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TABLE S1. CHARACTERISTICS OF PROPOSALS FOR OUTLIER DETECTION IN WSNS 

No. Paper Technique Base Algorithm Taxonomy 
Centralized / 

Distributed 

Offline/ 

Online 

Num. 

Vars.1 
Correlations 

Outlier 

Source 

1 [6] DSS with simplified ODT N/D Threshold-based Centralized Online M Attributes 
Events 

and faults 

2 [8] FTAD PCM and Interval Method 
Hybrid (Statistical-based 

+ Threshold-based) 
Distributed Online M Spatiotemporal 

Events 

and faults 

3 [22] 
OCPCC-based detection 

technique 
OCPCC + CCIPCA 

Hybrid (Spectral 

Decomposition-Based + 

Distance-based) 

Distributed 
Offline 

Online 
M Spatial 

Events 

and faults 

4 [21] TSVDD 
SVDD + Toeplitz Random 

Fourier Feature Mapping 
Boundary-based Centralized Offline B Attributes 

Events 

and faults 

5 [17] 

PSEM and PSk-means 

Improved algorithms with 

PSA 

EM and k-means. PSA 

based on Bayesian 

Optimization (BO) 

Clustering-based Centralized Offline B None Faults 

6 [5] CKODT 

KFDA + OCSVM 

classifier (the best among 

5 evaluated) 

Hybrid (Spectral 

Decomposition-Based + 

Classification-based) 

Centralized Online M Spatial 
Events 

and faults 

7 [18] N-STASVDD 
SVDD optimized with 

Core-sets 
Boundary-based Distributed Online M 

Spatiotemporal 

and attribute 
Faults 

8 [20] CBPM 
Copula functions with 

Bayes’ theory 
Statistical-based Distributed Online M Spatiotemporal 

Events 

and faults 

9 [44] OPF classifier 
Optimum-Path Forest 

Clustering 

Hybrid (Graph-based + 

Clustering-based) 
Centralized Offline B Attributes Faults 

10 [39] 
doOCSVM and Sparce 

doOCSVM 
OCSVM Classification-based Distributed Online M None Faults 

11 [45] TOD and SOD 

TOD: Hampel Identifier 

algorithm 

SOD: Gaussian process 

model 

Hybrid (Statistical-based 

+ Graph-based+ 

Threshold-based) 

Distributed Online U 
Spatial and 

temporal 

Events 

and faults 

12 [23] ID-SVDD 

SVDD + Parzen-window 

density + Mahalanobis 

distance 

Boundary-based Centralized Offline M Attributes Faults 

13 [29] DODS 
Bayes classifier and other 

classifiers + MAP concept 
Classification-based Distributed Online M Temporal Faults 

14 [46] iNNE 
KNN + isolation principle 

from Isolation Forest alg. 

Hybrid (Nearest 

Neighbor-based + 

Isolation-based) 

Distributed Online B Spatial Faults 

15 [41] 

ANN-based forecast 

model and 

ANN-based forecast 

optimized model 

Neural Network AI-based Centralized Online U Temporal Faults 

16 [30] 

FDP generates solutions: 

FDPA, FDPC, FDPS, 

FDPK 

AHC optimized with NNB Clustering-based Centralized Offline B Attributes Faults 

17 [40] ST-CE-CKDOT CKDOT + OCSVM Classification-based Distributed Online U 
Spatial and 

temporal 

Events 

and faults 

18 [31] INCODE 
INCODE + Google 

PageRank algorithm 

Hybrid (Consensus-based 

+ Nearest Neighbor-based 

+ Edge Computing) 

Distributed Online U Spatial 
Events 

and faults 

19 [37] 

Omnibus outlier detection 

solution (OODS): 

TWO-MuO, SWO-MuO 

and SWO-UnO 

TACO + LSH Threshold-based Distributed Online U / M 

Spatial, 

temporal, and 

attribute 

Events 

and faults 

20 [36] 

OLWPR based detection 

with a dynamic threshold 

method 

PCA + Linear Weighted 

Projection Regression 

(LWPR) 

Hybrid (Spectral 

Decomposition, 

Statistical, 

Threshold-based) 

