and discusses their applications, 

outliers, approaches, and taxonomy of existing detection 

techniques; all with the objective of providing the 

necessary basis to facilitate the analysis that follows. 

Section IV details the characteristics, evaluation 

conditions, metrics, application areas, and limitations of 

the selected detection proposals. Sections V and VI 

present a discussion of the results, conclusions, and future 

directions, respectively. 

II. REVIEW METHOD 

Although there are many literature reviews related to 

anomaly detection in WSN, there are very few 

specifically related to outlier detection [2, 3, 14, 15]. 

Moreover, there are almost no current reviews that 

concentrate on outliers caused by faults or events and 

explore the details of such detection proposals. In fact, 

the most recent and comprehensive review was conducted 

in [9] covering the period between 2004 and 2018. 

Therefore, the purpose of this work is to provide a current 

review of the frameworks, methods, techniques, and 

algorithms proposed for outlier detection in WSNs with 

respect to the following questions: 

• Q1: What are the characteristics of the proposals 

for outlier detection in WSNs? 

• Q2: What conditions and metrics are used for 

evaluating outlier detection methods in WSNs? 

• Q3: What are the application areas of outlier 

detection in WSNs? 

• Q4: What limitations do these proposals for 

outlier detection in WSNs present? 

For this, relevant articles obtained from the ACM 

Digital Library, Ebsco host, IEEE Explore, Science 

Direct, Scopus, Springer Link, and Web of Science were 

analyzed; from 2018 to June 2023 using the following 

search string: “detection AND (outlier OR anomaly) 

AND (wsn OR “wireless sensor network”)”. Of the 1688 

articles obtained, after a selection process applying 

inclusion and exclusion criteria, 33 studies were selected 

and analyzed in detail based on the posed questions. In 

addition, we incorporated and analyzed other surveys and 

systematic reviews that, together with the background of 

the selected papers, allowed us to establish the theoretical 

foundations for the subsequent analysis. 

III. FOUNDATIONS OF OUTLIER DETECTION IN WSN 

A. Wireless Sensor Networks 

One of the most important elements of the IoT 

paradigm is constituted by WSNs, because they act as a 

digital perception layer that provides a means to access 

information from the physical world, which can be 

exploited by any computational system [2]. A WSN is a 

network composed of small nodes, with limited 

capabilities of energy, memory, computation, and 

communication bandwidth [3], self-organized and 

generally deployed in large numbers [24] in harsh and 

unattended environments [14]. A WSN can be made up 

of hundreds or even thousands of these low-cost sensor 

nodes distributed over a wide area [15]. 

Smart sensor nodes can employ various types of 

sensors—such as biological, mechanical, chemical, 

optical, thermal, and magnetic sensors—to measure 

environmental properties [25]. This combination of 

multiple sensors allows us to observe various 
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characteristics of the same phenomenon [7] 

simultaneously. In fact, in the context of outlier detection, 

this feature of sensor nodes motivates univariate, 

bivariate, or multivariate detection approaches. 

1) Network structure 

The two main network structures or topologies used in 

a WSN implementation are: (1) flat, and (2) hierarchical 

or cluster based. In a flat base structure, all nodes are 

treated equally and are given the same functionality [2]. 

In the hierarchical network structure, the sensor node 

network is divided into clusters and each cluster has a 

cluster head or header node (CH) [22]. Typically, the 

sensor nodes at the lowest level are responsible for 

collecting data from the physical world and transmitting 

it to their cluster heads (parent nodes), which in turn send 

it to the main gateway node or to a base station [18]. The 

communication can be categorized as single-hop or multi-

hop, depending on the number of hops sensor nodes use 

to transmit data to other nodes of equal or higher 

hierarchy [8]. 

2) WSN applications 

WSNs stand out in applications related to personal, 

industrial, commercial, and military domains [3]. 

Examples include home automation in personal 

applications, sales tracking in commercial settings, 

architecture and control in industrial contexts, and 

monitoring and tracking of enemy targets in military 

operations [2]. 

These WSN applications can be summarized in two 

large groups: (1) tracking applications: human, animal, 

traffic, cars and busses and enemy tracking in military 

applications; (2) monitoring applications: inventory, 

animal, structural, manufacturing, engine, chemical, 

patient, and environmental monitoring, which includes 

monitoring and recognition of environmental 

phenomena [9]. These capabilities to monitor large areas, 

react in real time, access remote and hostile places, and 

their relative ease of use have provided scientists with a 

whole world of possibilities for new applications [15]. 

On the other hand, the limited resources of the WSN 

and the harsh implementation conditions cause the data 

generated by the sensor to be contaminated with noise, 

obvious errors, missing data, duplicate values, and 

contradictory information [15]. In a real-world WSN 

application, data quality is the main concern [2]. This 

quality is affected both by internal and external factors, 

making it unsuitable for decision-making processes in 

real events, and it should be noted that outliers are one of 

the most influential factors affecting data quality [3]. 

B. Outliers in WSN 

In Ref. [26], outliers are defined as “patterns in the 

data that do not conform to a well-defined notion of 

normal behavior”. In different application domains, these 

patterns are often referred to as anomalies, outliers, 

discordant observations, exceptions, aberrations, surprises, 

peculiarities or contaminants. Of all of them, two of the 

most used terms in the literature, sometimes 

interchangeably, are: (1) anomalies and (2) outliers [14]. 

However, in the context of WSNs, in this work we adopt 

the term “outliers” to refer to anomalies in the data, that 

is, an observation or a subset of observations that, 

compared to the rest of the dataset, appears to be 

inconsistent [12]. 

1) Definition 

Even though the terms anomaly and outlier are used 

interchangeably in the literature [14], outlier is useful to 

identify unusual behavior compared to most sensor 

readings [15]. However, the specific definition can vary 

depending on the context and the methodologies upon 

which ODTs are based [3, 16]. Among the most used 

definitions in the literature is [27] “An observation, which 

deviates so much from other observations as to arouse 

suspicions that it was generated by a different 

mechanism” [4, 20, 25, 28, 29]; and a little more recently 

that of [16] “Those measurements that significantly 

deviate from the normal pattern of sensed data” [21, 25, 

29–31]. 

Finally, based on the concepts analyzed and without 

intending to be exhaustive, this paper proposes the 

following definition for outliers:  

“An outlier is an observation or set of observations 

obtained from one or more sensor nodes, which turn out 

to be inconsistent: (1) with other attributes perceived by 

other sensors of the same node at the same time; (2) with 

immediately preceding readings from the same sensor 

node; (3) with readings obtained from neighboring nodes; 

or (4) with a well-defined pattern of normal behavior”. 

In this same sense, outliers can be of two dimensions 

based on the number of attributes that each data instance 

integrates: (1) univariate, when a data point has a single 

attribute and this can be detected as an outlier in relation 

to other data; and (2) multivariate, when a data point has 

multiple attributes and this can be identified as an outlier 

if some of its attributes together have anomalous values 

with respect to other data [15]. 

2) Sources of outliers in WSN 

In a WSN, anomalies or outliers can originate from 

various sources, including variability in data collection 

devices, limitations in energy resources, accumulation of 

errors in numerous sensor nodes, and malicious 

attacks [10]. These outliers are primarily generated by 

noise or errors, events, and malicious attacks [3]. Noise 

or errors in the data are usually associated with defective 

sensor nodes and can affect data quality, requiring their 

removal or correction [1, 14, 15]. Events, representing 

changes in the real-world conditions [3], can yield outlier 

data that is crucial for decision making [9]. Malicious 

attacks that threaten the network’s security, can take 

control of sensor nodes and inject false data [15]. 

3) Types of outliers in WSN 

Three types of anomalies are described in [11]: 
network, node, and data anomalies. Network anomalies 
involve unexpected variations in the number of packets 
traversing the network. Node anomalies originate from 
hardware or software defects, mainly caused by energy 
degradation. Data anomalies appear as unrealistic 
variations in the data captured by sensors. These latter 
can be classified into three types: temporal, spatial, and 
spatiotemporal [32, 33]. Temporal ones arise when 
comparing consecutive readings from the same node, 
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spatial ones when comparing a node with its neighbors, 
and spatiotemporal ones combine both. 

