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Abstract—Sketch-Based Image Retrieval (SBIR) is widely 

used in animation, e-commerce, and security. In these real-

world applications, the classes of retrieval may be very 

different from the training classes, making it a zero-shot 

SBIR problem. Most methods in the literature resort to 

bridging the semantic gap between the sketch and image 

domains by learning a common space with a pre-trained 

model on a large dataset as the base network, and then fine-

tuning on the target SBIR datasets. In this process, the 

acquired knowledge of the pre-trained model may be lost, 

resulting in performance degradation. To tackle this problem, 

we propose a teacher-student network architecture, which 

consists of a teacher network using the pre-trained model and 

a student network whose output is guided by the teacher 

network. Instead of introducing supplementary semantics in 

the teacher network, we adopt a more powerful pre-trained 

model as the teacher network and further enhance its 

discriminative capability by adding a hard-coded margin 

based on the prediction probability. The student network is 

then fine-tuned by using the teacher network’s output as the 

learning target. Experiments on two benchmark datasets 

show that the proposed approach outperforms the state-of-

the-art methods by more than 10%, which verifies that the 

prior knowledge can be better preserved by a good teacher 

network, which can make the student network good too.  

Keywords—Sketch-Based Image Retrieval (SBIR), zero-shot, 

knowledge preservation 

I. INTRODUCTION

Sketch-Based Image Retrieval (SBIR) is widely used in 

many real-world applications, such as animation, E-

commerce, and security [1]. It allows searching for 

interesting images with a free-hand drawing as the input 

instead of conventional text and images. 

Given a sketch query, the aim of an SBIR task is to 

retrieve images in the target set which have similar 

semantics to the query. To this end, a training set with 

labeled sketches and images is needed for learning the 

semantic relationship across the sketch and image domains. 

Generally, the training set and target set in an SBIR task 

share the common class set. That is, the classes of the 

retrieved images have appeared in the training set [2–4]. 

However, in real-world applications, it is often difficult to 

cover all the categories in the training set. When the 

categories in the target set are not in the training set, the 

retrieval has to rely on a single sketch given the trained 

model, leading to a Zero-Shot SBIR (ZS-SBIR) task. 

Fig.  1 shows the difference between the SBIR and ZS-

SBIR tasks. One of the solutions to the ZS-SBIR problem 

is to learn a common embedding space of the sketch and 

image domains with a pre-trained model on a large dataset 

as the base network, and then to fine-tune the target 

datasets [5, 6]. In this way, the domain gap can be bridged 

by embedding cross-modal information in an intermediate 

space. However, in the model fine-tuning process, the prior 

knowledge acquired in the pre-trained model may be lost, 

resulting in performance degeneration on the target 

datasets [7]. 

Fig. 1.The difference between SBIR and ZS-SBIR. Images retrieved in 

the SBIR task are in the same class set as the training set. Whereas in the 

ZS-SBIR, the retrieved classes are unseen in the training set. 

To address this problem, Liu et al. [7] proposed to use a 

knowledge distillation [8] based approach to preserve prior 

knowledge from the pre-trained model by the student-Manuscript received September 22, 2023; revised October 12, 2023; 

accepted October 31, 2023; published March 14, 2024. 
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teacher learning framework. In this framework, the student 

model not only learns the embedding of the sketch and 

image domains, but also learns prior knowledge from the 

teacher, which is a pre-trained model on ImageNet [9]. 

WordNet [10] is employed in the student-teacher learning 

process to provide semantic guidance. 

Inspired by the idea of knowledge distillation [7], we 

propose a novel approach to alleviate the performance 

degeneration on ZS-SBIR tasks by concentrating on the 

discriminative ability of the model under the student-

teacher learning framework. Specifically, the 

discriminative ability is reflected in the prediction 

probability distribution of the final model output. Higher 

prediction probability means higher discriminative ability 

on the target dataset. This is achieved through two phases. 

In the first phase, we adopt a more powerful pre-trained 

model as the base to improve the discriminative ability. 

Empirically, a stronger teacher can not always improve the 

ability of its students. But if the student and the teacher 

have similar structures, the student can learn more from the 

teacher. That is, more prior knowledge can be transferred 

from the teacher to the student [8, 11, 12]. To this end, our 

student model is designed to be the same as the pre-trained 

model except at the output layer. In the second phase, we 

enhance the output probability distribution by adding a 

hard-coded margin to improve the discriminative ability. 