Distributed Online M Attributes Faults 

21 [47] DBN-OQSSVM DBN + QSSVM 
Hybrid (AI-based + 

Classification-based) 
Centralized Online M Attributes Faults 

22 [25] LODA 
Adaptive Bayesian 

Network 

Hybrid (Statistical and, 

Classification-based + 

Select features) 

Distributed Online M None Faults 

23 [7] 
Ensemble random forest 

(ERF) 

Random Forest + 

Decision Tree, Naive 

Bayes, and K-NN 

Hybrid 

(Classification-based + 

Statistical-based + 

NN-based) 

Centralized Offline M None Faults 

24 [48] HADF 

Hypergrid-Based Detector 

+ Statistical-based 

detector 

Hybrid (Hypergrid-based 

+ Statistical-based) 
Distributed Online M Attributes Faults 



  

25 [49] 

A mobile edge-cloud 

collaboration outlier 

detection framework for 

WSNs 

FastABOD + f-SVDD 

package (SVDD+ fuzzy 

theory) 

Hybrid (Angle-based + 

Boundary-based + Edge 

Computing-based + 

Cloud-based) 

Distributed Online M Attributes Faults 

26 [42] OFN N/D Nearest Neighbor-based Distributed Offline U/M 
Spatial and 

temporal 

Events 

and faults 

 

27 [50] Nameless 

Algorithms: Coefficient 

correlation, Random 

Forest, Threshold and 

Majority Voting 

Hybrid (Statistical-based 

+ Classification-based + 

Threshold-based) 

Centralized Online M 

Spatial, 

temporal, and 

attribute 

Faults 

(false 

alarms) 

28 [51] CESVM-DR OCSVM + CCIPCA 

Hybrid 

(Classification-based + 

Spectral 

Decomposition-Based) 

Distributed 
Offline 

Online 
M Attributes Faults 

29 [38] MOD N/D Statistical-based Centralized Online M Attributes Faults 

30 [4] Preprocessed PiForest Isolation Forest + PCA 

Hybrid (Isolation and 

Spectral 

Decomposition-Based) 

Distributed Online M Attributes Faults 

31 [28] 

Time-series analysis, 

entropy, and random 

forest-based classification 

Random Forest + 

Time-series analysis and 

entropy technique 

Hybrid 

(Classification-based + 

Time-series analysis and 

the Entropy technique) 

Distributed Online M 
Spatial and 

temporal 
Faults 

32 [43] BS-iForest Improved Isolation Forest Isolation-based Centralized Offline M None Faults 

33 [52] 

GANs + Autoencoder 

neural network with 

Adam optimizer 

N/D 
Hybrid (AI-based + 

Threshold-based) 
Distributed 

Offline 

Online 
B None Faults 

1 Univariate (U), bivariate (B), or multivariate (M). 

TABLE S2. THE FREQUENCY DISTRIBUTION OF PROPOSED WSN OUTLIER DETECTION PROPOSALS 

Taxonomy Freq 

Approach The number of variables Correlations Outlier Source 

D C Offline Online 
Offline/ 

Online 
U B M U/M S T A S/T S/T/A None Faults Events/Faults 

Hybrid 18 13 5 2 13 3 2 3 13  4  7 3 1 3 13 5 

Classification-based 3 3   3  1  2   1  1  1 2 1 

Boundary-based 3 1 2 2 1   1 2    2  1  2 1 

Clustering-based 2  2 2    2     1   1 1 1 

Threshold-based 2 1 1  2    1 1   1  1   2 

Statistical-based 2 1 1  2    2    1 1   1 1 

Nearest 

Neighbor-based 
1 1  1      1    1    1 

Isolation-based 1  1 1     1       1 1  

AI-based 1  1  1  1     1     1  

Total 33 20 13 8 22 3 4 6 21 2 4 2 12 6 3 6 21 12 

Approximate % 100 60.6 39.4 24.2 66.7 9.1 12.1 18.2 63.6 6.1 12.1 6.1 36.4 18.2 9.1 18.2 63.6 36.4 

TABLE S3. PERFORMANCE METRICS AND ANALYSIS OF THE COMPLEXITY OF THE DETECTION PROPOSALS 

No. Paper Taxonomy 
Evaluation 

type 
Software 

Network 

structure 
Metrics Better effectiveness results Efficiency analysis 

1 [6] 
Threshold- 

based 
Testbed N/D Flat ACC 87.54% < ACC <=91.98% 

CPC with real-time dataset = O(1) 