Other works like Chandola et al. [10] who classify 
anomalous data by their complexity into point anomalies 
(a single data instance is anomalous), contextual (a data 
instance is anomalous in one context but not in another), 
and collective (a set of data instances is anomalous). 
Rajasegarar et al. [34] categorizes them based on their 
degree of impact as first-order anomalies (where some 
observations on a node are anomalous), second-order 
(where all data from a node are anomalous in comparison 
to its neighbors), and third-order (where a set of nodes is 
anomalous compared to their neighbors). Likewise, in 
relation to the cause of anomaly on a local node [14, 16] 
identifies anomaly types 1, 2, 3, and 4; as well as local 
outliers (detected using only the data from a single sensor 
node) and global outliers (detected from a global 
perspective considering a group of sensor nodes), 
depending on the scope of detection. 

C. Outlier Detection in WSNs 

The detection problem refers to the process of 

searching for patterns in the data that deviate from the 

expected behavior [10], a definition cited in [2, 14, 35]. 

In the context of WSNs, the problem lies in detecting any 

abnormal behavior in the sensor data flows [15] or 

identifying data instances that deviate from the rest of the 

data patterns based on certain measurements [9]. In 

various ODTs, especially those based on classification, 

the expected normal behavior is initially modeled from a 

historical set of collected and previously labeled data 

instances. 

Another important aspect of detection is the way of 

reporting outliers. It can be binary (normal or outlier) 

known as labels/scalar; another more commonly used 

way is the outlier scores, for which it is necessary to 

define a threshold for anomalies [3, 8]. 

Depending on the source, outlier detection may include: 

(1) fault detection regarding noise or errors; (2) event 

detection concerning events; and (3) intrusion detection 

pertaining to malicious attacks [3]. In this work, outlier 

detection in WSNs is addressed both in the context of 

fault detection and event detection. 

1) Applications of outlier detection in WSNs 

The use of outlier detection in WSN is closely related 

to the use of WSN in real-world implementations, as 

reviewed in the “WSN Applications” section of this paper. 

These applications primarily involve monitoring and 

tracking tasks. Specifically, outlier detection has been 

used in the following applications [3, 9, 15]: 

environmental monitoring, habitat monitoring, medical 

and health monitoring, industrial monitoring, target 

tracking, and structural monitoring. Other applications 

such as credit card fraud detection [10], intrusion 

detection [34], and smart cities [9] are also mentioned in 

the literature. 

2) The availability of pre-labeled data 

The availability or lack of pre-labeled data is one of 

the determining factors for selecting an appropriate 

detection technique. In fact, some techniques use pre-

labeled data to train or validate an initial model that 

allows classifying new data instances as normal or 

outliers [34]. Therefore, the use of pre-labeled data 

divides ODTs into three categories [16]: (1) Supervised 

techniques that build classifiers requiring pre-labeled data 

to learn a normal and an abnormal model, and then 

classify a new data point as normal or outlier according to 

the model in which the data point fits. Supervised 

techniques are often closely related to multiclass 

classification techniques because they model both the 

normal and the outlier classes [15]; (2) Semi-supervised 

techniques that do not require data instances labeled as 

outliers but do require instances labeled as normal. These 

techniques are quite linked with one-class classification 

techniques as they model only one class, usually the 

normal class [15]; (3) Unsupervised techniques that do 

not require any pre-labeled data and use other criteria to 

identify outliers, most of the time a similarity measure 

between a point and its nearest neighbors. 

3) Correlations 

In the context of anomaly detection in WSNs, four 

important types of correlations are recognized: attribute 

correlations, temporal correlations, spatial correlations, 

and spatiotemporal correlations [2, 3, 14, 15]. The 

attribute correlation involves a relationship between 

different measurements from the same sensor, which can 

enhance the efficiency of detection models by reducing 

the dimensionality of the data. Temporal and spatial 

correlations refer to the predictive relationship between 

sensor readings at consecutive times and between 

geographically close sensors, respectively. On the other 

hand, spatiotemporal correlations combine the latter two 

aspects, highlighting predictive relationships between 

data collected at different nodes and at different times. 

Although the use of these correlations can enhance the 

effectiveness and efficiency of anomaly detection in 

WSNs [2], their incorporation in existing work is still 

limited, especially about attribute correlations. 

4) Challenges and requirements for outlier detection 

in WSNs 

Designing an ODT for WSNs presents various 

challenges related mostly to the unique characteristics of 

these types of networks. In fact, even though a variety of 

outlier detection solutions exist for traditional (wired) 

networks, these solutions cannot be directly transferred to 

WSNs [2]. Table I summarizes several challenges 

compiled from Ref. [2, 3, 15] that need to be considered 

when designing a suitable outlier detection solution for 

WSNs. 
 
TABLE I. CHALLENGES TO OUTLIER DETECTION IN WSNS 

Challenge 
References 

[3] [2] [15] 

Resource constraints √ √ √ 

High communication cost √ √ √ 

Distributed streaming data √   

Dynamic streaming datax √ √ √ 

Dynamic network topology √ √ √ 

Network heterogeneity √ √ √ 

Large-scale deployment and network scalability √ √  

Identifying outlier sources √  √ 

High-dimension data  √ √ 
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Likewise, based on the reviewed challenges, Table II 

condenses the requirements that according to the referred 

works should be integrated into an optimal outlier 

detection solution for WSNs. 

TABLE II. THE PROPOSED REQUIREMENTS FOR AN OPTIMAL OUTLIER DETECTION SOLUTION FOR WSNS 

Requirement Brief description 
References 

[2] [14] [15] [9] 

Distributed structure 
This requirement adopts inter-node collaboration for the detection process 

as opposed to the centralized structure. 
√    

Online detection 
Conducts data analysis in real-time, either in a continuous manner or in 

packets. 
√  √  

Detection effectiveness Exhibits a high detection rate and low false alarm rate. √ √ √ √ 

Unsupervised techniques Not dependent on labeled data or training phases.    √ 

Nonparametric methods Does not assume an a priori data distribution.    √ 

Adaptability to dynamic data changes Considers the dynamic nature of the data and its nonstationary distribution. √ √ √  

Multivariate and high-dimensional 

data 

Ensures capability of handling data instances with multiple attributes or 

even high dimensionality. 
√  √ √ 

Dimension reduction Incorporates dimension reduction subprocesses for the previous case. √    

Energy efficient 
Low power consumption in the detection process, low computational and 

communication complexity, and adequate memory usage. 
√ √ √ √ 

Autoconfiguration with respect to the 

network topology 

Facilitates adaptation to a dynamic network topology, which means that it 

must be robust to possible communication failures. 
 √ √ √ 

High scalability It works well in WSNs with few sensor nodes or in dense deployments.    √ 

Use of correlations 
It exploits the different types of correlations between network data, 

allowing it to effectively distinguish between errors and events. 
√ √ √ √ 

The dynamic update of decision 

threshold 

In models that return an outlier score, the decision threshold is flexible with 

respect to the dynamic nature of the data. 
  √  

Automatic parameter adjustment 
Minimizes human intervention. by allowing automatic parameter 

adjustments. 
√ √   

 

D. Outlier Detection in WSNs 

Since their beginnings in the statistical community in 

the 19th century, various research communities have 

developed a variety of techniques for detecting outliers or 

anomalies in data [10]. Many of the algorithms developed 

are used with large datasets and assume substantial 

processing capabilities, which is why they cannot be 

directly applied to WSNs, as they are too computationally 

complex to run on sensor nodes [34]. Subsequently, many 

ODTs specifically designed for WSNs have emerged 

from various fields of study [3], which have examined the 

problem from multiple perspectives and strategies. 

