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Abstract—Brain Magnetic Resonance Imaging (MRI) is a 

crucial diagnostic tool in neuroimaging that provides 

valuable insights into various neurological disorders. 

Accurate classification of brain MRI images is vital in aiding 

medical professionals in diagnosis and treatment planning. 

The multiclass classification of brain MRI images has 

significant implications in clinical practice. Accurate 

classification can aid in detecting and characterizing various 

brain abnormalities, including tumors, haemorrhages, and 

neurological disorders. Our suggested strategy can help 

doctors make prompt and accurate diagnoses by automating 

the classification process and improving patient care and 

results. This study uses the two standard datasets, Brats and 

Sartaj, to propose a thorough method for multiclass 

classification of brain MRI utilizing Convolutional Neural 

Network (CNN), VGG19, and the Convolutional Neural 

Network-Support Vector Machines (CNN-SVM) algorithm. 

The proposed approach leverages the power of deep learning 

for feature extraction and the versatility of Support Vector 

Machines (SVM) for classification. Firstly, the CNN model is 

trained to extract discriminative features from brain MRI 

images. The VGG19 architecture, a widely used pre-trained 

CNN, is employed as a feature extractor. By utilizing the pre-

trained weights of VGG19, the model can effectively capture 

high-level representations of the input images. The results 

demonstrate the efficacy of this method in accurately 

classifying brain MRI images. Further research can explore 

the application of this approach in larger datasets and 

investigate other deep learning architectures for feature 

extraction, providing further advancements in medical image 

analysis and diagnosis. 
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I. INTRODUCTION 

Brain tumors are one of the most complex medical 

disorders to treat, impacting millions worldwide [1]. The 

diagnosis of brain tumor at an early stage and their correct 

categorization are necessary for developing successful 

treatment plans and improving patient outcomes. In recent 

years, significant progress has been made in developing 

automated brain tumor detection and classification 

methods, particularly in the multiclass scenario. Multiclass 

brain tumor detection refers to accurately identifying and 

distinguishing between different types of brain tumors, 

including gliomas, meningiomas, pituitary adenomas, and 

others. This classification is crucial as different tumor 

types require specific treatment approaches and have 

varying prognoses. 

The examination of brain tumor has undergone a sea 

change due to the introduction of cutting-edge medical 

imaging technology like Magnetic Resonance Imaging 

(MRI) [2]. These imaging modalities generate high-

resolution and detailed images that can be leveraged for 

accurate detection and classification. However, analyzing 

brain tumor images poses significant challenges due to the 

complexity of tumor characteristics, tumor appearance 

variability, and various anatomical structures. This 

exhaustive study provides an in-depth examination of the 

current state-of-the-art techniques and methodology used 

in detecting and classifying multiclass brain tumor by 

providing an overview of such techniques and processes. 

It encompasses a range of elements, such as dataset 

attributes, preprocessing procedures, techniques for 

extracting features, classification algorithms, and metrics 

for assessment [3]. 

Comprehending the attributes of existing data sets is 

essential when training and assessing models. Furthermore, 

preprocessing methods like image noise reduction, 

standardization, and partitioning cannot be overstated, as 

they significantly contribute to improving the quality of 

brain tumor images and extracting pertinent data [4]. 

Feature extraction methods, including traditional 

handcrafted features and deep learning-based approaches, 

extract discriminative features from the images to aid in 

accurate classification. Classification algorithms, ranging 

from traditional machine learning techniques to deep 

learning architectures, classify brain tumors. These 

algorithms utilize the extracted features to differentiate 

between different tumor types. The performance of brain 

 

Manuscript received July 19, 2023; revised August 27, 2023; accepted 

October 7, 2023; published March 8, 2024. 

340

Journal of Advances in Information Technology, Vol. 15, No. 3, 2024

doi: 10.12720/jait.15.3.340-354

mailto:suryawanshi.shweta02@gmail.com


 

tumor detection and classification systems relies 

significantly on the assessment criteria they employ. 

Commonly utilized metrics such as the Area under the 

Curve (AUC) and measures like accuracy, sensitivity, and 

specificity are often employed to assess the effectiveness 

of these systems [5]. 

The proposed approach combines Support Vector 

Machines (SVM) for categorization with deep learning to 

extract features. Initially, a Convolutional Neural Network 

(CNN) is trained to extract distinctive characteristics from 

brain MRI pictures. To perform this feature extraction, the 

established VGG19 CNN architecture, which is widely 

recognized, is employed. Leveraging the pre-trained 

parameters of VGG19 allows the model to capture the 

input images’ higher-level features adeptly. 

Traditional methods of brain MRI classification often 

rely on manual feature extraction and handcrafted feature 

engineering techniques. However, these approaches have 

certain limitations regarding their capacity to capture the 

intricate patterns and minor variances that may be seen in 

brain imaging. The application of Convolutional Neural 

Networks (CNNs) for classifying brain MRI images has 

demonstrated promising outcomes, especially given the 

recent advancements in deep learning and the extensive 

utilization of CNNs for addressing challenges in computer 

vision [6]. 