CPC with static dataset = O(n) 

CT = 0.1080s 

2 [8] Hybrid Simulation 
Python 

2.7 
Flat 

TPR 

FNR 

TPR >97% 

FNR <3.7% 

Asymptotic complexity O(2n) in the 

worst case 

3 [22] Hybrid Simulation 
Matlab 

2011b 

Hierarchical 

Cluster-based 

DR 

ACC 

FPR 

FNR 

IBRL Dataset: 

 (DR) using median 99.7% 

 (ACC) using median 98.9% 

 (FPR) using median 2.7% 

CMC = (Ok) 

CPC = (Omd) 

MC = (Omd) 

4 [21] 
Boundary- 

based 
Simulation 

Matlab 

2014a 
N/D 

FPR 

TPR 

ROC 

TPR with IBRL: >97% with GSB: >96% 

FPR with IBRL: <1.88% with GSB: <16.76% 

ROC: Higher efficiency than others 

Less execution time in comparison 

5 [17] 
Clustering- 

based 
Simulation N/D 

Hierarchical 

Cluster-based 

ACC 

PRE 

REC 

PSK-means with Synth. Data: ACC:91.3%; 

REC: 87.3%; PRE: 94.2%. 

PSEM with Synth. Data: ACC:90.4%; 

REC:86.9% PRE:94.0%. 

PSEM with Real Data: ACC:>95% (5% anom); 

ACC: ≈80% (25% anom) 

PSA improved the calculation 

efficiency of OEM in PSEM by 

[73.9%, 86.3%]. Similarly occurs in 

PSK-Means in [51%, 67%]. 

PSEM: CT = O(N3) 

PSK-means: CT = O(N2T) 

6 [5] Hybrid 
Real 

implementation 
N/D 

Hierarchical 

Cluster-based 
ACC ACC: 98% using OCSVM N/D 

7 [18] 
Boundary- 

based 
Simulation 

Matlab + 

PRtools 

and 

Ddtools 

functions 

Hierarchical 

Cluster-based 

FPR 

TPR 

ROC 

AUC 

AUC: 0.9883 

FPR: 3% 

TPR: >85% 

CPC = O(l) 

TC = 1.536 s 

CMC = O(1) on each link. 



  

8 [20] 
Statistical- 

based 
Simulation 

RStudio 

(R 3.2) 

and 

Matlab 

R2016b 

Hierarchical 

Cluster-based 

FPR 

TPR 

ROC 

AUC 

IBRL: 87.83% ≤ AUC  ≤ 93.07%; 

GSB: AUC ≤  97.13% 
N/D 

9 [44] Hybrid Simulation N/D N/D 
ACC 

F1 

ACC > 99% 

F1 > 99% 
N/D 

10 [39] 
Classification

-based 
Simulation 

Matlab 

2016b 
Flat 

FPR 

TPR 

AUC 

F1 

Synthetic dataset: 

FPR 0.00 TPR > 0.98 AUC >99.99% F1 > 0.99 

Real dataset: AUC > 80 in 6 of 7; AUC > 94 in 

3 of 7 

 

N/D 

11 [45] Hybrid 
Numerical 

analysis 
None Flat AUC 

TOD: Outlier detected 3/3 and 16/18 

SOD: 86% ≤ AUC ≤ 95% 
N/D 

12 [23] 
Boundary- 

based 
Simulation Matlab N/D 

TPR 

TNR 

ACC 

GSB Dataset: TPR > 99.42; TNR: 87.5% - 

97.03%; ACC: 99.77% - 99.44% 

Other datasets: TPR: 91.13%; TNR: 96.29%; 

ACC: 91.33% 

CT = 0.37 to 0.38s 

13 [29] 
Classification

-based 
Simulation 

TOSSIM 

tool 

Hierarchical 

Cluster-based 

DAR 

FAR 

DAR: Above 90% in all cases 

FAR: Below 2% in 3 of 4 attributes tested 

N/D merely infers low energy 

consumption. 