1) Approaches 

Outlier detection approaches for WSNs are classified 

according to the structure of the model and the mode of 

operation. Structural approaches include centralized 

approaches in which data are sent to a central location for 

processing, allowing more complex detection algorithms 

but generating high energy consumption and 

communication overheads [1, 2, 14, 24]. Distributed 

approaches, on the other hand, perform detection at each 

sensor node, favoring real-time detection and efficient 

resource utilization, although they can limit the 

complexity of the algorithms and thus potentially limit 

detection accuracy [1, 2, 14, 15, 24]. Hybrid approaches 

seek to combine the advantages of both [33]. 

In terms of mode of operation, online approaches 

identify outliers in real time or near-real time, although 

they may have a higher rate of false  

alarms [1, 2, 13, 14, 16]. Offline approaches, on the other 

hand, collect observations over long periods of time 

before identifying outliers, taking advantage of historical 

data and more powerful methods, but they can be 

unsuitable for WSNs that require online  

processing [1, 13, 16]. Hybrid offline/online techniques 

integrate both approaches, using offline processing for 

initial model training and then online processing for real-

time detection [22]. Centralized approaches are less 

common than distributed ones, and only a few of these 

distributed techniques perform online detection [2, 15]. 

2) Taxonomy 

Different taxonomies are proposed for ODTs in 

WSN  [1, 3, 9, 15], and although in [1] it is mentioned as 

a taxonomy for IoT, in practical terms WSN is implied. 

Table III compares the referred classifications. 

We can observe that the main categories are techniques 

based on statistics, clustering, nearest neighbors, 

classification, and spectral decomposition. Other less 

referred are based on artificial intelligence, theoretical 

information, spectral techniques, and hybrid techniques. 

Statistical-based techniques, in general, can be 

parametric (based on Gaussian or non-Gaussian 

distributions) or nonparametric (based on kernel or 

histogram). Hybrid statistical approaches are less 

common, as are parametric ones based on regression or 

mixed parametric distributions. Clustering-based 

techniques and nearest neighbor techniques commonly do 

not have subcategories, except for one taxonomy that 

divides the latter into distance-based and density-based. 

On the other hand, classification-based techniques appear 

richer in subcategories. In general, they are divided into 

SVM-based (One-class) and Bayesian Network-based 

(multiclass) with their various variants. Less common are 

rule-based classification techniques or single-class 

KPCA-based (Kernel PCA) techniques. Likewise, 

spectral decomposition-based techniques only include 

Principal Component Analysis (PCA) as a subcategory. 

Another relatively common category is that based on AI, 

which includes the subcategories Fuzzy Logic and NN. 
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The latter is also included as a subcategory of 

classification-based techniques. Finally, the categories 

based on theoretical information, spectral techniques, and 

hybrid approaches are the least common. 

TABLE III. TAXONOMIES OF ODTS FOR WSNS 

Main categories Subcategories Sub-Subcategories 
References 

[3] [15] [9] [1] 

Statistical-based 

Parametric 

Gaussian-based √ √ √ √ 

Non-gaussian-based √ √ √ √ 

Regression   √  

A mixture of parametric 

distribution-based 
  √  

Non-Parametric 
Kernel-based √ √ √ √ 

Histogram-based √ √ √ √ 

Hybrid Approach    √  

Nearest Neighbor-based 

  √ √  √ 

Distance    √  

Density    √  

Clustering-based   √ √ √ √ 

Classification-based 

Support Vector Machine (SVM)  √  √ √ 

Bayesian Network 

    √ 

Native Bayesian Network-based √  √ √ 

Bayesian Belief Network-based √    

Dynamic Bayesian Network-

based 
√  √  

Neural Network (NN)    √  

Rule    √  

One-class 
SVM  √   

KPCA  √   

Multi-class Bayesian Network  √   

Spectral Decomposition-Based 
Principal Component Analysis 

(PCA) 
 √  √ √ 

Artificial intelligence (AI)-based 
Fuzzi logic   √  √ 

NN   √  √ 

Information Theoretic     √  

Spectral Technique     √  

Hybrid-based      √ 

 

3) Pros and cons of detection techniques 

Several pros and cons for each category of ODTs in 

WSNs have been identified in the literature. 

a) Statistical-based 

Pros: They are mathematically justified and can 

effectively identify outliers if a correct probability 

distribution model is acquired [1, 9, 15, 16]. After 

constructing the model, they do not require the actual 

data on which the model is based [1, 9, 16]. 

Nonparametric techniques are more flexible and 

autonomous because they do not make any assumptions 

about the distribution characteristics of the data [9, 16]. 

They use temporal correlations to determine the presence 

of an outlier based on a sudden change in the data 

distribution [1, 15]. Cons: Parametric techniques require 

prior knowledge that is often not available or costly to 

compute in many real-life WSN applications [1, 2, 9, 15, 

16]. Nonparametric statistical models are not as suitable 

for real-time applications, and the computational cost of 

handling multivariate data is higher [1, 15]. Histogram-

based techniques are efficient for univariate data and 

relatively simple to implement, but they cannot capture 

the interactions between different attributes of 

multivariate data, and it is not easy to determine an 

optimal bin size for constructing the histogram [2, 9, 15, 

16]. Kernel function-based techniques can scale well on 

multivariate data, but they have potentially quadratic time 

complexity in terms of the data size [9, 16]. The selection 

of the threshold depends on the application and is a 

difficult task, especially for a continually changing 

dynamic environment [2]. 

b) Nearest neighbor-based 

Pros: They do not require assumptions about the data 

distribution [1, 9, 15, 16]. They are unsupervised 

techniques, meaning that no pre-labelled data are  

needed [15, 16]. They are effective in detecting outliers in 

data with nonlinear patterns [9, 16]. Their application in 

different types of data is simple and mainly requires 

defining a suitable distance measure [1, 15]. The use of 

Euclidean distance is a good option for univariate and 

multivariate constant features [9]. Cons: The proper 

choice of input parameters may be a difficult  

task [1, 9, 16]. The threshold value used in this technique 

is critical and must be carefully chosen to avoid a high 

false negative rate [1, 9, 15]. Defining distance measures 

between data instances can be challenging in sensor 

data [16]. Density-based techniques are not entirely 

efficient because some approaches may be sensitive to 

variations in the local density of data points, which may 

result in less accurate outlier detection in datasets with 

nonuniform densities [15]. In some multivariate datasets, 

it may be computationally expensive to compute the 

distance between data instances, which may affect the 

scalability of these techniques [1, 2, 9, 15, 16]. They may 

require high communication overhead and significant 

energy consumption [9]. Some strategies may only 

Journal of Advances in Information Technology, Vol. 15, No. 3, 2024

377



identify outliers with severe divergence and possibly 

overlook less extreme outliers [9]. 

c) Clustering-based 

Pros: Clustering-based techniques do not require prior 

knowledge about the data distribution [16]. They can be 

used in an incremental model, allowing for the 

incorporation of new data instances and the detection of 

outliers [9, 15, 16]. They are unsupervised techniques, 

making them flexible for different datasets [9, 15, 16]. 

They are suitable techniques for anomaly detection from 

temporal data [9, 15]. The test phase is agile because the 

number of clusters with which each test instance must be 

compared is a small constant [9, 15]. Cons: The 

effectiveness of these techniques largely depends on their 

ability to capture the cluster structure of normal instances 

[9, 16]. Like nearest neighbor-based techniques, 

computing the distance between multivariate data 

instances using clustering-based techniques is 

computationally costly [2, 9, 16]. Most methods are 

byproducts of clustering and are not optimized to detect 

outliers [9]. Some clustering techniques are not suitable 

for WSN applications due to their dependence on the 

choice of cluster width [2]. Clustering techniques are not 

effective in adapting to ongoing changes in data streams 

over time. Recent models have attempted to solve this 

problem through incremental learning methods, but the 

computational cost of these methods is very high [2]. 