CNNs have shown excellent performance in image 

classification tasks, autonomously learning hierarchical 

features from the raw input data. CNNs have also been 

used in other applications. They can effectively capture 

local patterns and global contextual information in an 

image, making them well-suited for analyzing complex 

medical images such as brain MRI. Moreover, pre-trained 

CNN models, such as VGG19, have been trained on large-

scale image datasets and can be utilized as powerful 

feature extractors for transfer learning in medical imaging 

tasks [7]. 

Besides Convolutional Neural Networks (CNNs), 

Support Vector Machines (SVMs) have gained significant 

popularity in addressing classification problems thanks to 

their ability to handle complex feature spaces with high 

dimensions and perform well in multiclass classification 

tasks. Support Vector Machines (SVMs) aim to locate an 

ideal hyperplane in the feature space that can maximally 

separate the various classes. By merging the feature 

extraction capabilities of CNNs with the classification 

prowess of SVMs, we can achieve precise and resilient 

brain MRI classification, leveraging the advantages of 

both methods. This will allow us to take advantage of the 

strengths of both approaches. This research uses a CNN, 

VGG19, and the CNN-SVM algorithm to offer a technique 

for multiclass categorization of brain MRI images. 

The contributions of this study include: 

• Presenting an innovative approach for the multiclass 

categorization of brain MRI pictures involving the 

utilization of CNN, VGG19, and the CNN-SVM 

technique. 

• Illustrating the efficacy of utilizing pre-trained CNN 

models, particularly VGG19, to extract features for 

the classification of brain MRI scans. 

• Evaluating the proposed method’s performance on a 

brain MRI image dataset and comparing it with 

traditional classification approaches. 

• Providing insights into the potential applications and 

benefits of automated brain MRI classification in 

clinical practice, including improved diagnosis and 

treatment planning. 

The rest of the paper follows this organization: 

Section  II reviews pertinent research on brain MRI 

classification using both deep learning and traditional 

methods. Section III elaborates on the deep learning 

architectures, including the CNN model, VGG19, and the 

CNN-SVM algorithm. Section IV outlines the proposed 

approach. Section V presents the results and their analysis. 

Lastly, Section VI concludes the paper with future 

directions. 

II. LITERATURE SURVEY 

Aggarwal et al. [8] have introduced a practical approach 

for brain tumor segmentation using an Enhanced Residual 

Network. This method addresses the inherent gradient 

issue in deep neural networks, specifically ResNet. Two 

potential improvements can be implemented to enhance 

the existing ResNet. One is to maintain the specific 

characteristics of all available connection links, and the 

other is to improve the projection shortcuts. These 

particulars are then passed on to the following phases, 

which is how enhanced ResNet can reach greater precision 

and accelerate the learning process. The upgraded version 

of ResNet that has been offered addresses all three of the 

most critical aspects of the current version of ResNet. 

These characteristics encompass the transmission of 

information through network layers, the residual building 

block, and the projection shortcut. This methodology 

minimizes computational time and effort, resulting in an 

accelerated process. 

Malla et al. [9] have undertaken a study to categorize 

different types of brain cancers, including meningioma, 

glioma, and pituitary tumor. Their research employs a pre-

trained Deep Convolutional Neural Network (DCNN) 

architecture known as VGG16, utilizing transfer learning. 

This approach effectively overcomes a limitation in 

training DCNN architectures associated with data samples 

and yields more precise classification results. The 

suggested framework addresses overfitting and vanishing 

gradients by incorporating a Global Average Pooling 

(GAP) layer at the output stage. On the Figshare dataset, 

this method achieves an impressive classification accuracy 

of 98.93%, surpassing state-of-the-art learning-based 

techniques. These findings hold promise for aiding 

medical professionals in making more precise diagnoses of 

brain tumor types. As a result, it may lessen the number of 

diagnostic errors that occur. Even though the transfer 

learning-based DCNN framework that was suggested has 

demonstrated remarkable outcomes, there is still a need for 

specific enhancements. In the future, a more extensive 

dataset may be utilized for instructional reasons. In 

addition, it is possible to solve the problems with feature 

dimensionality that crop up while transferring weights and 

parameters. 
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Krishnapriya et al. [10] conducted research to explore 

the effectiveness of pre-trained Deep Convolutional 

Neural Network (DCNN) models, including VGG19, 

VGG16, ResNet50, and Inception V3, for categorizing 

brain MR images. Their study assessed vital performance 

metrics, including accuracy, recall, precision, and F1-score, 

revealing that the pre-trained VGG19 model, utilizing 

transfer learning, displayed the most impressive overall 

performance. Furthermore, these algorithms facilitated the 

end-to-end categorization of raw images without requiring 

manual feature extraction. The research involved 

classifying 305 brain MRI images, differentiating between 

those with and without malignancies. Raw MR images 

underwent preprocessing to streamline the training process, 

involving brain tissue boundary determination, cropping, 

and scaling. Data augmentation techniques were employed 

to balance class distribution in the dataset. Evaluation of 

the classification process using four different models 

revealed that the VGG19 model achieved the highest 

success, boasting an accuracy score of 99.48%, recall of 

98.76%, precision of 100%, and F1-score of 99.17%. The 

VGG16 model followed closely with an accuracy score of 

99%, recall of 98.18%, precision of 100%, and F1-score of 

99.08%. Meanwhile, the ResNet50 and Inception V3 

models demonstrated 97.92% and 81.25% accuracy, 

respectively. 