The enhanced probability distribution then is used to guide 

the training of the student. 

We conducted experiments on two benchmark datasets, 

the Sketchy Extended [2, 13] and TU-Berlin  

Extended [14, 15]. Our approach outperforms the State-of-

the-Art (SOTA) methods by more than 10%, which 

verifies its effectiveness. 

The contributions of this paper are threefold. Firstly, we 

propose a novel approach based on knowledge distillation 

to preserve knowledge by improving the discriminative 

ability of the trained model. Secondly, the discriminative 

ability is improved by adopting a more powerful teacher 

model and by adding hard-coded margins at the output 

probability distribution of the teacher. Thirdly, we conduct 

comprehensive experiments on benchmark datasets, which 

verifies that our method can improve the retrieval 

performance by a large margin compared to the SOTA 

methods. 

The rest of our paper is organized as follows. We 

introduce the related work in Section II. Section III 

describes the details of the proposed method. The 

experiments and analysis are presented in Section IV. 

Finally, we conclude our paper in Section V. 

II. RELATED WORK 

The tasks of image retrieval through sketches can be 

divided into three categories: Sketch-Based Image 

Retrieval (SBIR), Fine-Grained Sketch-Based Image 

Retrieval (FG-SBIR) and Zero-Shot Sketch-Based Image 

Retrieval (ZS-SBIR). 

SBIR is a category-level search. It can only retrieve 

natural images in the same category as the sketch. Besides 

traditional SBIR methods, deep learning methods [16, 17] 

better solve this problem by using common ranking loss 

methods. 

FG-SBIR is an instance-level search. Its goal is to 

capture the fine-grained similarities between sketches and 

images, and find the exact matching images for the input 

sketch [13, 16]. FG-SBIR is a more challenging task 

compared with the SBIR task which requires only category 

level retrieval. Better feature extraction methods are 

needed to tackle this problem. Therefore, FG-SBIR tasks 

tend to use deep learning methods [17–19]. 

ZS-SBIR is a combination of the zero-shot task [20] and 

the SBIR task [21]. The task is challenging in two aspects. 

First, the categories in the retrieval phase may not be in the 

training phase, making it similar to the general zero-shot 

setting. Second, knowledge learned in the model has to 

cover both sketch and image domains, which is more 

challenging as there may be a large domain gap between 

sketches and images. Shen et al. [5] first raised this 

problem in 2018 and used a generative hash-based 

approach to model category semantics.  

Yelamarthi et al. [21] also proposed a generative model 

using the variational and adversarial autoencoders. As the 

generative models need sketches and images to be aligned 

as pairs, which is not always feasible, more researchers 

resorted to employing additional semantic information to 

guide the training process on the fine-tuned large  

model [6, 22, 23]. However, as pointed out by  

Liu et al. [7], catastrophic forgetting [24] occurs in the 

process of fine-tuning large pre-trained model, which can 

cause the performance degeneration. A knowledge 

distillation [8] based method is then adopted by the 

student-teacher learning framework using auxiliary 

semantics [7]. 

III. THE PROPOSED APPROACH 

In this section, we describe the details of our knowledge 

distillation-based approach. We first give the formal 

definition of the zero-shot sketch-based image retrieval 

task. Then we link the task to knowledge distillation. 

The architecture of the proposed network is shown in 

Fig. 2. The sketch and image inputs are fed into two 

branches. The first branch is the student network which 

uses a CSE-ResNeXt-101 [25, 26] architecture. It learns 

from the true labels and predicts categorical probabilities 

by the benchmark loss which is the cross entropy between 

predicted and true labels of the original dataset. The 

second branch is the teacher network, which is pre-trained 

on ImageNet [9] with the same architecture as the student. 

The motivation that we choose the same model 

architecture for both the teacher and the student is that the 

student will get more knowledge from the teacher as 

suggested in [8, 11, 12]. That is, the student with the same 

teacher architecture can learn more knowledge than that of 

with different student-teacher architectures. Besides, to 

preserve more knowledge, we use a hard-coded margin to 

enhance the discriminative ability of the teacher output. In 

other words, we enhance the guidance of the teacher, 

making the knowledge transfer more fluent. Specifically, 

the outputs of the student network are compared with the 

enhanced soft labels of the teacher network by the 
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ImageNet loss to predict the ImageNet labels on the 

training set. 