Some clustering algorithms force each instance to be 

assigned to some group, which can lead to outliers being 

assigned to a large cluster and being considered as normal 

instances [9]. 

d) Classification-based 

Pros: By constructing a classification model, they 

provide optimal and maximum outlier  

identification [1, 15, 16]. In particular, multiclass 

approaches apply powerful algorithms that can 

differentiate instances of various classes [9]. The test 

phase is fast since each test instance only needs to be 

compared with the precalculated model [9, 16]. It does 

not require a statistical model or estimated  

parameters [1, 15]. It solves the problem of 

multidimensional data [15]. Some recent one-class 

techniques are unsupervised, so they do not require 

labeled training data [1]. Cons: SVM-based techniques 

have high computational complexity due to quadratic 

optimization and the choice of suitable kernel functions, 

and are inefficient for online approaches [2, 15, 16]. 

Some classification techniques, especially SVM, require 

parameter selection, which can limit the capacity of the 

solution and increase the need for human intervention [2]. 

Techniques based on Bayesian networks have difficulties 

in learning an accurate classification model when there 

are a larger number of variables [16]. Bayesian networks 

are effective in detecting correlations and dependencies in 

sensor data and attributes, but their ability to handle large 

multivariate datasets is limited [2]. As new data arrive, 

the model needs to be updated [15]. Multiclass 

classification techniques assume the availability of 

accurate labels for varied normal classes, which is 

difficult to obtain [9]. Labeling each test instance 

becomes a drawback if instead an outlier score is  

desired [9]. 

e) Spectral decomposition-based 

Pros: PCA-based techniques can be applied to datasets 

with many dimensions [1, 9, 16]. They can operate in 

unsupervised mode [9, 16]. They capture the normal 

pattern of the data and detect outliers optimally [16]. The 

dimensionality reduction can be applied as a 

preprocessing step before applying outlier detection 

methods in the transformed space [9]. Cons: The 

selection of the right principal components to estimate the 

correlation matrix of normal patterns is computationally 

expensive [1, 9, 16]. They are useful only if outliers and 

normal instances are highly distinguishable in the reduced 

space [9, 16]. 

f) Artificial intelligence-based 

Pros: They are rule-based techniques, providing a clear 

understanding of the detection process, flexibility to 

adapt to different contexts, and the possibility of 

incorporating expert knowledge [1]. They can generalize 

despite having limited, noisy or fragmented data [1, 15]. 

There is no need to retrain the system when new data or 

rules are added [1, 15]. Cons: Developing a model from a 

fuzzy system requires fine tuning and prior simulation 

before being operational [1, 15]. Storing the rule base can 

require large amounts of memory because the number of 

rules increases exponentially with the number of 

variables; also, constantly traversing them can slow down 

the detection process [1, 15]. Adding spatial and temporal 

correlation to the decision-making process further 

increases the number of rules [1, 15]. 

4) Evaluation conditions of outlier detection 

techniques 

The main conditions related to the evaluation of an 

ODT in WSN are dataset selection, performance metrics, 

and complexity analysis. 

a) Datasets 

They are fundamental for training and evaluating the 

performance of the technique. These datasets contain a 

collection of measurements or events collected from real-

world implementations [21], although in other cases they 

are also synthetically generated [8]. In Ref. [14], two 

datasets are proposed that meet the typical nonstationary 

conditions of the data generated in a WSN application for 

environmental condition monitoring: Intel Berkeley 

(IBRL) from Intel Berkeley Research Lab and Grand-St-

Bernard (GSB) from SensorScope Project. These real 

datasets are among the most used in the literature, either 

natively or modified, partially or completely, for the 

training and evaluation of anomaly detection proposals, 

as shown by a review conducted in [35]. 

b) Performance metrics 

The performance metrics of an ODT for WSN seek to 

demonstrate the effectiveness of said technique [2]. These 

metrics, generally, are built based on four possible 

outcomes in a binary classification: the outliers (TP) and 

normal cases (TN) that are correctly classified and the 

outliers (FN) and normal cases (FP) that are not [7]. 

Maintaining a high detection rate (DR) and a low False 
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Alarm Rate (FAR) or False Positive Rate (FPR) while 

consuming the least number of resources is the essence of 

the evaluation of a detection technique [3]. The DR, also 

known as the True Positive Rate (TPR) [14], represents 

the proportion of outliers that are correctly identified; 

while the FPR indicates the proportion of normal data 

incorrectly identified as outliers [15]. On the other hand, 

to evaluate the trade-off between FPR and TPR, the ROC 

(Receiver operating characteristic) curve is used, a 2D 

graph where the best performance is achieved with a TPR 

of 1 and an FPR of 0; besides, the greater the area under 

the ROC curve (AUC: area under ROC curve), the better 

the performance of the ODT, considering that an AUC 

value of 1 indicates 100% accuracy and an AUC value of 

less than 0.5 indicates a performance worse than the 

random assignment of labels [14]. 

Three other commonly used metrics are accuracy, 

precision, and recall; accuracy (ACC) is the ratio between 

correctly predicted observations (both atypical and 

normal) (TP+TN) and the entire dataset; precision is the 

proportion of true outliers (TP) present in all values 

detected as such (TP+FP), and recall, which is equivalent 

to DR [17]. Metrics such as sensitivity, specificity, and 

F1-score [36] are also mentioned in the literature. 

c) Complexity analysis 

The complexity analysis of an ODT seeks to 

demonstrate the efficiency of said technique [2]. Due to 

resource limitations in a WSN, it is crucial to analyze the 

detection algorithms to determine their complexity in 

computational, memory, and communication aspects 

when the number n of instances varies. Big O notation is 

a commonly used method for this evaluation, whose 

purpose is to identify the upper limit of the algorithm’s 

complexity as O(n), also allowing for the study of how it 

evolves as the number (and potentially the dimension) of 

the data vectors used in the elaboration of models for 

anomaly detection in WSN increases [14]. Recent works 

include other analyses such as space complexity [30], 

time complexity [18], and asymptotic complexity [8]. 

IV. THE ANALYSIS OF OUTLIER DETECTION PROPOSALS 

FOR WSN 

The detailed analysis was conducted on 33 selected 

studies, spanning from 2018 to 2023, which focused on 

ODTs in WSNs; the analysis adhered to the questions 

raised in Section II. 

A. Characteristics of Proposals for Outlier Detection in 

WSNs 

The diversity of solutions found is evident: algorithms, 

techniques, and frameworks based on threshold, 

boundary, clustering, statistical, classification, artificial 

intelligence, nearest neighbor, isolation, and hybrid 

approaches. 

The Decision Support System (DSS) methodology [6] 

and the Omnibus technique [37] are threshold-based 

approaches. The DSS methodology uses an integrated 

detection module to inform irrigation decisions in 

agriculture, while the Omnibus technique enhances the 

Transform-Based Contextual (TACO) framework by 

allowing definitions of unidimensional and 

multidimensional outliers, employing varied transmission 

window models, using Locality-Sensitive Hashing (LSH) 

to ensure efficiency and predictable accuracy, and 

incorporating different measures of similarity. 

Boundary-based techniques employ Support Vector 

Data Description (SVDD) to tackle the detection problem. 

The TSVDD technique [21] applies a Toeplitz matrix and 

a model selection strategy to reduce algorithm complexity 

and avoid underfitting and overfitting. Meanwhile, the 

Novel Spatiotemporal and Attribute SVDD (N-

STASVDD) technique [18] considers independent and 

identically distributed attributes and uses coresets to 

decrease computational complexity and energy 

consumption, surpassing the centralized approach. Lastly, 

the Improved density-compensated SVDD (ID-SVDD) 

technique [23] enhances the original SVDD by using the 

data density distribution and the Parzen-window 

algorithm to efficiently map data from sparse to high-

density areas, thereby achieving more effective outlier 

detection. 

The Peak-Searching Algorithm (PSA) [17] and Fault 

detection based on Participation Degree (FDP) [30] are 

clustering-based techniques. PSA uses Bayesian 

optimization to identify probability peaks in data and use 

them as initial points in EM (expectation maximization) 

and k-means algorithms, which enhances the precision of 

clustering and reduces the number of necessary iterations. 

Conversely, FDP employs the degree of participation in 

hierarchical clustering to establishes relationships 

between instances, eliminating the need for training with 

labeled data. The FDP technique uses the Agglomerative 

Hierarchical Clustering (AHC) algorithm and the Nearest 

Neighbor Boundary (NNB) to create a dendrogram tree 

and enhance the algorithm’s efficiency in global outlier 

detection. 