Sarkar et al. [11] have introduced a novel and efficient 

technique for categorizing brain tumors in MRI scans. 

Their method utilizes the AlexNet Convolutional Neural 

Network (CNN) to split the dataset into training and test 

sets and to extract features. The primary goal of this 

approach is to identify different types of brain tumors 

within MRI images, namely, no tumor, glioma, 

meningioma, or pituitary tumor. To achieve this, they 

employ four different classifiers: BayesNet, Sequential 

Minimal Optimization (SMO), Naive Bayes (NB), and 

Random Forest (RF). Among these classifiers, BayesNet 

exhibits the highest accuracy. To evaluate the performance 

of their method, the researchers employed a publicly 

available Kaggle dataset. They present the classification 

results using various assessment metrics, including ROC 

curves, Precision-Recall Curves (PRC), and cost curves. 

These metrics include accuracy, sensitivity, specificity, 

false positive rate, false negative rate, precision, F-

measure, kappa statistics, Matthews Correlation 

Coefficient (MCC), ROC area, and PRC area. 

Kulkarni et al. [12] present a way to identify brain 

tumors and a categorization system for them. Diagnosing 

a brain tumor begins with preprocessing, then moves on to 

skull stripping, and finally, tumor segmentation. It utilizes 

a thresholding approach and then proceeds to carry out 

morphological procedures. The amount of training images 

affects the features the CNN retrieves; nonetheless, CNN 

models become overfit beyond a particular epoch. As a 

result, a deep learning CNN that utilizes transfer learning 

techniques has been developed. The CNN-based AlexNet 

architecture is used to classify the tumorous MRI of the 

patient’s brain. In addition, the malignant brain tumor is 

categorized with the help of the GooLeNet transfer 

learning architecture. Precision, recall, F-measure, and 

accuracy evaluate this technique’s success. It is advised 

that tumorous MRIs be categorized as benign or malignant 

and that meningioma or glioma be assigned to malignant 

brain MRIs. The process of detecting brain tumors 

involves several stages. Initially, preprocessing techniques 

are employed to prepare the data. Subsequently, the 

removal of the skull is performed, followed by the 

segmentation of the brain tumor. This segmentation 

technique effectively separates the tumor from the MRI 

images. Next, utilizing transfer learning algorithms based 

on the Convolutional Neural Network (CNN) architecture, 

specifically the AlexNet model, the tumor images are 

categorized into benign and malignant groups. This 

approach’s results show an accuracy of 0.9375, a recall of 

1, and an F-measure of 0.9677. Additionally, the malignant 

MRI images are further classified into glioma and 

meningioma by employing the same CNN-based transfer 

learning system, specifically utilizing the GoogleNet 

model. The performance metrics for the GoogleNet model 

include an accuracy of 0.9750, a precision of 0.95, a recall 

of 1, and an F-measure of 0.9743.  

Sowrirajan et al. [13] used deep learning models to 

interpret Magnetic Resonance Imaging (MRI) data, which 

is currently the approach to early cancer diagnosis with the 

highest prevalence and accuracy. In this context, a 

distinctive hybrid model (NADE) is created by merging 

the Neural Autoregressive Distribution Estimation 

(NADE) with the VGG16 Convolutional Neural Network 

(CNN). 3,064 MRI scans of brain tumor were used in the 

investigation, and they were split into three groups. A 

hybrid VGG16-NADE model was utilized to categorize 

the T1-weighted contrast-enhanced MRI images, and this 

classification was then contrasted with alternative 

methods. Based on the results, the hybrid model, VGG16-

NADE, outperforms other models across various metrics 

such as classification accuracy, specificity, sensitivity, and 

the F1-score. The proposed VGG16-NADE hybrid 

achieves a prediction accuracy of 96.01%, precision of 

95.72%, recall of 95.64%, F-measure of 95.68%, Receiver 

Operating Characteristic (ROC) score of 0.91, an error rate 

of 0.075, and a Matthews Correlation Coefficient (MCC) 

of 0.3564. Additionally, the hybrid model demonstrates an 

overall accuracy of 95.68%.  

Khairandish et al. [14] explained how brain tumors 

behave. With the aid of many methodologies and the 

analysis of research studies using various criteria, it offers 

a clear image of this stage. The examination is conducted 

with the dataset, proposed model, proposed model 

performance, and type of method used in each paper. 

Between 79% and 97.7% of the publications under study 

had accurate results. They employed Convolutional Neural 

Network, K-Nearest Neighbour, K-Means, and Random 

Forest algorithms in that sequence (highest frequency of 

use to lowest). Here, the CNN-SVM gave highest accuracy 

of 98.4959%.  