 

 

Fig. 2. The proposed network architecture. “Only Image” means we train 

only images on the Teacher Network, whereas we train both sketches and 

images on the Student Network. 

A. Problem Formulation 

A ZS-SBIR problem involves a source domain and a 

target domain. The source domain is represented by 𝑂𝑠 =
{Ps, 𝑆𝑠}, where Ps is an image set and 𝑆𝑠 is a sketch set, 

respectively. Similarly, the target domain is represented by 

𝑂𝑇 = {PT, 𝑆𝑇}, containing an image set PT and a sketch set 

𝑆𝑇. Let the training set of images in the source domain be 

𝑃𝑆 = {(𝑝𝑖 , 𝑦𝑖)|𝑦𝑖 ∈ 𝐶𝑠}
𝑖=1
𝑛1 (1) 

and the training set of sketches be 

𝑆𝑆 = {(𝑠𝑗, 𝑧𝑗)|𝑧𝑗 ∈ 𝐶𝑠}
𝑗=1

𝑛2 (2) 

where 𝑝𝑖 is the 𝑖-th image in the training set, 𝑦𝑖 is the label 

of 𝑝𝑖 , 𝑠𝑗 is the 𝑗-th sketch in the training set, 𝑧𝑗 is the label 

of 𝑠𝑗, and 𝐶𝑠 is a set of classes in the source domain. 𝑛1 

and 𝑛2  are the numbers of images and sketches in the 

training set, respectively. 

In the same way, the testing set of images is 

𝑃𝑇 = {(𝑝𝑖
′, 𝑦𝑖

′)|𝑦𝑖
′ ∈ 𝐶𝑇}

𝑖=1
𝑚1 (3) 

and the testing set of sketches is 

𝑆𝑇 = {(𝑠𝑗
′, 𝑧𝑗

′)|𝑧𝑗
′ ∈ 𝐶𝑇}

𝑗=1

𝑚2 (4) 

where 𝑝𝑖
′, 𝑦𝑖

′, 𝑠𝑗
′, 𝐶𝑇 , 𝑚1 and 𝑚2 have the same meaning 

as corresponding variables in 𝑂𝑠, but for the testing set 𝑂𝑇. 

In the zero-shot setting 

𝐶𝑠 ∩ 𝐶𝑇 = ∅ (5) 

With the above formulation, we define the ZS-SBIR 

problem as follows. Given a query sample 𝑠𝑗
′ in the testing 

sketch set, the aim is to find the best matching 𝑝𝑖
′ in the 

testing image set, satisfying the constraint 𝑧𝑗
′ = 𝑦𝑖

′. That is, 

the sketch and its corresponding image should be in the 

same class. This is a typical classification problem and we 

can train a deep network to get the discriminative features. 

B. Feature Embedding 

A classification system normally consists of a feature 

embedding module and a classifier module. In deep 

learning, the end-to-end scheme integrates these two 

modules in a whole network. For the feature embedding 

module, we follow [7], and adopt the CSE-ResNeXt  

model [25], which is based on the ResNeXt [27], as the 

base network. The CSE-ResNeXt model puts the data from 

different domains under a single framework by adding a 

symbol to represent which domain the data come from. 

This allows training to pay more attention to the common 

space of the sketch and image domains in order to bridge 

the gap between two modalities. 

Let the CSE-ResNeXt model be ℎ(∙,∙, 𝜃ℎ). The sketch 

domain will be 𝑓(∙, 𝜃𝑓) = ℎ(∙, 𝑖𝑛𝑝𝑢𝑡𝑑𝑜𝑚𝑎𝑖𝑛 = 1, 𝜃ℎ), and 

the image domain will be 𝑓(∙, 𝜃𝑓) = ℎ(∙, 𝑖𝑛𝑝𝑢𝑡𝑑𝑜𝑚𝑎𝑖𝑛 =

0, 𝜃ℎ) . With the CSE-ResNeXt model at hand, source 

features 𝑥𝑖 can be embedded at the full-connected layers in 

𝑀 dimension. 

C. Learning to Objectives 

There are two learning objectives in our problem. One 

is the conventional objective in SBIR, i.e., how to learn the 

common space of the sketch and image modalities to 

bridge the domain gap. This is the benchmark classifier. 