Statistical-based approaches like Copula-Based 

Probabilistic Multivariate (CBPM) [20] and Multivariate 

Outlier Detection (MOD) [38] have also been proposed. 

The CBPM technique considers the dependence between 

measurements surpassing existing statistical methods and 

is implemented in three stages: estimation, distributed 

detection, and outlier classification. On the other hand, 

the MOD technique focuses on improving accuracy in 

data aggregation in forest monitoring WSNs, using 

statistical analysis to identify and eliminate outliers 

before aggregation, resulting in a more precise dataset. 

Distributed online OCSVM (doOCSVM) and Sparce 

doOCSVM [39], Distributed Outlier Detection Scheme 

(DODS) [29], and ST-CE-CKDOT (improved CKODT 

based on spatial-temporal technique and centered 

ellipsoidal scheme) [40] are classification-based 

approaches. DoOCSVM and Sparce doOCSVM use an 

approximate random function and apply stochastic 

gradient descent to minimize cost functions, allowing 

decentralized implementation. DODS uses Bayesian 

classifiers at each node, considering multiple types of 

data, temporal correlation, and remaining energy, using 

the Maximum a Posteriori (MAP) concept to determine 

optimal classes. Finally, the ST-CE-CKDOT technique 
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identifies and locates damage in water pipe systems using 

a single-class classification technique, a centered 

ellipsoidal technique, and spatial-temporal correlations to 

distinguish between events, noise, and faulty sensors. 

Some solutions with Artificial Intelligence, Nearest 

Neighbors, and isolation-based approaches were also 

found. A technique based on Artificial Neural Networks 

(ANN) to detect and correct outliers in temperature 

measurements in smart building wireless sensors is 

proposed in [41] using predictions from the ANN model 

trained with historical data. In Ref. [42], the Outlierness 

Factor based on Neighbourhood (OFN) technique is 

proposed to detect outliers in WSN using spatio-temporal 

correlation. By calculating distances, assigning weights, 

and determining the outlierness factor, OFN distinguishes 

between sensor errors and genuine events. Meanwhile, 

box plot-sampled iForest (BS-iForest) [43] combines the 

box plot method and the Isolation Forest algorithm to 

detect anomalies in WSN data, selecting the best isolation 

trees according to their fitness and using similar data 

points to evaluate anomalies, improving stability and 

detection performance. 

Finally, hybrid approaches were also part of the 

findings. Fault-Tolerant Anomaly Detection method 

(FTAD) [8] is a fault-tolerant anomaly detection method 

that uses spatial-temporal correlation through statistical 

methods such as the Pauta Criterion Method (PCM) and 

the use of thresholds. In contrast, the distributed and real-

time model proposed in [22] is based on OCPCC (One 

class principal component classifier) using spatial 

correlations and Candid Covariance-Free Incremental 

PCA (CCIPCA) to improve efficiency and reduce 

computational complexity. Combined Kernelized Outliers 

Detection Technique (CKODT) [5], a hybrid model, 

merges KFDA and One Class SVM (OCSVM) for water 

pipe monitoring in WSNs, while [44] presents an 

approach based on Optimum-Path Forest (OPF) and 

meta-heuristics. Techniques such as Temporal Outlier 

Detection (TOD) and Spacial Outlier Detection 

(SOD) [45], which employ statistical and graph-based 

approaches, enhance the detection of temporal and spatial 

outliers. In Ref. [46], an isolation-based nearest-neighbor 

ensembles (iNNE) framework is proposed using local 

detectors and weighted voting. In-Network Contextual 

Outlier Detection on Edge (INCODE) [31] is a 

framework for contextual detection in WSNs, using Edge 

Computing and Google PageRank. Online Linear 

Weighted Projection Regression (OLWPR) [36] detects 

anomalies in three phases: data compression, prediction, 

and anomaly detection. Deep belief network online 

quarter-sphere SVM (DBN-OQSSVM) [47] combines 

deep belief networks and online quarter-sphere support 

vector machines for anomaly detection in WSNs. The 

Local Outlier Detection Algorithm (LODA) [25] is a 

decentralized technique based on time series and adaptive 

Bayesian networks. In Ref. [7], an ensemble learning 

approach is proposed, combining Decision Tree, Naive 

Bayes, and K-Nearest Neighbor through a Random 

Forest. Hypergrid based Adaptive Detection of Faults 

(HADF) [48], a distributed method that uses hypergrid 

and statistical analysis to identify sensor data faults. The 

approach in [49] uses an outlier detection framework 

based on collaboration between mobile edge and cloud, 

including Fast angle-based outlier detection algorithm 

(FastABOD) and f-SVDD (SVDD + fuzzy theory). In 

Ref. [50], anomaly detection in physiological data is 

addressed with an integrated system combining 

correlation coefficient, random forest, dynamic threshold, 

and majority voting. CESVM-DR (CESVM + Dimension 

Reduction) [51] is a lightweight approach that combines 

CCIPCA and OCSVM based on CESVM (Centred-

Ellipsoid SVM), seeking to reduce computational 

complexity and enhance detection accuracy. PiForest [4] 

based on iForest is a technique for anomaly detection in 

environments with limited resources and streaming data. 

In Ref. [28], a technique is presented that combines time 

series analysis, entropy, and classification using random 

forests. Finally, the technique in [52] uses Generative 

Adversarial Networks (GANs), an unsupervised learning 

approach, to detect outliers in WSNs, implementing two 

neural networks and autoencoders trained through the 

Adam optimizer. 

Table S1 proposals, considering name, base algorithm 

on which it is founded, group or taxonomy to which it 

belongs, approach, number of variables or dimensions 

experimented with, correlations that were considered in 

the proposal, and sources of outliers addressed. In this 

table, many hybrid techniques stand out, that is, 

techniques based on two or more methods and their 

derivations. From this descriptive table, Table S2 was 

generated for the quantification of the frequency of the 

characteristics observed in the analyzed detection 

proposals. Similarly, Table IV synthesizes the proportion 

of techniques according to the taxonomy. On the other 

hand, based on the same information, Table V quantifies 

the number of times the base algorithms and methods 

were used for different techniques collected.  

Table IV shows that hybrid approaches (54.55%) are 

the preferred solutions, followed by classification and 

boundary-based approaches, with 9.09% in each case. 

Likewise, Table V shows that the most utilized 

algorithms, regardless of the previous, are SVDD and 

OCSVM, boundary and classification-based algorithms, 

respectively; followed by random forest and isolation 

forest. On the other hand, as illustrated in Table S2, 

solutions based on distributed approaches (60.6%) prevail 

over centralized solutions (39.4%). Similarly, online 

(66.7%) and multivariate (63.6%) techniques are 

preferred over offline approaches or those using 

univariate or bivariate data. 

The use of some type of correlation has been an 

important component for more than 80% of the proposed 

solutions. 36.4% exploit correlations between attributes, 

especially in multivariate cases. To a lesser extent, some 

techniques take advantage of spatial (12.1%), temporal 

(6.1%) and spatiotemporal (18.2%) correlations. Only 

three studies used all possible correlations. Regarding the 

source of the outliers, 21 studies (63.6%) exclusively 

focus on outliers stemming from faults, while the 
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remainder incorporate the detection of outliers triggered 

by events (event detection). 

Finally, based on the previous data, the main 

characteristics of the outlier detection proposals for 

WSNs are hybrid techniques based on algorithms that 

take advantage of classification or that learn to 

distinguish normal classes, with a distributed and online 

approach, that exploit the spatiotemporal correlations of 

the data and, in addition to detecting faults in the data, 

also detect events of interest in the monitored area. 