Someswararao et al. [15] introduced an innovative 

approach for identifying tumors in MR images by 

employing machine learning methods, specifically the 

CNN model. Their research encompassed two key aspects: 

firstly, a CNN model was applied to address the 
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classification task of identifying the presence of a brain 

tumor in an individual, and secondly, a computer vision 

challenge was tackled to extract the brain region from MRI 

scans automatically. The primary objective of this 

investigation was to ascertain the existence of a brain 

tumor in patients. The study also employed Convolutional 

Neural Networks and K-means clustering as additional 

techniques. The Convolutional Neural Network achieved 

the highest accuracy, reaching approximately 90%.  

Choudhury et al. [16] suggested a new CNN-based 

method that can differentiate between various MRIs of the 

brain and categorize them as having or not having tumor. 

The F-score of the model was 97.3%, while the model’s 

accuracy was 96.08%. To generate results in 35 epochs, 

the model employs a CNN consisting of three layers and 

takes just a few preprocessing steps. The importance of 

predictive therapeutic and diagnostic machine-learning 

applications is emphasized in this work. Support Vector 

Machine, Convolutional Neural Network, k-nearest 

Neighbor, Boosted trees, Random Forest, and Decision 

Trees were other methods utilized. The suggested 

approaches will be efficient and accurate in detecting, 

categorizing, and segmenting brain tumor. Automatic or 

semi-automatic precision 

In Ref. [17], this study identifies the MRI images with 

the help of a Recurrent Neural Network (RNN). The BP 

NN activation function was first used to scale up and down 

the network’s nodes. The number of nodes in the hidden 

layer was set to 270 and then brought back down to 230 

using the log sigmoid function. Finally, we have reached 

the optimal performance for RNN thanks to a bump in the 

node count to 300. For optimal efficiency, we use an 

Elman network. When the number of nodes increases, so 

does the amount of performance mistakes. When used in 

the recognition process, Elman networks were shown to be 

quick and accurate compared to other ANN systems. When 

compared to Elman’s 88.14%, our ratio was 76.47%. 

Table I provides an overview of the findings from the 

literature review. 

TABLE I. SUMMARY OF LITERATURE SURVEY 

Authors Methodology Results Research Gap 

Aggarwal et al. [8] 

Improved Residual Network for 

brain tumor segmentation, 

addressing gradient issues in DNN 

(ResNet). 

Accuracy = 0.854% 

Require more complex architectures to 

enhance the overall efficiency of 

segmentation results. 

Malla et al. [9] 

VGG16-based transfer learning 

for classifying meningioma, 

glioma, and pituitary brain tumors. 

Accuracy with Data pre-processing = 

98.93% 

Accuracy with Data pre-processing = 

97.82% 

The problems related to feature 

dimensionality that emerge during the 

transfer of weights and parameters can be 

effectively dealt with. 

Krishnapriya et al. [10] 

Evaluation of pre-trained DCNN 

models (VGG19, VGG16, 

ResNet50, Inception V3) for brain 

MR image categorization. 

VGG19 with Transfer Learning = 

99.48% 

VGG16 with Transfer Learning = 99% 

ResNet50 with Transfer Learning = 

97.92% 

Inception V3 with Transfer Learning = 

81.25% 

The challenges related to feature 

dimensionality encountered when 

transferring weights and parameters can 

be effectively dealt with. 

Sarkar et al. [11] 

Utilizing AlexNet CNN for brain 

tumor classification with 

classifiers (BayesNet, SMO, 

Naive Bayes, Random Forest). 

AlexNet CNN+BayesNet = 88.75% 

AlexNet CNN+SMO = 98.15% 

AlexNet CNN+NB = 86.25% 

AlexNet CNN+RF = 100%  

The suggested model underwent 

assessment using a dataset of moderate 

size, representing a limitation in the 

present study. Therefore, it is crucial to 

conduct future evaluations of the model 

using larger datasets to assess its 

performance more comprehensively. 

Kulkarni et al. [12] 

CNN-based AlexNet and 

GoogleNet for categorizing 

benign/malignant tumors and 

distinguishing 

meningioma/glioma. 

AlexNet = 90.47% 

VGG16 = 66.67% 

ResNet18 = 85% 

ResNet50 = 85% 

GoogLeNet = 97.50% 

Deep neural networks, specifically 

CNNs, are not commonly employed in 

the context of boundary detection 

challenges. Consequently, they hold 

potential as a forthcoming avenue for 

addressing brain tumor segmentation and 

detection issues. 

Sowrirajan et al. [13] 

Combination of Neural 

Autoregressive Distribution 

Estimation (NADE) and VGG16 

CNN for MRI-based brain tumor 

classification. 

MRI Brain Tumor Classification Using 

a Hybrid VGG16-NADE Model = 

96.01% 

VGG16’s capacity to train the dataset is 

hampered by its sluggish training 

process, primarily stemming from the 

extensive storage and bandwidth 

requirements associated with the input 

size, rendering it ineffective. 

Khairandish et al. [14] 

Comprehensive analysis of brain 

tumor detection methodologies 

using Convolutional Neural 

Networks and other algorithms. 

hybrid CNN-SVM = 98.495% 

To improve decision-making, use a faster 

CNN with SVM and optimization 

techniques like bio-inspired algorithms. 

Also, consider tumor size and precise 

location when detecting tumors. 

Someswararao et al. [15] 

Novel CNN-based method for 

detecting brain tumors in MR 

images. 