The other is how to preserve pre-trained knowledge on the 

large fine-tuned model. This is the knowledge preserving 

classifier. 

1) Learning in the common space 

The aim to learn features in the common space is to 

make the examples of sketches and images in the same 

class close to each other. This is a classification problem. 

We design the learning objective by adding a SoftMax 

layer at the end of feature embedding layers as follows: 

𝑦�̂� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤𝑇𝑥𝑖 + 𝑏) (6) 

where 𝑦�̂� ∈ R
|𝐶𝑠|is the predicted labels in the source image 

domain. 𝑤𝑇 and b are weight and bias. 

The loss of the benchmark classifier is defined as the 

cross entropy between the predicted and true labels. 

𝐿𝐵 =
1

𝑁
∑−

𝑖

log
exp(𝑤𝑦𝑖

𝑇 𝑥𝑖 + 𝑏𝑦𝑖)

∑ exp(𝑤𝑘
𝑇𝑥𝑘 + 𝑏𝑘)𝑘𝜖𝐶𝑠

(7) 

where 𝑤𝑦𝑖
𝑇  and 𝑏𝑦𝑖  are the weight and bias of the 

benchmark classifier. 𝑁 is the size of the training set. 

2) Learning for knowledge preservation 

To solve the knowledge preservation problem, we adopt 

a teacher-student network architecture. As the prior 

knowledge is in the pre-trained model, we use the pre-

trained ImageNet model as the teacher network, guiding 

the student network by predicting the same input fed to the 

student network. To observe the ability of the knowledge 

preservation, the classifier is designed to predict the labels 

of the original ImageNet domain. That is, the student 

network is to learn the ImageNet labels for the image 

inputs. This is also a classification problem: 
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𝑦�̃� = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑣𝑇𝑥𝑖 + 𝑐) (8) 

where 𝑦�̃� ∈ R|𝐶𝑂|  is the predicted labels in the original 

ImageNet domain. 𝑣𝑇 and 𝑐 are weight and bias 

respectively for the ImageNet classifier. 

Similar to the benchmark classifier in Section III.C.1, 

we also use the cross-entropy loss as the learning objective. 

However, the true labels of the ImageNet are not available 

as the sketches and images in the training set are not 

annotated according to the ImageNet. Therefore, the 

teacher network’s prediction is used as the soft label 

indicator to guide the training of the student network. The 

cross-entropy loss is 

𝐿𝑇 =
1

𝑛1
∑−

𝑖

𝑞𝑖
𝑡 log

exp(𝑣𝑦𝑖
𝑇 𝑥𝑖 + 𝑐𝑦𝑖)

∑ exp(𝑣𝑘
𝑇𝑥𝑘 + 𝑐𝑘)𝑘𝜖𝐶𝑜

(9) 

where 𝑞𝑖
𝑡 is the predicted probability vector for an image 

sample by the teacher network, i.e., the pre-trained 

ImageNet model. In this way, the knowledge acquired by 

the teacher network can be transferred to the student 

network by minimizing the cross-entropy of soft ImageNet 

labels and predicted ImageNet labels. 

3) A stronger teacher prediction model 

Using the pre-trained ImageNet model as the teacher 

network leads to a question: which pre-trained ImageNet 

model should be used to guide the training? Liu et al. [7] 

used the CSE-ResNet-50 as the teacher network. This 

model has a top-1 accuracy of 76.71% [26]. We make the 

hypnosis that the more prior knowledge in the pre-trained 

model, the more can be preserved in the student network 

after fine-tuning. Here, the amount of prior knowledge can 

be indicated by the top-1 accuracy on the ImageNet. We 

use the SE-ResNet-101 [26] and SE-ResNeXt-101 [27], 

which have the top-1 accuracy of 77.62% and 79.30%, as 

the stronger teacher networks. In Section IV.E, we show 

that the stronger teacher leads to a better knowledge 

preservation ability in the student network, as it has more 

knowledge to preserve under the same degeneration 

condition. 

4) Discriminative-aware prediction 

Apart from a stronger teacher, we further improve the 

knowledge preservation ability by introducing more 

discriminative ability. Liu et al. [7] used additional 

semantics as the complementary for the teacher’s 

prediction. Motivated by the idea of enhancing 

discriminative ability [29], we propose a new method to 

operate directly on the predicted vector from the ImageNet. 