14 [46] Hybrid Simulation 
Matlab 

R2016a 

Hierarchical 

Cluster-based 

AUC 

ACC 

DAR 

FAR 

ISSNIP dataset: ACC = 100% related two 

algorithms; ACC: >95 in most cases; 

DR: 96%-100% in most cases; 

FAR: 1.3% at best and 11.6% at worst 

Training stage: TC = O(t𝛹2), MC= 

O(t𝛹) 

Evaluation stage: TC = O(nt𝛹), MC= 

O(nt𝛹) 

15 [41] AI-based 

Simulation and 

Real 

Implementation 

Matlab Flat 
Forecast 

ACC 

Outlier detection as a forecasting problem. For 

ANN model, the mean errors for the training 

and testing processes are 0.0596◦C and 

0.0534◦C, respectively, and the corresponding 

largest absolute error is 0.1862◦C. 

CT for (ANN, optimized ANN): 

Training phase: (1s, 6s), 5000 

temperature records. 

Testing phase: (0.007787s, 

0.009211s) with 2000 temperature 

records. 

16 [30] 
Clustering- 

based 
Simulation N/D N/D 

ROC 

DR 

Synthetic data: Outlier-DR [0.622, 0.80]; AUC 

with [0.78, 0.89]; Mean AUC values for larger 

data: (FDPA, FDPS) = (0.911, 0.929). 

Real data FDPC and FDPS: best DR >0.90; 

AUC better for FDPA, FDPC, FDPS >0.98 

SC = O(n) 

TC = O(n log2 n) 

17 [40] 
Classification

-based 
Simulation 

EPANET 

+ 

Matlab 

Hierarchical 

Cluster-based 

ROC 

ACC 

FPR 

It is not explicitly determined 
MC = O(nd+n) at each node 

CPC = O(k) and O(n) 

18 [31] Hybrid Simulation 

OPNET 

18.0 

modeler 

Hierarchical 

Group and 

community 

based 

PRE 

REC 

F1 

In event detection: REC and PRE >0.97 

In fault detection: REC and PRE >0.97 

F1 > 0.97 

CPC = O(log(d)) + |V|2) 

CMC = O(log(d) 

PC = Low due to the use of edge 

computing and network traffic. 

19 [37] 
Threshold- 

based 
Simulation N/D 

Hierarchical 

Cluster-based 

PRE 

REC 

F1 

TWO-MuO: with IBRL: F1> 0.9 in all 

configurations; with Weather: F1< 0.9 as the 

angle increases. 

SWO-MuO with IBRL and Weather data: F1 

degrades to 0.7 as the angle increases. 

SWO-UnO: IBRL data: F1 < angle 20; Weather 

data: F1 > 0.8 as angle increases. 

Communication costs and energy 

consumption are analyzed. For 

multidimensional, the cost of 

communication decreases and the 

lifetime of the network increases. 

For one-dimensional data, the use of 

unreduced data is better. 

20 [36] Hybrid Simulation Python 
Hierarchical 

Cluster-based 

PE 

RMSE 

ACC 

PRE 

DR 

REC 

F1 

AUC 

 (PE): The lowest in comparison 

 (RMSE): The lowest in comparison 

ACC: >0.9 

PRE: 0.85 

DR: 0.86 

REC: 0.86 

F1: 0.86 

AUC: 0.54 

N/D 

21 [47] Hybrid Simulation 
Matlab 

2017a 
N/D 

ROC 

AUC 
 (AUC): >0.95 

CT = DBN training: ≈0.31s 

CT = DBN testing: ≈0.002s 

22 [25] Hybrid Simulation 
Matlab 

and R 
N/D ACC ACC: 88.9% N/D 

23 [7] Hybrid Simulation 

Python 

3.7.7 with 

Sci-kit 

learn 

0.23. 

N/D 

ACC 

SEN 

SPE 

PRE 

REC 

F1 

GME 

ACC: >0.99 

SEN: >0.99 

SPE: >0.99 

PRE: >0.99 

REC: >0.99 

F1: >0.99 

GME: >0.99 

N/D 

24 [48] Hybrid Simulation Python 
Hierarchical 

Cluster-based 

PRE 

REC 

F1 

PRE, REC, and F1 >0.85 with IBRL and LUCE 

in the detection of outliers due to faults. 