The accuracy of testing data is 100% 

on 31 images. 

This method could be increased by more 

train images or model hyperparameter 

tuning. 

Choudhury et al. [16] 

CNN-based approach for 

differentiating MRI images of 

brain tumors. 

Accuracy of 96.08%, with an f-score of 

97.3% 

The accuracy could be increased by more 

train images or through model 

hyperparameter tuning. 
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III. DEEP LEARNING ALGORITHMS 

In the proposed approach, three distinguished deep 

learning algorithms are used. This section presents a 

detailed explanation of CNN, VGG19 and hybrid SVM-

CNN architectures. 

A. CNN  

CNNs are a specific neural network with exceptional 

performance in various image processing and 

classification tasks. CNN is a multi-layered feed-forward 

neural network. CNNs are built using programmable 

weights, parameters, and biases for their filters, kernels, or 

neurons, which make up the CNN. Every filter receives 

specific inputs, conducts convolution, and may or may not 

perform non-linearity. Convolutional layers, Rectified 

Linear Unit (ReLU), Fully Connected, Pooling, and 

makeup CNN’s structure [17]. 

The architecture of the CNN algorithm is shown in 

Fig.  1. 

 

Fig. 1. Architecture of CNN. 

Each block of CNN architecture is explained below. 

• Convolutional Layers: These layers are responsible 

for acquiring knowledge from the input data and 

discerning its characteristics. To perform 

convolution operations, they employ a set of 

adaptable filters or kernels on the input picture, 

moving them across it and calculating dot products 

at every location. This process yields a collection of 

feature maps encompassing various patterns and 

configurations within the image [18]. 

• Activation Function: After each convolutional 

operation, a layer-by-layer activation function is 

applied in the network to give it a non-linear quality. 

In CNNs, the activation function known as Rectified 

Linear Unit (ReLU) is utilized most of the time. This 

activation function keeps all positive values 

unaltered while putting all negative values to 

zero  [19]. 

• Pooling Layers: The spatial dimensions of the 

feature maps can be reduced by the combination of 

layers. These maps still have their essential 

information content. In a typical pooling process 

called max pooling, the feature map is divided into 

non-overlapping areas, and the most significant 

value inside each zone is kept while the other values 

are discarded. This facilitates a decrease in 

parameters and limits overfitting [18]. 

• Fully Connected Layers: Following multiple 

convolutional and pooling operations, the feature 

maps’ spatial dimensions are transformed into a 

vector inputted into one or more fully connected 

layers. These layers resemble those in a 

conventional neural network and play a crucial role 

in generating predictions using the acquired 

features  [18]. 

• Softmax Layer: In classification tasks, including a 

softmax layer after the network is common. This 

softmax layer produces probability scores for every 

class by transforming the outputs from the previous 

layer into a probability distribution [19]. 

• Loss Function: The loss function quantifies the 

difference between the predicted results and the 

actual labels. It measures the network’s performance 

during training and guides the learning process. 

Standard loss functions for classification tasks 

include cross-entropy loss [20]. 

• Optimization Algorithm: CNNs are trained using 

optimization algorithms that update the network’s 

parameters based on the gradients of the loss 

function [17].  

B. VGG19 

The VGG19 model consists of nineteen layers and is a 

modified version of the VGG model. It comprises 16 

convolution layers, 3 fully connected layers, 5 MaxPool 

layers, and 1 SoftMax layer. VGG19 was trained on a vast 

dataset of over a million images from the ImageNet 

collection. Essentially, VGG is a deep convolutional 

neural network designed for image classification. You can 

see the architecture of VGG19 in Fig. 2. 

 

 

Fig. 2. Architecture of VGG19. 
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The following is a list of the layers that make up the 

VGG19 model: The 19-layer neural network can identify 

more than a thousand distinct objects, including keyboards, 

mice, pencils, and numerous others. Consequently, this 

network can produce extensive feature representations for 

various images. 

• The RGB picture with a predetermined size (224, 

224) served as the input for this network, which 

exemplified the matrix’s structure (224,224,3). 

• The only step that needed to be preprocessed was 

figuring out the average RGB value for each pixel 

throughout the training set. The value was subtracted 

from each pixel in its entirety independently. 

• They employed kernels of three by three and a stride 

size of one pixel to cover the whole picture. 

• Utilizing spatial padding is one method that would 

allow the image’s original spatial resolution to be 

preserved. 

• To do maximum pooling across a 22 pixel frame, 

Stride 2 was utilized. 

• After that, the Rectified Linear Unit (ReLu), which 

adds non-linearity to the model to extend the time 

required for classification and calculating, was 

introduced. This model performed far better than 

previous ones using tanh or sigmoid functions. 

The outcome involved creating three fully 

interconnected layers. The initial two layers had a total size 

of 4,096, whereas the third layer, which employed a 

SoftMax function, comprised 1,000 channels for 

classification and was utilized in a 1000-category ILSVRC. 

Adding a third layer was referred to as “layering,” 

C. Hybrid CNN-SVM 

CNNs and Support Vector Machines (SVMs) are two 

methods that are frequently employed in the process of 

image classification. The CNN-SVM technique combines 

these two methods. The CNN component of the algorithm 

is responsible for extracting features from the pictures, 

whilst the SVM component of the algorithm is responsible 

for classifying the images based on those features. Fig. 3 

depicts the overall layout of the CNN-SVM algorithm’s 

workings. 
 