The predicted output of the teacher network is essentially 

the possibility that a sample belonging to a specific class. 

Intuitively, the probability can be viewed as the inverse 

distance to the class center. The samples in the same class 

are supposed to be close to the class center, and far from 

the other class centers. In the probability vector, this is 

represented by a higher probability for the same class. 

Cui et al. [1] pointed out that higher discriminative 

ability can push samples closer to the ones in the same 

 
1We actually found 204,070 images in the current version. 

class, and farther from the ones in other classes. Therefore, 

we propose to improve the discriminative ability of the 

classifier by increasing the predicted probability vector 

with a hard-coded margin. Specifically, we increase the 

maximum probability of the predicted vector by a positive 

margin at the factor of 𝑎, and decrease other entries of the 

predicted vector by a negative margin at a factor of −𝑏. 

Given the teacher’s probability vector 

𝑞𝑖
𝑡 = [𝑞1

𝑡 , ⋯ , 𝑞𝑘
𝑡 , ⋯ , 𝑞1000

𝑡 ]𝑇 (10) 

the enhanced probability vector is 

�̃�𝑖
𝑡 = [𝑞1

𝑡 ∙ (1 − 𝑏),⋯ , 𝑞𝑘
𝑡 ∙ (1 + 𝑎),⋯ , 𝑞1000

𝑡 ∙ (1 − 𝑏)]𝑇 (11) 

After the enhanced probability vector is obtained, the 

cross-entropy loss of the student network becomes the 

discriminative vector loss 

𝐿𝐷 =
1

𝑛1
∑−

𝑖

�̃�𝑖
𝑡 log

exp(𝑣𝑦𝑖
𝑇 𝑥𝑖 + 𝑐𝑦𝑖)

∑ exp(𝑣𝑘
𝑇𝑥𝑘 + 𝑐𝑘)𝑘𝜖𝐶𝑜

(12) 

where 𝑞𝑖
𝑡 in Eq. (9) is replaced by �̃�𝑖

𝑡. 

D. The Final Objective 

The total loss of the whole student network 𝐿 is the 

weighted sum of the benchmark loss 𝐿𝐵 and the enhanced 

discriminative vector loss 𝐿𝐷: 

𝐿 = 𝐿𝐵 +𝜆𝐷𝐿𝐷 (13) 

With the total loss at hand, the whole network can be 

trained by minimizing the total loss of the network to 

produce a discriminative model. 

IV. EXPERIMENTS 

A. Experimental Settings 

We conducted experiments on two benchmark datasets, 

the Sketchy Extended [2, 13] and TU-Berlin  

Extended [5, 14]. 

The original Sketchy dataset [2] was collected by 

sketching the image objects. It consists of 12,500 images 

and 75,471 sketches distributed in 125 classes. The images 

and sketches are paired well. Liu et al. [13] collected 

another 60,502 natural images to extend the original 

dataset, forming a total number of 73,002 images. 

Examples of the dataset are shown in Fig. 3(a). 

The TU-Berlin dataset [14] contains 20,000 sketches in 

250 categories, with 80 sketches for each category. The 

extended version [15] added real images from ImageNet 

and Google Image search. The total collected images are 

191,067 real images, and by average 764 images per 

category. Liu et al. [13] also extended it with 204,489 

images1. Some examples are shown in Fig. 3(b). Compared 

to the Sketchy Extended dataset, the sketches in the TU-

Berlin Extended dataset are more abstract with fewer 

strokes, making it a more challenging dataset. 
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(a) 

 
(b) 

Fig. 3. Some examples from Sketchy Extended and TU-Berlin Extended 

datasets. (a) The Sketchy Extended; (b) The TU-Berlin Extended. 

In our experiments, we followed the dataset split 

scheme from [5]. For the Sketchy Extended dataset, we 

used 100 classes for training and 25 classes for testing. We 

refer it as Split 1. As there may be duplicated classes in 

both training set and testing set, we also followed the 

settings from Yelamarthi et al. [21], where 104 classes 

were used for training, and the rest 21 classes were used 

for testing. This can make sure there are no overlapping 

classes in ImageNet and Sketchy Extended, making it a 

real zero-shot SBIR problem. We refer it as Split 2. For 

TU-Berlin Extended dataset, we used 30 and 120 classes 

for training and for testing respectively [5]. 