PRE, REC and F1 >0.85 with IBRL and LUCE 

in the detection of constant failures 

PRE, REC, and F1 >0.80 with IBRL and LUCE 

in the detection of noisy faults 

CPC: O(nlogn) 

25 [49] Hybrid Simulation N/D 

Hierarchical 

architecture 

with three 

layers 

ACC ACC: 92% N/D 



  

26 [42] 

Nearest 

Neighbor- 

based 

Simulation Python 
Hierarchical 

Cluster-based 

DR 

FAR 

DR and FAR, 98% and 3.6% on average with 

IBRL and r > 50 

DR and FAR, 100% and 2.0% on average with 

Synthetic1 and r > 50 

DR and FAR, 100% and 0.9% on average with 

Synthetic2 and r > 80 

Classification of errors and events: Regular. 

Only with r >= 90 

ET = With IBRL from 21.3 to 23.7s 

27 [50] Hybrid Simulation 
Python 

and Weka 
Flat ROC N/D N/D 

28 [51] Hybrid Simulation N/D Flat 

DAR 

FAR 

DR 

FNR 

FPR 

ACC 

With GSB dataset:  (DAR): 96.08%;  (FPR): 

1.2%;  (FNR): 3.92%;  (ACC): 98.56% 

With other datasets: DR: 99.1%-100%; DAR: 

78.6%-100%; FPR: 0%-25.8%; FNR 

0%-0.01% 

MC = O(mn+nd) 

CPC = O(P+m2d+dn2) 

CMC = None 

29 [38] 
Statistical- 

based 
Simulation 

OMNET

++ 

Hierarchical 

Cluster-based 

Aggregate

d Data 

Accuracy 

Is considered outlier detection as a step prior to 

data aggregation and is determined the 

effectiveness of the aggregation process. 

N/D 

30 [4] Hybrid 

Simulation and 

Real 

Implementation 

Python N/D AUC 

Compared to other solutions: AUC is not as 

effective as the original iForest. Only in two 

real datasets AUC is > 0.9 

The real implementation was done with a single 

Arduino node equipped with 4 sensors. In 

testing with synthetic data and injected 

anomalies, PiForest achieved an AUC of 0.975 

The estimated memory requirement 

per node is 20.59 KB with k = 2 and 

ntrees=10. 

SC = O(𝛹tb) 

31 [28] Hybrid Simulation 
Matlab 

and R 
Flat ACC 

ACC with IBRL data: 99.1% (with 10% noise) 

The algorithm can detect up to 100% of outliers 

with sigma = 10 and even with 20% noise. 

N/D 

32 [43] 
Isolation- 

based 
Simulation Java N/D 

ACC 

AUC 

AUC with BreastW dataset: 0.9947 

AUC with Campus CRS dataset: 0.989 

ACC with BreastW dataset: 0.9653 

ACC with Campus CRS dataset: 0.9896 

N/D 

33 [52] Hybrid Simulation 

Python 

with 

library 

Pymote 

2.0 

Hierarchical 

Cluster-based 

ACC 

PRE 

REC 

FPR 

F1 

ACC: 94.11% 

REC: 95.81% 

FPR: 22.32% 

PRE: 97.62% 

F1: 96.7% 

N/D. However, the algorithm proves 

to increase the lifetime of the network 

and to be robust related to channel 

faults and faulty communication 

channel distribution. 

TABLE S4. SUMMARY OF ADVANTAGES AND DISADVANTAGES OF OUTLIER DETECTION PROPOSALS 

No. Paper Technique Advantages Disadvantages / Limitations 

1 [6] 
DSS with simplified 

ODT 

Low computational complexity O (1). 

Does not degrade real-time system performance by avoiding 

full dataset scans. 

Improves DSS accuracy by eliminating outliers. 

Sensitive to noisy datasets and multiple values. 

Centralized architecture not very scalable. 

Susceptible to external factors like extreme weather 

conditions. 

Requires proper threshold definition for outlier detection. 

Lower accuracy compared to more complex algorithms. 

2 [8] FTAD 

Fault-tolerant. Capable of detecting events with high node 

failure rates. 

Utilizes spatio-temporal correlation to distinguish between 

events and failures. 

Divides the network into neighborhoods for targeted detection. 

Achieves good performance even with low-density networks. 

Does not account for detection of multiple simultaneous 

events. 

Requires message exchange between neighboring nodes. 

Dependent on accurate estimation of failure rates. 