 

Fig. 3. CNN-SVM architecture for brain MRI classification. 

Step-by-step guide on how to implement the CNN-SVM 

algorithm for image classification: 

• Data preparation: Collect a dataset of images and 

divide it into training and testing sets. Ensure that the 

images are in a suitable format, such as JPEG or 

PNG, and are the same size. 

• Feature extraction using CNNs: Train a 

convolutional neural network (CNN) using the 

training dataset to capture image features. This 

process entails passing the images through the CNN 

and retrieving the output from one of the 

intermediate layers, usually before the fully 

connected layers. The result from this specific layer 

forms a feature vector, serving as a representation 

for each image. 

• SVM classification: Use the feature vectors from 

the CNN to train an SVM on the training set. The 

SVM can be trained using the sci-kit-learn library in 

Python, with the feature vectors as input and the 

corresponding labels as output. 

• Testing and evaluation: Utilize the SVM to predict 

the labels of the images included in the testing set. 

Then, assess the algorithm’s effectiveness based on 

accuracy, precision, recall, and F1-score. 

Here are some additional considerations when using the 

CNN-SVM algorithm for image classification: 

• Preprocessing: It is often beneficial to preprocess 

the images before feeding them into the CNN by 

normalizing the pixel values and data augmentation 

to increase the data samples. 

• CNN architecture: The choice of CNN architecture 

can significantly impact the algorithm’s 

performance. It is often a good idea to start with a 

pre-trained CNN, such as VGG or ResNet, and fine-

tune it on the specific dataset. 

• SVM hyperparameters: The performance of the 

SVM can be influenced by its hyperparameters, such 

as the kernel type, regularization parameter, and 

gamma parameter. The optimal performance can be 

achieved by fine-tuning these parameters through 

cross-validation on the training dataset.  

• Class imbalance: If the dataset has a class 

imbalance, with some classes having fewer 

examples than others, it may be necessary to use 

techniques such as oversampling or under sampling 

to balance the classes. Alternatively, one can use 

techniques such as weighted loss or focal loss during 

training to give more weight to the underrepresented 

classes. 
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IV. PROPOSED SYSTEM 

The block diagram of the proposed system is shown in 

Fig. 4. It consists of an input dataset, preprocessing, dataset 

splitting, training and classification.  

 

 

Fig. 4. Block diagram of the proposed system. 

A. Dataset Preparation 

This strategy uses two datasets for assessment: The 

Brain Tumor Segmentation (BTATS) and the Sartaj 

datasets [21−24]. The BRATS dataset is a widely utilized 

benchmark dataset in brain MRI analysis and classification, 

primarily designed to segment brain tumors. It contains 

multiple multimodal brain MRI scans, including T1-

weighted, T1-weighted contrast-enhanced, T2-weighted, 

and Fluid-Attenuated Inversion Recovery (FLAIR) images. 

Moreover, it includes accurate tumor segmentation labels 

corresponding to each image within the dataset. The MRI 

scans used to compile the BraTS dataset came from 

hospitals and medical centres. There are 285 instances in 

the 2018 edition of the BraTS dataset, comprising a 

training set and a validation set. Each instance comprises 

four different MRI modalities and their matching tumor 

segmentation masks. The training dataset is divided into 

two categories, High-Grade Gliomas (HGG) and Low-

Grade Gliomas (LGG), to accurately represent the range of 

tumor grades. Fig. 5 shows an example image from the 

Brats dataset. 
 

         
(a)                                (b) 

Fig. 5. Dataset samples of brats 2018 dataset. (a) HGG (b) LGG. 

The SARTAJ dataset includes Magnetic Resonance 

Imaging (MR) of three different kinds of brain cancers 

(glioma, meningioma, and pituitary), as well as images of 

normal brain tissue (no tumor) [25]. The collection 

includes 3264 photos that are in RGB JPG format. The 

dataset has two problems: the first is an uneven distribution 

of classes, and the second is random splitting ratios. The 

number of photographs with “no tumor” is relatively low 

when compared to the number of images with tumors, 

which are as follows: There are 500 images depicting a 

lack of tumors, while 937 images display meningioma 

tumors, 901 images depict pituitary tumors, and 926 

images showcase glioma tumors. As a result, this 

distinction leads to classification challenges that lead to an 

imbalance, where the classifier may have a bias toward 

tumor scans. In addition, the train-test splitting ratio of the 

pictures associated with “Pituitary Tumor” is unequal to 

that of the other images. Therefore, the dataset discards the 

pituitary class from this approach. The dataset sample 

image of the SARTAJ dataset is shown in Fig. 6. 

 

 
(a)                       (b)                             (c) 

Fig. 6. Dataset samples of sartaj dataset. (a) Glioma (b) Meningioma (c) 

No tumor. 

A training dataset makes up 80% of the whole dataset, 

while a validation dataset makes up the remaining 20%. 

Table II summarizes the image dataset distribution of Brats 

1,018 and the SARTAJ dataset used for the proposed 

system. 