We evaluated the performance using mean average 

precision and precision on the top 𝑁 retrieval examples, 

i.e., mAP@N and Precision@N. If the label of the 

retrieved image is the same as the query sketch, the 

retrieval is regarded as a correct query. 

B. Implementation Details 

We implemented our method using PyTorch [22] under 

Ubuntu 16.04 64-bit and CUDA 10.0. All experiments 

were run on a server with two Nvidia Tesla V100 cards. 

Each card has 32G memory. 

We used Adam optimizer with 𝛽1= 0.9, 𝛽2 = 0.999, and 

the loss weight 𝜆 = 0.0005. The batch size was 40, and the 

learning rate was set to 0.0001. The weight decay was 

510−4. Each of the input sketches and images was resized 

to 224224. To feed more examples to the deep neural 

network, we did data augmentation. We applied affine 

transform to images where the transformation is 

determined by a random generator at the probability of 

70% We also normalized each image before training by 

subtracting the mean and standard deviation to eliminate 

the effect of the variance of light conditions. 

On the Sketchy Extended dataset, it took about 11 hours 

for 20 epochs when running on two GPUs. Each batch took 

about 0.75 s. On testing, it took about 10 minutes, i.e., 2.21 

microseconds per sample. We trained the model on the 

TU-Berlin Extended dataset using two GPUs in parallel, 

taking about 16 h for 20 epochs, i.e., each batch took 

0.75  s. The testing took about 5 min, and 4.47 ms per 

sample. 

C. Comparison with the State-of-the-Art Methods 

We compared our proposed method with the existing 

methods including ZSIH [5], GZS-Auto [29],  

GZS-VAE [29], SEM-PYPC [23], CSDB [30],  

OCEAN [31], PCSN [32], SAKE [7], AMDReg [33], on 

the Sketchy Extended Split 1 and TU-Berlin Extended 

datasets. Most of them are generative models. Specifically, 

ZSIH [5] is a zero-shot image hashing approach for 

generative hashing model. GZS-Auto [29] and  

GZS-VAE [29] are also generative models with different 

generators. SEM-PYPC [22] employs the idea of 

adversarial learning to train the model. CSDB [30] helps 

retrieval by generating image correspondence in the guide 

of image style. OCEAN [31] is an adversarial learning 

model in the dual learning framework. PCSN [32] is a 

cross-modal approach with feature alignment. SAKE [7] is 

the knowledge preserving model with auxiliary semantics. 

AMDReg [33] is an embedding framework under 

imbalanced conditions. 

1) Results on sketchy extended split 1 

As shown in Table I, our proposed method outperforms 

the state-of-the-art methods by at least 11.8% on the 

mAP@all for the Sketchy Extended Split 1. Especially, our 

method improves by a large margin of 12.7% compared to 

SAKE [7] which is the state-of-the-art knowledge 

distillation-based method for ZS-SBIR. Note that, methods 

concentrating on the feature embedding, such as  

PCSN [32], SAKE [7], AMDReg [33], are generally better 

than generative models [6, 8, 25, 36] in Table I.  

TABLE I. PERFORMANCE COMPARISON WITH ALTERNATIVE APPROACHES 

Method Dimension 
Sketchy Extended Split 1 TU-Berlin Extended 

mAP@all Precision@100 mAP@all Precision@100 

ZSIH [5] 64 0.254 0.340 0.220 0.291 

GZS-Auto [30] 2048 0.253 0.305 0.187 0.281 

GZS-VAE [30] 2048 0.289 0.358 0.238 0.334 

SEM-PYPC [22] 64 0.349 0.463 0.297 0.426 

CSDB [31] - 0.375 0.484 0.254 0.355 

OCEAN [32] 512 0.462 0.590 0.333 0.467 

PCSN [33] - 0.523 0.616 0.424 0.517 

SAKE [7] 512 0.547 0.692 0.475 0.599 

AMDReg [34] 512 0.551 0.715 0.447 0.574 

Ours 512 0.669 0.768 0.544 0.628 
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Our approach is basically a feature embedding-based 

method, as improving the discriminative ability of the 

classifier is essentially the learning of discriminative 

feature embedding in the common space. Additionally, our 

method is based on the knowledge distillation which can 

transfer more knowledge to the target model making our 

model better than the existing models. 