Does not optimize node energy consumption. 

3 [22] 
OCPCC-based 

detection technique 

Leverages spatial data correlation in nearby neighborhoods to 

improve effectiveness. 

Distributes detection workload across the network for 

enhanced efficiency. 

Adaptable to dynamic environmental changes by allowing 

periodic retraining and updates when necessary. 

Incorporates additional communication overhead for 

transmitting model summaries between nodes and the 

head node. 

High number of false positives. 

4 [21] TSVDD 
Reduces computational complexity. 

Improves stability in low dimensions. 

Need for a representative training dataset. 

Sensitivity to model parameters. 

The use of the Toeplitz matrix to reduce time and space 

complexity in a real application can impact the accuracy 

and efficiency of the algorithm. 

Limited to static data. 

Centralized and offline, not suitable for highly distributed 

WSNs or those requiring real-time detection. 

5 [17] 

PSEM and PSk-means 

Improved algorithms 

with PSA 

Significantly reduces the number of iterations required for 

clustering. 

Improves clustering accuracy by finding better initial points. 

Requires a priori design for efficient Bayesian 

optimization. 

Centralized and offline, not suitable for highly distributed 

WSNs or those requiring real-time detection. 

6 [5] CKODT 

Achieves high classification accuracy. 

Handles non-linear data better when using KFDA. 

More efficient due to dimensionality reduction. 

Requires a labeled training set. 

Combining techniques could increase computational 

complexity. 

7 [18] N-STASVDD 

Considers both spatio-temporal and attribute correlations, 

improving detection performance. 

The use of “core-sets” is effective in reducing computational 

complexity. 

Preprocessing and initialization in N-STASVDD can be 

costly for real-time anomaly detection. 



  

Implements anomaly detection in a distributed manner, 

reducing communication overhead. 

8 [20] CBPM 

Does not require assumptions about data distribution. 

Allows for modeling of multidimensional variables. 

Good performance in AUC and prediction time. 

Requires communication with the base station for model 

training. 

Complexity increases with dimensions. 

Selection of an appropriate threshold required. 

Dependency between captured measurements. 

9 [44] OPF classifier 
Does not require a predefined number of clusters. 

Performs well with non-Gaussian clusters. 

Requires fine-tuning of parameters such as neighborhood 

size and anomaly threshold. 

Does not provide information on performance in WSN 

scenarios. 

10 [39] 
doOCSVM and Sparce 

doOCSVM 

Fully distributed algorithms without the need for a fusion 

center. 

Online processing, reducing memory requirements. 

Good performance in anomaly detection. 

Selection of appropriate parameters for the approximate 

random function and stochastic gradient descent required. 

Does not address the multi-class classification problem. 

Requires single-class normal data for training. 

11 [45] TOD and SOD 
Able to detect both temporal and spatial outliers. 

Computationally simple and suitable for WSNs. 

Difficulty in setting an appropriate detection threshold 

with multivariate data. 

Requires definition and optimization of parameters. 

12 [23] ID-SVDD 

Efficiently maps data points from sparse spaces to high-density 

spaces. 

The use of Mahalanobis distance in density estimation 

improves performance by eliminating the interference of 

correlations between variables. 

Improves outlier detection accuracy compared to SVDD, 

D-SVDD, and DW-SVDD. 

May not be suitable for real-world applications due to its 

centralized approach. 

Higher computational complexity than regular SVDD. 

Requires appropriate selection of hyperparameters for the 

algorithm. 

13 [29] DODS 

Detects outliers in a distributed and autonomous manner at 

each node. 

Does not require neighbor information or inter-node 

communication. 

Can handle multiple types of sensed data. 

Does not consider the contextual or global information of 

the network. 

Requires an offline supervised training phase. 

The use of small intervals in Bayesian classifiers may 

increase the false alarm rate. 

14 [46] iNNE 

Improves detection accuracy and reduces false alarm rates 

compared to other frameworks. 

Reduces resource consumption by using iNNE for the local 

detector. 

The proposed combination method avoids transmitting the 

hyper-sphere structure of local detectors. 

Adapts to dynamic environmental changes using a sliding 

window to update the local detector. 

Requires setting a threshold for outlier detection. 

The size of the sliding window is predefined and fixed. 