TABLE II. DATASET DISTRIBUTION 

Dataset Classes Training Validation 

Brats 
HGG 7,148 1,786 

LGG 4,623 1,155 

SARTAJ 

Glioma 1,321 300 

Meningioma 1,339 306 

No tumor 1,595 405 

 

B. Data Preprocessing 

This image has been preprocessed to make it easier to 

work with. Filtering is an essential part of the 

preprocessing procedure. The median filter is non-linear to 

eliminate noise and smooth out a picture. As a result of its 

ability to reduce noise while preserving edges, it has found 

widespread use. It does an outstanding job of escaping 

noise like salt and pepper. The median filter iteratively 

applies itself to an image, replacing each value with its 

neighborhood median value as it moves from pixel to pixel. 

Calculating the median involves first sorting all the pixel 

values in the window using a numerical order and then 

replacing the center pixel in the window with the pixel 

value representing the median. 

C. Training and Classification 

In this approach, CNN, VGG19 and a hybrid CNN-

SVM algorithm are for classifying Brain MRI into HGG 

and LGG, while in another approach, classifying into 

glioma, meningioma and no tumor classes.  

The model summary of CNN, VGG19 and CNN-SVM 

algorithm for HGG and LGG classification of brain MRI 

of Brats 2018 and SARTAJ dataset is shown in 

Tables  III−V, respectively. 

The Param column represents the number of parameters 

in each layer, indicating the capacity and complexity of the 

model. The value displayed in the Total params column 

corresponds to the total number of trainable parameters 
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across the model. Tables III−V show that the parameter 

required for the transfer learning algorithm (VGG19) is 

much less than the CNN and hybrid CNN-SVM algorithm. 

TABLE III. MODEL SUMMARY OF CNN ALGORITHM ON BRATS 

DATASET 

Layer (type) Output Shape Param 

conv2d (Conv2D) (None, 98, 98, 256) 7,168 

activation (Activation) None, 98, 98, 256) 0 

max_pooling2d (MaxPooling2D) (None, 49, 49, 256) 0 

conv2d_1 (Conv2D) (None, 47, 47, 128) 295,040 

activation_1 (Activation) (None, 47, 47, 128) 0 

max_pooling2d_1 (MaxPooling2D) (None, 23, 23, 128) 0 

flatten (Flatten) (None, 67712) 0 

dense (Dense) (None, 64) 4,333,632 

activation_2 (Activation) (None, 64) 0 

dropout (Dropout) (None, 64) 0 

dense_1 (Dense) (None, 2) 130 

Total params  4,635,970 

Trainable params  4,635,970 

Non-trainable params  0 

TABLE IV. MODEL SUMMARY OF VGG19 ALGORITHM ON BRATS 

DATASET 

Layer (type) Output Shape Param 

input_1 (InputLayer) (None, 200, 200, 3) 0 

block1_conv1 (Conv2D) (None, 200, 200, 64) 1,792 

block1_conv2 (Conv2D) (None, 200, 200, 64) 36928 

block1_pool (MaxPooling2D) (None, 100, 100, 64) 0 

block2_conv1 (Conv2D) (None, 100, 100, 128) 73,856 

block2_conv2 (Conv2D) (None, 100, 100, 128) 147,584 

block2_pool (MaxPooling2D) (None, 50, 50, 128) 0 

conv2d_11 (Conv2D) (None, 48, 48, 256) 36,896 

max_pooling2d_11 (MaxPooling2D) (None, 24, 24, 32) 0 

conv2d_1_12 (Conv2D) (None, 22, 22, 64) 18,496 

conv2d_13 (Conv2D) (None, 9, 9, 128) 0 

max_pooling2d_13 (MaxPoolin g2D) (None, 4, 4, 128) 0 

Flatten_4 (Flatten) (None, 2048) 0 

batch_normalization 

(BatchNormalization) 
(None, 2048) 8,192 

dense_8 (Dense) (None, 256) 524,544 

dropout_4 (Dropout) (None, 256) 0 

dense_9 (Dense) (None, 2) 514 

Total params  922,658 

Trainable params  805,986 

Non-trainable params  116,672 

TABLE V. MODEL SUMMARY OF CNN-SVM ALGORITHM ON BRATS 

DATASET 

Layer (type) Output Shape Param 

conv2d (Conv2D) (None, 98, 98, 16) 3,328 

activation (Activation) (None, 98, 98, 16) 0 

max_pooling2d (MaxPooling2D) (None, 49, 49, 16) 0 

conv2d_1 (Conv2D) (None, 47, 47, 32) 131,200 

activation_1 (Activation) (None, 47, 47, 32) 0 

max_pooling2d_1 

(MaxPooling2D) 
(None, 23, 23, 32) 0 

conv2d_2 (Conv2D) (None, 21, 21, 64) 18,496 

activation_2 (Activation) (None, 21, 21, 64) 0 

max_pooling2d_2 

(MaxPooling2D) 
(None, 10, 10, 64) 0 

flatten (Flatten) (None, 6400) 0 

dense (Dense) (None, 128) 819,328 

activation_3 (Activation) (None, 128) 0 

dropout (Dropout) (None, 128)  

dense_1 (Dense) (None, 2) 258 

Total params  843,170 

Trainable params  843,170 

Non-trainable params  0 

V. RESULTS AND DISCUSSION 

The proposed method for classifying brain MRI results 

is assessed using several key evaluation metrics, including 

sensitivity, specificity, accuracy, precision, recall, and F1-

score. Below, we will explain each of these evaluation 

criteria. 