2) Results on TU-Berlin Extended dataset 

Regarding the TU-Berlin Extended dataset, our method 

beats all other methods in Table I at both mAP@all and 

Precision@100. The improvement at mAP@all is 6.9% 

compared to the state-of-the-art method SAKE [7]. This 

improvement is less than that of on the Sketchy Extended 

Split 1 dataset. The reason may be that TU-Berlin 

Extended is more difficult than Sketchy Extended. The 

categories in TU-Berlin Extended are not totally 

independent. One category may be a generalization of 

another category, e.g., tree v.s. palm tree. As mentioned in 

Section IV.A, sketches in TU-Berlin Extended have fewer 

strokes to describe objects leading to more unambiguous 

when matching with images. The performance on existing 

methods in Table I also verifies this. None of them has a 

better mAP@all on TU-Berlin Extended than Sketchy 

Extended. Our approach performs best among them, which 

verifies the effectiveness of our proposed discriminative 

enhancement framework. 

As Sketchy Extended Split 1 is not a truly ZS-SBIR 

dataset, we also ran experiments on the Sketchy Extended 

Split 2 dataset. The competitors are CAAE [21],  

 

CVAE [21], CSDB [30], Dooble2Search [6], SAKE [7], 

and SketchGCN [35]. Except for CSDB [30] and  

SAKE [7] which are the same as that of on Sketchy 

Extended Split 1, these methods are only used in true ZS-

SBIR tasks. CAAE [21] and CVAE [22] are conditional 

generative models with variational autoencoders and 

adversarial autoencoders. Dooble2Search [6] employs 

multiple loss functions to model both the category 

semantics and cross-modal gap. SketchGCN [35] is a 

graph convolutional network based model. 

3) Results on sketchy extended split 2 

We compared mAP@all and Precision@100 in the 

same way as Sketchy Extended Split 1. As some of the 

methods only reported their results on mAP@200 and 

Precision@200, we also conducted experiments on these 

settings. The results are shown in Table II. It can be seen 

that our method outperforms the existing ones by a large 

margin. The only exception is SketchGCN [35] on 

mAP@200, in which our method is slightly lower. The 

reason may be that our method retrieves most best-match 

examples at the top 100, leaving the least mismatched 

examples lower score after that. Note that SAKE [7] which 

is a knowledge distillation-based method outperforms 

other generative models [21, 31] and multiple loss  

method [6]. Our approach outperforms SAKE [7] by a 

little bit at mAP@200. This verifies that the knowledge 

distillation is a better framework for the ZS-SBIR task. 

And our discriminative enhancement scheme is a better 

alternative under this framework. 

TABLE II. RESULTS ON SKETCHY EXTENDED SPLIT 2 (21 CLASSES) 

Method Dimension mAP@all Precision@100 mAP@200 Precision@200 

CAAE [21] 4096 - - 0.156 0.260 

CVAE [21] 4096 - - 0.225 0.333 

CSDB [30] - - - 0.358 0.400 

Doodle [6] 64 0.369 - 0.461 0.370 

SAKE [7] 512 - - 0.497 0.598 

SketchGCN [35] 2048 0.382 0.538 0.568 0.487 

Ours 512 0.536 0.639 0.508 0.604 

 

D. Discussion on the Parameters 

To measure the influence of the hard-coded margins for 

different values, we conducted experiments on the Sketchy 

Extended Split 1 dataset as [7]. As shown in Table III, 

With the positive margin 𝑎 increasing, the mAP first rises 

and then drops. It is also held for the negative margin 𝑏. 

The reason is that the positive margin represents the intra-

class similarity or inverse distance. Increasing the margin 

means making the example close to the class center, which 

makes the class more compact and improves the 

performance. On the other hand, increasing the negative 

margin is equivalent to making the example far from the 

class center, which results in the more intra-class distance. 

This can improve performance initially. But as the 

example is pushed too far to the region of class, a false 

prediction will be made, which decreases the performance. 