15 [41] 

ANN-based forecast 

model and 

ANN-based forecast 

optimized model 

Allows for real-time detection and correction of outliers. 

Does not require prior labeling of normal and abnormal data. 

The optimized ANN model handles large ambient temperature 

changes better. 

Achieves good accuracy in detection. 

Requires initial training with a large amount of data. 

The ANN may overfit the training data. 

Performance depends on sensor distribution and data 

quality. 

High computational complexity due to the use of deep 

neural networks. 

16 [30] 

FDP generates 

solutions: FDPA, 

FDPC, FDPS, FDPK 

Can detect global anomalies without influence from local 

clusters. 

Has lower computational complexity by utilizing data 

structures like quad-tree and kd-tree. 

Is an unsupervised algorithm that does not require training or 

labeled data. 

Adapting to different data distributions may pose a 

challenge. 

Requires appropriate selection of the similarity function in 

the hierarchical clustering process. 

Due to its centralized approach, it could have scalability 

issues in very large WSNs or with high data 

dimensionality. 

17 [40] ST-CE-CKDOT 

Centered ellipsoidal model has better accuracy than spherical 

models. 

Distributed approach reduces computational and 

communication load. 

Uses spatial and temporal correlation to distinguish between 

noise, events, and faulty sensors. 

Useful for monitoring water pipe leaks through WSN. 

Implementation and maintenance of this network can be 

costly and require careful planning. 

Requires information exchange between neighboring 

nodes. 

Needs retraining and updating. 

Parameters must be optimized for the specific problem. 

18 [31] INCODE 

High detection accuracy (98%). 

Low computational and communication complexity when 

operating at the network edge. 

Associates an anomaly degree to provide more information to 

the user. 

Requires community formation and a consensus 

mechanism. 

Depends on the spatial correlation of nodes. 

Omission of temporal correlations could limit its 

effectiveness in certain contexts. 

19 [37] 

Omnibus outlier 

detection solution 

(OODS): TWO-MuO, 

SWO-MuO and 

SWO-UnO 

Allows for explicit and predictable balancing of bandwidth and 

accuracy. 

Supports various similarity measures for defining outliers. 

Operates under different window models (sliding and batch). 

Multidimensional outlier detection. 

Higher complexity in parameter configuration (e.g., 

window size). 

Requires more local processing on the nodes. 

Dependent on the quality of the generated random vectors. 

20 [36] 

OLWPR based 

detection with a 

dynamic threshold 

method 

Good performance in detection rate and error rate. 

Low memory consumption as it does not require storing 

training data. 

Dynamic threshold adaptable to changes. 

Could require a significant amount of computational 

resources and face scalability challenges. 

Requires an offline training phase. 

Unclear how it would perform against new types of 

attacks. 

21 [47] DBN-OQSSVM 

Reduces data dimensionality through DBN. 

OQSSVM allows for quick model training through sorting 

instead of optimization. 

Detection is performed online without the need for retraining. 

Improves accuracy compared to other methods. 

Drastically reduces computational cost. 

Might require significant computational capacity to scale 

to distributed detection. 

Requires a priori estimation of the outlier rate. 

Dependent on the quality of DBN’s dimensionality 

reduction. 



  

22 [25] LODA 

Does not require inter-node communication, saving energy. 

Performs well even with small memory sizes. 

Robust against increases in noise level. 

Requires preprocessing and feature selection. 

Relies on the Bayesian classifier, which has known 

limitations. 

Does not leverage spatiotemporal correlations between 

nodes. 

23 [7] 
Ensemble random 

forest (ERF) 

Utilizes an ensemble of heterogeneous algorithms (Decision 

Tree, Naive Bayes, and KNN) to improve performance. 

Bootstrap sampling reduces variance and improves results. 

Outperforms base algorithms when used separately. 

Higher computational complexity due to the need to train 

multiple models. 

Does not thoroughly analyze scalability to large sensor 

networks. 

24 [48] HADF 

Detects multiple types of anomalies. 

Combines hypergrid-based and statistical analysis detectors to 

improve accuracy. 

Adopts lazy and continuous learning to adapt to data changes. 

Proposes a more robust L1 detection region than existing ones. 

Could have limitations in terms of computational 

complexity and resource requirements. 

Requires longer execution time than simpler methods like 

HGDB. 