TABLE IV. THE DISTRIBUTION OF ODTS IN WSNS BY TAXONOMY 

Taxonomy References 
Papers 

Freq. Percentage 

Hybrid [4, 5, 7, 8, 22, 25, 28, 31, 36, 44–52] 18 54.55% 

Classification-based [29, 39, 40] 3 9.09% 

Boundary-based [18, 21, 23] 3 9.09% 

Clustering-based [17, 30] 2 6.06% 

Threshold-based [6, 37] 2 6.06% 

Statistical-based [20, 38] 2 6.06% 

Nearest Neighbor-based [42] 1 3.03% 

Isolation-based [43] 1 3.03% 

AI-based [41] 1 3.03% 

Total  33 100% 

TABLE V. METHODS USED AS BASIS FOR OUTLIER DETECTION PROPOSALS IN WSNS 

ID Method Uses F ID Method Uses F ID Method Uses F 

1 ABOD [49] 1 16 HGDB [48] 1 31 OCPCC [22] 1 

2 AHC [30] 1 17 HIA [45] 1 32 OCSVM [5, 39, 40, 51] 4 

3 
BAYES 

CLASSIFER 
[29] 1 18 INTERVAL [8] 1 33 OPFC [44] 1 

4 
BAYESIAN 

NETWORK 
[25] 1 19 

ISOLATION 

FOREST 
[4, 46, 43] 3 34 PAGERANK [31] 1 

5 CCIPCA 
[22], 

[51] 
2 20 KFDA [5] 1 35 PCA [4, 36] 2 

6 CKDOT [40] 1 21 K-MEANS [17] 1 36 PCM [8] 1 

7 
COEFFCIENT 

CORRELATION 
[50] 1 22 KNN [46, 7] 2 37 PSA [17] 1 

8 COPULA-F [20] 1 23 LSH [37] 1 38 PWD [23] 1 

9 DBN [47] 1 24 LWPR [36] 1 39 QSSVM [47] 1 

10 DECISION TREE [7] 1 25 
MAHALANOBIS 

DIST. 
[23] 1 40 

RANDOM 

FOREST 
[7, 28, 50] 3 

11 
DYNAMIC 

THRESHOLD 
[50] 1 26 

MAJORITY 

VOTING 
[50] 1 41 

STATISTICAL 

DETECTOR 
[48] 1 

12 EM [17] 1 27 MAP CONCEPT [29] 1 42 SVDD [21, 18, 23, 49] 4 

13 ENTROPY [28] 1 28 NAIVE BAYES [7] 1 43 
TIMES SERIES 

ANALYSIS 
[28] 1 

14 FUZZY THEORY [49] 1 29 
NEURAL 

NETWORK 
[41] 1 44 TRFFM [21] 1 

15 GPM [45] 1 30 NNB [30] 1 45 N/D [6, 42, 38, 52] 4 

 

B. Conditions and Metrics in the Evaluation of Outlier 

Detection Proposals in WSN 

As mentioned in Section III.D.4, datasets, are essential 
requirements for training and evaluating the performance 
of the technique, determine the effectiveness of the 
proposal in the detection process, and quantify its 
efficiency in the use of computational resources. In this 
context, the review of the 33 reference sources highlights 
the datasets and performance metrics used in the 
development of experiences as well as the complexity 
measures for their efficiency in resource-limited WSN 
environments. 

1) Datasets 

The outlier detection proposals found in the selected 
papers used several datasets. Table VI shows a larger 

number of works using IBRL, followed by GSB; this is 
primarily because these datasets are public, but more 
importantly, they were extracted from real-world 
implementations. Papers such as [4, 17, 18, 30, 39, 42, 
45] combine the use of real datasets with synthetic 
datasets. This latter, in most cases, is generated entirely 
based on certain statistical distributions, combining the 
injection of artificial anomalies, manual labeling, and 
even normalization processes. Cases such as [29] 
generate synthetic datasets based on real datasets, 
whereas in [38] only the former type is used. In Ref. [6], 
static datasets are combined with others generated in real 
time. Finally, some studies either collect data [40] or 
generate it [8] through computer simulations. 
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TABLE VI. DATASETS USED IN THE PERFORMANCE EVALUATION OF SELECTED PROPOSALS 

Dataset Papers Freq. 

Intel Berkeley (IBRL) [17, 20–22, 25, 28, 29, 31, 36, 37, 42, 44–46, 48, 49, 51] 17 

Grand-St-Bernard (GSB) [18, 20–23, 44, 51, 52] 7 

Multiple Intelligent Monitoring in Intensive Care (MIMIC) [50] 1 

Activity Recognition based on a Multi-sensor data fusion (AReM) [7] 1 

Intelligent Sensors, Sensor Networks & Information Processing (ISSNIP) [46] 1 

Lausanne Urban Canopy Experiment (LUCE) [48, 51] 2 

Wireless Indoor Positioning Data Set (WILDS) [30] 1 

Patrouille des Glaciers (PDG) [50] 1 

Networked Aquatic Microbial Observing System (NAMOS) [50] 1 

Weather Data of University of Washington 2002 [37] 1 

Italian Industrial Production Index from tsoutlier R package [45] 1 

Campus Climate and Resilience Study (Campus-CRS) [43] 1 

Breast Cancer Wisconsin (BCW) [43] 1 

Other various [4, 6] 2 

 

2) Metrics and complexity analysis 

The acronyms detailed in Table VII are used to refer to 
performance metrics and complexity analysis of detection 
proposals. Further details related to the evaluation of such 
works and the efficiency and effectiveness results 
obtained are shown in Table S3.  

As we can observe in Table VII, the analyzed papers 
use up to 20 different performance metrics. Among them, 

Accuracy is the most used (48.5% of the papers), 
followed by Area Under the Curve, F1-score, False 
positive rate, Receiver Operating Characteristic, Precision, 
Recall, True Positive Rate, Detection rate, and False 
Alarm Rate. Likewise, in terms of complexity analysis, 
36.4% of the studies considered computational time as an 
important issue, followed by computational and memory 
complexities. 

 

TABLE VII. ACRONYMS OF THE PERFORMANCE METRICS AND COMPLEXITY ANALYSIS USED AND THEIR FREQUENCY 

Performance metrics 
Freq. 

Complexity analysis 
Freq. 

Acronym Description Acronym Description 

ACC Accuracy 16 CT Computational time 12 

AUC Area Under the Curve 9 CPC Computational complexity 8 

F1 F1-score or F-measure 8 MC Memory complexity 5 

FPR False positive rate 8 TC Time complexity 4 

ROC Receiver Operating Characteristic 7 CMC Communication complexity 4 

PRE Precision 7 SC Space Complexity 2 

REC Recall 7 PC Power consumption 1 

TPR True Positive Rate 6 ET Execution time 1 

DR Detection rate 5    

FAR False Alarm Rate 4    

FNR False negative rate 3    

DA/DAR Detection Accuracy / Detection Accuracy Rate 3    

PE Percentage Error 1    

RMSE Root Mean Square Error 1    

SEN Sensitivity 1    

SPE Specifcity 1    

GME G-mean 1    

TNR True negative rate 1    

 Forecast ACC 1    

 Aggregated Data Accuracy 1    

 

Table S3 shows that regarding the effectiveness of the 

proposed techniques, detection capabilities in most cases 

range between 85%–100%. It can also be observed [41, 

38] experiments, experimentation was not precisely 

aimed at determining the effectiveness of outlier 

detection but at measuring other aspects related to the 

proposed technique. In studies [40] and [50] no 

quantitative results of any kind are reported. 

In relation to the complexity analysis, the predominant 

use of Big O notation, as referred to in Section III.D.4, is 

confirmed. However, it is also evident that about half of 

the proposals excluded any type of analysis in this regard. 

Most of them being of hybrid type. 