It is important to choose a proper positive and negative 

margin pair. Empirically, from the results of our 

experiments, we can see that a small margin is enough for 

the performance improvement, i.e., we get the best result 

at (𝑎 = 0.1, 𝑏 = 0.01) margin pair. We also conducted the 

extreme condition that the margin exceeds its ranges, i.e., 

𝑎 = 1. The results show that the performance drops a lot at 

all the negative margin values. The reason is that the 

examples are pushed far beyond their class regions. This 

also implies that the output probability distribution of the 

pre-trained model contains rich information of prior 

knowledge. Our method can persevere more knowledge 

from the pre-trained model. 

TABLE III. MAP@ALL FOR DIFFERENT HARD-CODED MARGIN 

VALUES. 𝑎 MEANS POSITIVE MARGIN, 𝑏 MEANS NEGATIVE MARGIN 

a 
b 

0 0.01 0.03 1 

0 0.651 0.651 0.656 0.648 

0.1 0.658 0.669 0.660 0.647 

0.3 0.656 0.662 0.654 0.648 

1 0.646 0.620 0.627 0.641 

 

We also conducted experiments on 𝜆𝐷, which controls 

the balance of the benchmark loss and the discriminative 

loss. The results are in Table IV. It can be noted that as 𝜆𝐷 
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becomes larger but not too large, the result becomes better. 

This can be explained as the discriminative component has 

more influence on the final decision of the whole model.  

TABLE IV. MAP@ALL AND P@100 FOR DIFFERENT 𝜆𝐷 VALUES 

𝝀𝑫 map@all P@100 

0 0.485 0.637 

0.1 0.518 0.665 

0.3 0.588 0.721 

1 0.669 0.768 

3 0.662 0.747 

 

When it becomes too large, it will make the benchmark 

and discriminative loss unbalanced, which leads to 

performance decrease. 

E. Ablation Study 

To analyze how much contribution the stronger teacher 

network makes towards the final prediction precision, we 

conducted an ablation analysis. Firstly, we only used the 

student model. As shown in Table V, the performance is 

the worst without any teacher information. After adding 

teacher information, the performance increases 

significantly. It implies that the teacher’s information is 

useful for the knowledge preservation. We then added the 

discriminative enhancement module, which further 

improved the performance. This verifies that our 

enhancement is effective. Additionally, we tested teachers 

using CSE-ResNet-50 [26], CSE-ResNet-101 [26], and 

CSE-ResNeXt-101 [25, 36]. Table V shows that the 

discriminative capability of the student model follows that 

of the teacher model. This proves that a good teacher 

makes a good student. 

TABLE V. ABLATION ON THE SKETCHY EXTENDED DATASET FOR 

MAP@ALL. CSER, SER, CSERN AND SEERN STAND FOR CSE-RESNET, 

SE- RESNET, CSE-RESNEXT, AND SE-RESNEXT, RESPECTIVELY 

Student Teacher 𝑳𝑩 𝑳𝑩 + 𝑳𝑻 𝑳𝑩 + 𝑳𝑫 

CSER-50 SER-50 0.423 0.544 0.550 

CSER-101 CSER-101 0.431 0.561 0.574 

CSERN-101 SERN-101 0.485 0.651 0.669 

 

F. Qualitative Analysis 

We plot some retrieval results with distance values 

obtained on the TU-Berline Extended dataset in Fig. 4. 

 

 

Fig. 4. Examples of retrieved result of some sketches from the TU-

Berline Extended dataset. 

It can be seen that most of the images are in the same 

category as the query sketch. Some misclassified images 

are shown with a red box. The first four rows show the 

correct retrievals, and the bottom two rows show the 

retrievals with some errors. It can be observed that the 

correct ones have lower distance values, i.e., under 0.9. 

The false predictions have larger distances. Although 

incorrect, the misclassified images are very similar to the 

query, even they are not in the same class. For instance, the 

box with a cross sign looks similar to the Wind turbine. 

V. CONCLUSION 

In this paper, we have introduced a novel approach for 

zero-shot sketch-based image retrieval. In our approach, 

knowledge preservation plays an important role in the 

classification, which is implemented via a student-teacher 

network structure based on knowledge distillation. The 

stronger teacher was used to increase the amount of 

knowledge transfer. Moreover, a discriminative ability 

enhancement scheme was proposed to further improve the 

performance. We conducted experiments on two 

benchmark datasets, and showed the effectiveness of our 

method. In the future, we will try to use the GAN 

(generative adversarial network) to better bridge the cross-

domain gap. 
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