Depends on coordination between sensor nodes and 

cluster head. 

Not validated with very large datasets. 

25 [49] 

A mobile edge-cloud 

collaboration outlier 

detection framework 

for WSNs 

Reduces delays and energy consumption by moving intensive 

tasks to edge nodes. 

The FastABOD algorithm improves the scalability of ABOD 

for high-dimensional data. 

The SVDD model with kernel functions performs well for 

nonlinear data. 

Iterative optimization in the cloud improves accuracy. 

Demands periodic updates and optimizations of the 

detection model. 

Requires additional mobile edge nodes. 

Unclear how the movement of edge nodes is coordinated. 

No guarantee on the degree of offloading to edge nodes. 

Improvement in model accuracy is not quantified. 

26 [42] OFN 

Uses spatial and temporal correlation for outlier classification. 

Considers the resource limitations of WSNs. 

Is scalable and shape-independent of the data. 

Classifies outliers into errors or events. 

Requires defining parameters like the number of 

neighbors to consider. 

Potential sensitivity to variations in the density function. 

Unclear how they determine the thresholds for outlier 

detection. 

Does not allow for online outlier detection. 

27 [50] Nameless 
Dynamic thresholds adaptable to each patient and condition. 

Does not require complex distance or classification algorithms. 

Strong dependence on historical data. 

Its centralized approach could limit its scalability. 

Does not detail how to select parameters for detection. 

Does not sufficiently analyze the efficacy and efficiency 

of the proposed technique. 

28 [51] CESVM-DR 

Utilizes OCSVM, which can classify unlabeled data, highly 

useful in WSNs. 

Employs the CESVM formulation of OCSVM that is efficient 

in multivariate data. 

Uses CCIPCA to reduce dimensionality and complexity. 

Achieves good detection accuracy. 

Does not require inter-node communication for detection. 

Requires storing model parameters on each node. 

Reference normal model needs to be updated periodically. 

Performance depends on well-tuned regularization 

parameters, for example, the optimal number of principal 

components when applying the CCIPCA algorithm. 

Does not consider spatial correlation between nodes. 

29 [38] MOD 

Outlier detection prior to aggregation to preserve accuracy. 

Considers correlations among multiple variables. 

Higher accuracy of aggregated data compared to other 

algorithms like FTDA. 

Its centralized architecture may impact scalability and 

effectiveness. 

Requires more complex statistical calculations. 

Consumes more computational resources on sensor nodes. 

Does not consider distributed outlier detection among 

cluster members. 

30 [4] Preprocessed PiForest 

Significantly reduces memory requirements and complexity by 

working with lower-dimensional datasets. 

Effectively handles streaming data. 

Adapts more quickly to data changes, reducing the effect of 

concept drift. 

The use of PCA may affect detection accuracy in datasets 

with complex structures or nonlinear correlations between 

features. 

Slightly inferior performance to conventional iForest in 

some cases due to dimensionality reduction. 

Requires manual tuning of some hyperparameters such as 

sliding window size. 

31 [28] 

Time-series analysis, 

entropy, and random 

forest-based 

classification 

High accuracy in outlier detection. 

Adaptive to varying levels of noise and dynamics. 

Utilizes temporal and spatial correlation. 

High computational cost of random forest on nodes with 

limited resources. 

Does not address the issue of detecting malicious or faulty 

nodes. 

Requires storage of historical data on each node. 

Does not consider temporal correlation between 

neighboring nodes. 

32 [43] BS-iForest 

Improves accuracy and stability compared to traditional 

iForest. 

Initial filtering with box plots reduces randomness. 

Selection of the most accurate trees enhances detection 

capability. 

Joint judgments in the fuzzy area improve performance. 

Higher computational complexity than traditional iForest. 

Requires manual tuning of some parameters. 

Is centralized and offline, which could lead to scalability 

issues. 

33 [52] 

GANs + Autoencoder 

neural network with 

Adam optimizer 

Improves accuracy in outlier detection compared to 

state-of-the-art techniques. 

Extends the network lifespan by discarding erroneous data. 

Robust against communication channel failures. 

Requires periodic training of autoencoders, which 

consumes computational and communication resources. 

Does not resolve ambiguity in detection when multiple 

nearby sensors generate abnormal data. 

 
 