In addition to the metrics, the conditions under which 

the experimental processes occurred are of interest. In 

fact, Table VIII shows that 84% of outlier detection 

proposals for WSN were tested in simulated 

environments. For this, the use of software was vital; in 

fact, many studies made explicit the hardware and 

software resources that allowed such simulations, with 

Matlab (36.4%) and Python (24.2%) being the most 

mentioned, especially when it came to hybrid techniques 

(see Table IX). Likewise, 42.4% of the detection 

proposals assumed a hierarchical cluster-based network 

structure, discussed in Section III.A.1 (see Table X). 
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TABLE VIII. FREQUENCY OF EVALUATION TYPES BY TAXONOMY 

Taxonomy Testbed Simulation 
Real 

implementation 
Numerical analysis 

Simulation and 

Real 

Implementation 

Hybrid  15 1 1 1 

Classification-based  3    

Boundary-based  3    

Clustering-based  2    

Threshold-based 1 1    

Statistical-based  2    

Nearest Neighbor-based  1    

Isolation-based  1    

AI-based     1 

Total 1 28 1 1 2 

% 3.0% 84.8% 3.0% 3.0% 6.1% 

 

TABLE IX. FREQUENCY OF SOFTWARE USED BY TAXONOMY 

Taxonomy Matlab Python Others None or N/D 

Hybrid 5 7 1 5 

Classification-based 2  1  

Boundary-based 3    

Clustering-based    2 

Threshold-based    2 

Statistical-based 1  1  

Nearest Neighbor-based  1   

Isolation-based   1  

AI-based 1    

Total 12 8 4 9 

% 36.4% 24.2% 12.1% 27.3% 

TABLE X. FREQUENCY OF NETWORKS STRUCTURE USED BY TAXONOMY 

Taxonomy Flat 
Hierarchical 

Cluster-based 

Hierarchical Group and 

community based 

Hierarchical 

architecture with three 

layers 

N/D 

Hybrid 5 6 1 1 5 

Classification-based 1 2    

Boundary-based  1   2 

Clustering-based  1   1 

Threshold-based 1 1    

Statistical-based  2    

Nearest Neighbor-based  1    

Isolation-based     1 

AI-based 1     

Total 8 14 1 1 9 

% 24.2% 42.4% 3.0% 3.0% 27.3% 

 

C. Areas of Application for Outlier Detection in WSN 

In terms of application areas, very few works explicitly 

refer to this in the context of their proposed solution. In 

many studies, the application area was deduced from the 

nature of the dataset used, such as those that used datasets 

with environmental or human activity information; 

however, applying this logic was not possible in all cases. 

Interestingly, monitoring tasks served as the common 

denominator across most of the studies. Details are shown 

in Table XI, which indicates that environmental 

monitoring applications are of the greatest interest, at 

least based on the data used for testing, including 

agricultural monitoring, water quality, and forest fires; 

while structural and health monitoring applications are 

represented on a much smaller scale. 

D. Detection Techniques Limitations 

Outlier detection in WSN is a constantly evolving area 

of research, which is evidenced in the diversity of 

techniques proposed in the reviewed works. However, in 

most cases, we could infer some common limitations, 

including sensitivity to parameters, computational 

complexity, scalability, and dependence on specific 

assumptions. 

The DSS methodology [6] could be sensitive to 

datasets containing noise that manifests as multiple 

values. Moreover, its centralized architecture may be less 

scalable and susceptible to external factors such as 

extreme weather conditions. Some potential limitations of 

TSVDD [21] include the need for a representative 

training dataset and sensitivity to model parameters. Also, 

the use of the Toeplitz matrix to reduce time and space 

Journal of Advances in Information Technology, Vol. 15, No. 3, 2024

383



complexity in a real application may impact the 

algorithm’s accuracy and efficiency. 

In PSEM and PSk-means [17], PSA uses BO, and this 

dependence implies that a prior design and a Gaussian 

distribution are critical for its efficiency. Furthermore, the 

PSA is centralized, making it unsuitable for highly 

distributed WSNs where data analyses are performed at 

each sensor node. The CKODT technique [5] combining 

KFDA and OCSVM may face challenges in WSN 

environments with limited resources, as it increases 

computational complexity and requires more computing 

capabilities, energy, and storage, which could affect the 

battery life of sensor nodes. Although the N-STASVDD 

method [18] reduces computational complexity and 

energy consumption compared to other methods, there 

may still be a computational and energy cost associated 

with real-time anomaly detection. Possible limitations of 

the Copula-based method [20] are the selection of an 

appropriate threshold and the determination of the 

dependence between captured measures. For OPF [44], a 

possible limitation is that it requires fine tuning of 

parameters such as the anomaly threshold. Additionally, 

although it is compared with other methods, no 

information is offered about the proposal’s performance 

and effectiveness in WSN scenarios. 

TABLE XI. AREAS OF APPLICATION OF THE DETECTION PROPOSALS 

Application area Papers Freq. 

Agricultural Monitoring (Precision Agriculture) [6] 1 

Monitoring of water pipes [5, 40] 2 

Water quality monitoring [23] 1 

Structural monitoring in buildings [41] 1 

Health monitoring [50] 1 

Forest fires [4, 38] 2 

Based on the data: Environmental monitoring [17, 18, 20–22, 28, 29, 36, 37, 42, 44–46, 48, 49, 52] 16 

Based on the data: Human Activity Monitoring [7] 1 

N/D [8, 25, 30, 31, 39, 43, 47, 51] 8 

 

Selecting suitable parameters for the approximate 

random function and the stochastic gradient descent may 

be a challenge and can affect the performance of the 

doOCSVM and Sparse doOCSVM techniques proposed 

in [39]. The application of TOD and SOD [45] to 

multivariate data could reduce its effectiveness and 

efficiency due to difficulties in establishing an 

appropriate detection threshold. ID-SVDD [23] may not 

be suitable for real-world applications due to its 

centralized approach, and there is also a lack of 

information regarding its efficiency in using 

computational resources. 

In the DODS approach [29], a possible limitation could 

be its focus on detecting outliers at the level of individual 

nodes without considering the network’s contextual or 

global information. On the other hand, no details are 

provided about its efficiency, considering the use of a 

Bayesian classifier and the MAP concept that might 

demand significant computational resources. For the 

FDP-based approach [30], appropriate parameter 

selection and adaptation to different data distributions can 

be challenging. In the case of OFN [42], the selection of 

suitable parameters and sensitivity to variations in the 

density function can also affect its performance and 

effectiveness. The MOD approach [38] not only has a 

centralized architecture that can affect scalability and 

efficiency, but also requires the selection of appropriate 

parameters. The ANN-based technique [41] could face 

problems of computational complexity and energy 

consumption due to the nature of neural networks. The 

HADF method [48] may also have limitations in terms of 

computational complexity and resource requirements, 

which could affect the battery life of sensor nodes. 

In the case of ST-CE-CKDOT [40], some limitations 

in terms of accuracy and reliability of detection may be 

due to factors such as sensor quality and complexity of 

the piping system. Furthermore, the implementation and 

maintenance of this network can be costly and require 

careful planning. On the other hand, the INCODE 

technique [31] has limitations due to its dependence on 

community formation and consensus mechanism, 

influencing the quality of outlier detection. It is also 

necessary that the community nodes have sufficient 

processing and memory capacity to perform data 

summarization and information transmission. Likewise, 

the omission of temporal correlations in the analysis 

could restrict the effectiveness of INCODE in outlier 

detection in certain contexts. 

The OODS framework [37] provides a solid approach 

to outlier detection, but defining the appropriate window 

size could be a difficulty and there is a lack of 

information about the efficient use of computational 

resources. The OLWPR technique [36] may require a 

significant amount of computational resources to run in 

real time at each node, which could generate scalability 

difficulties. The DBN-OQSSVM method [47] could 

require significant computing capability to scale to a 

distributed approach. Since LODA [25] does not consider 

spatial or temporal correlations with neighbors to detect 

outliers, it might not be able to detect certain types of 

outliers that could be detected through the use of 

correlations. The ERF algorithm [7] relies on an 

ensemble learning approach that combines multiple base 

classifiers, which may increase computational complexity 

and execution time compared with a simpler approach. 

Some potential limitations or challenges that might 

arise in the outlier detection framework based on 

collaboration between the mobile edge and the cloud [49] 

include the demand for periodic updates and 

optimizations of the detection model to preserve its 

accuracy and reliability, as well as the need to maintain a 

balance between performance and energy consumption at 
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the edge nodes. The technique proposed in [50] is based 

on the analysis of historical data gathered from multiple 

medical sensors to identify anomalies and dynamically 

adjust the threshold value. However, this dependence 

could limit its ability to promptly adapt to changes in the 

patient’s medical conditions or the surrounding 

environment. In addition, the technique relies on a 

centralized approach, which could restrict its scalability. 

Lastly, the effectiveness and efficiency of the proposed 

technique are not sufficiently demonstrated. 

Determining the optimal number of principal 

components when applying the CCIPCA algorithm for 

data dimensionality reduction can represent a challenge 

and simultaneously influence the accuracy of outlier 

detection. Also, the lack of leveraging of spatiotemporal 

correlations in the data is an additional limitation for the 

proposed CESVM-DR scheme [51]. In PiForest [4], the 

use of PCA can have an impact on the accuracy of outlier 

detection in datasets with complex structures or nonlinear 

correlations among features. Furthermore, although the 

proposed method is designed to handle real-time data, it 

may still have difficulties handling large volumes of data 

or quick data flows. 

The technique proposed in [28] integrates multiple 

approaches and techniques, which could increase its 

complexity and computational requirements. In addition, 

the proposed technique does not yet address the problem 

of detecting malicious or faulty nodes, which can 

negatively affect the accuracy of outlier detection. The 

BS-iForest algorithm [43] can be sensitive to the choice 

of parameters, such as the number of trees and the 

maximum tree depth. Furthermore, the process could be 

more complex than the traditional isolation forest 

algorithm. 

Finally, potential limitations of the proposed GAN 

method [52] could include the computational complexity 

involved in implementing the GAN, the processing time 

required, and the possibility of obtaining false positives 

or negatives in outlier detection. 

A more detailed analysis of these limitations, along 

with the advantages identified for each of the analyzed 

proposals, is shown in Table S4. 

In an adjacent line of research, contemporary studies 

employing bio-inspired algorithms suggest viable 

solutions to multiple limitations encountered in reviewed 

outlier detection techniques, including high 

computational complexity, sensitivity to parameter 

settings, and lack of scalability. For instance, the Prairie 

Dog Optimization (PDO) algorithm [53] effectively 

balances both accuracy and scalability and demonstrates 

robustness in dynamically adapting to dataset variations 

through online and incremental learning. Similarly, the 

Modified Elite Opposition-Based Artificial Hummingbird 

Algorithm (m-AHA) [54] stands out for its ability to self-

tune operational parameters, a key element for efficacy in 

WSNs. Likewise, the Dwarf Mongoose Optimization 

Algorithm (DMO) [55] introduces a metaheuristic that is 

particularly beneficial in scenarios with a scarcity of 

historical data, addressing another common limitation. 

V. DISCUSSION 

Certainly, outlier detection in WSNs has garnered 

considerable attention in the literature due to its critical 

importance for ensuring data quality and reliability in 

mission-critical applications. Various approaches have 

emerged to tackle this issue, yet significant challenges 

remain both in terms of theoretical development and 

practical implementation. 

Regarding the proposed techniques, a trend towards 

the adoption of hybrid models is observed (54.5%), with 

a focus on distributed (60.6%) and online (66.7%) 

approaches aimed at detecting anomalies locally at sensor 

nodes, thus minimizing communication overhead. 

However, this localized approach is unable to capitalize 

on global correlations, which could enhance detection 

accuracy. Notably, only 18.2% of the proposed studies 

leveraged spatiotemporal data correlations, and a mere 

9.1% also exploited correlations between attributes, 

particularly in multivariate solutions (63.6%). Hence, 

there arises a need to incorporate collaborative elements 

among neighboring nodes or with central nodes to 

optimize the model’s efficacy. 

At the algorithmic level, different strategies have been 

employed to reduce computational complexity, such as 

dimensionality reduction and the use of semi-supervised 

learning over unsupervised methods, which often suffer 

from higher rates of false positives. Alternatively, 

supervised techniques, although potentially more accurate, 

present the challenge of obtaining suitable labeled data. 

Moreover, most existing methods do not explicitly 

address adaptability to abrupt data changes. 

Concurrently, the practical implementation of these 

techniques faces significant challenges. A paramount 

issue is the seamless integration with the specific 

infrastructure and topology of each sensor network. 

Centralized techniques (39.4%), for instance, although 

effective in certain scenarios, encounter scalability issues 

in more extensive networks. This demands meticulous 

mapping of distributed methods to pre-existing node 

clusters and roles. Additionally, energy efficiency 

remains a critical aspect; the application of processing or 

communication-intensive algorithms could rapidly 

deplete batteries, requiring a careful balance between 

detection accuracy and energy sustainability. Other 

challenges encompass the efficient training and updating 

of models, as well as adaptable parameter configuration. 

Moreover, deployment in real-world environments 

introduces environmental variables that may reveal 

limitations not previously identified in earlier research or 

simulations. 

Overall, although numerous valuable contributions 

have been made, a comprehensive solution that 

satisfactorily meets all key requirements for optimal 

outlier detection in WSNs remains elusive from both a 

theoretical and applied standpoint. Further research is 

needed on models that effectively balance accuracy, 

distribution, scalability, and energy efficiency. 
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VI. CONCLUSIONS AND FUTURE DIRECTIONS 

In this work, 33 papers on ODTs in WSN from 2018 to 

2023 were analyzed. These detection proposals are based 

on classification, boundary, clustering, thresholds, 

statistics and, in greater numbers, hybrid techniques. 

Likewise, distributed solutions prevailed over centralized 

ones, with online detection processes, multivariate, and in 

many cases taking advantage of the spatial, temporal, or 

spatiotemporal correlations of the detected data. 

On the other hand, the reviewed works were mostly 

tested using simulation and specialized software such as 

Matlab and Python, with a network structure based on 

hierarchy and clusters, and using public data such as the 

datasets from IBRL and GSB. The performance of the 

techniques was measured using metrics such as ACC, 

AUC, F1-score, and FPR. In most of the studies, 

detection rates above 85% were reported; the best 

performances were from centralized techniques that do 

not consider spatiotemporal correlations of the data and 

operate in offline mode, which could explain these high 

detection rates. Likewise, the few proposals that achieved 

100% detection rates did so under specific conditions, 

such as the use of synthetic datasets, with well-defined 

outliers, synthetic anomalies, or controlled noise levels; 

conditions that may not accurately reflect the complexity 

and noise of sensor readings in real-world WSN 

applications. On the other hand, not all the proposals 

reviewed incorporated an analysis of the complexity of 

their techniques, especially in the case of hybrid 

approaches. 

Regarding the application area of the proposed 

techniques, most of the papers did not specify this aspect. 

However, as mentioned above, they used public datasets 

containing perceived observations from the environment 

in real-world implementations. This, along with research 

related to agricultural monitoring, water quality, and 

forest fires, shows the importance of these technologies in 

relation to environmental monitoring and care. This focus 

on environmental applications may also be influenced by 

the limited availability of datasets in other areas. 

Finally, the main limitations found include high 

computational complexity and high resource consumption 

(energy, storage, computing capacity), sensitivity to 

parameters, lack of scalability, the use of a centralized 

approach that can be problematic in distributed WSNs, 

the dependence on specific assumptions about data 

distribution, or the presence of a representative training 

set. Other limitations include the lack of consideration of 

spatial or temporal correlations, reliance on historical 

data, and high cost of implementation and maintenance. 

Outlier detection in WSNs still requires further 

research to address key limitations. A promising direction 

is the development of hybrid and layered models that 

integrate local node-based detection with global 

correlation and centralized optimization, balancing 

accuracy, and scalability. Another relevant area is 

dynamic adaptability to data changes through incremental 

and online learning. Furthermore, modern techniques for 

modeling the complex correlations in sensor data should 

be explored, along with the development of automated 

parameter selection mechanisms. On a practical level, 

more evaluation in real-world applications, theoretical 

analysis of energy feasibility and scalability, and the 

establishment of standardized benchmarks for objective 

assessment are needed. 
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