• Sensitivity or recall: Sensitivity, which is also 

referred to as the True Positive Rate or Recall, 

measures the model’s capacity to accurately detect 

positive instances, like the detection of a brain 

tumor. Its calculation method is as follows. 

               𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                            (1) 

• Specificity: On the other hand, specificity assesses 

the model’s proficiency in correctly recognizing 

negative cases or instances where there is no brain 

tumor. The formula for specificity is given by: 

                      𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                            (2) 

• Accuracy: Accuracy provides a comprehensive 

measure of overall correctness in predictions and is 

calculated as follows: 

              𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
         (3) 

• Precision: Precision, often referred to as the 

Positive Predictive Value, gauges the accuracy of 

positive predictions made by the model, which is 

particularly important when minimizing false 

positives is a concern. Its equation is as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃)  =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                         (4) 

• F1-score: The F1-score merges precision and recall 

into a unified measurement, which is particularly 

beneficial when working with datasets with uneven 

class distribution. Its definition is as follows: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =  2
𝑃  𝑅

𝑃+𝑅
                     (5) 

Evaluating a model’s performance involves various 

metrics such as Sensitivity (or recall), Specificity, 

Accuracy, Precision, and F1-score. These metrics are 

employed when dealing with classification problems, 

where samples are categorized as True Positive (TP), False 

Positive (FP), True Negative, and False Negative (FN) 

based on the alignment between the actual and predicted 

class labels. 

A. Result of Deep Learning Algorithm on Brats Dataset 

The results of the CNN algorithm for brain MRI 

classified into HGG and LGG classification are presented 

below. The training progress graph and confusion matrix 

for CNN classification for the Brats dataset are shown in 

Fig. 7.  
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(a) 

 
(b) 

 
(c) 

Fig. 7. Training performance of CNN. (a) Accuracy (b) Loss (c) 

Confusion matrix. 

The Convolutional Neural Network (CNN) is trained 

using the rmsprop optimizer for 50 epochs, employing a 

learning rate set at 0.001.  

Furthermore, this section presents the results using the 

VGG19 algorithm to categorize brain MRI scans into 

HGG and LGG categories. Fig. 8 depicts the training 

progress graph and the confusion matrix for the VGG19 

classification. The VGG19 model is trained for 30 epochs 

with a rmsprop optimizer and a learning rate of 0.00001. 

Fig. 9 displays the hybrid CNN-SVM classification’s 

confusion matrix and training progress graph for the 

classification of brain MRI into HGG and LGG. 

 
(a) 

 
(b) 

 
(c) 

Fig. 8. Training performance of VGG19. (a) Accuracy (b) Loss (c) 

Confusion matrix. 

 
(a) 
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(b) 

 
(c) 

Fig. 9. Training performance of CNN-SVM. (a) Accuracy (b) Loss (c) 

Confusion Matrix.  

The CNN-SVM model is trained for 50 epochs with 

adam optimizer, kernel regularizer L2 of 0.001 and hinge 

loss. 

Table VI displays a side-by-side evaluation of the 

performance of CNN, VGG19, and the combined CNN-

SVM algorithm, considering precision, recall, F1-score, 

and accuracy as metrics. 

Table VI presents a comparative analysis of various 

classifiers’ performance on the Brats Dataset, a medical 

imaging dataset commonly used for brain tumor 

classification. The table evaluates four different 

algorithms: Convolutional Neural Network (CNN), 

VGG19 (a specific CNN architecture), and CNN-SVM 

(CNN combined with a Support Vector Machine). Each 

algorithm is assessed based on several key metrics. CNN 

demonstrates a relatively high sensitivity/recall of 0.8575, 

specificity of 0.9255, precision of 0.9608, the accuracy of 

0.8792, and F1-score of 0.9062, indicating a robust overall 

performance in brain tumor classification. VGG19, on the 

other hand, has perfect sensitivity but very low specificity 

and precision, resulting in a much lower F1-score, which 

signifies its limitations in distinguishing tumor cases. 

Finally, CNN-SVM performs exceptionally well regarding 

sensitivity, specificity, precision, accuracy, and F1-score, 

showcasing its robustness in brain tumor classification on 

the Brats Dataset. 

TABLE VI. COMPARATIVE ANALYSIS OF DIFFERENT CLASSIFIERS ON BRATS DATASET 

Algorithm Sensitivity/Recall Specificity Precision Accuracy F1-score 

CNN 0.8575 0.9255 0.9608 0.8792 0.9062 

VGG19 1 0.3959 0.0134 0.4008 0.0265 

CNN-SVM 0.9853 0.9730 0.9809 0.9802 0.9831 

 

B. Result of Deep Learning Algorithm on SARTAJ 

Dataset 

The results of the CNN algorithm for brain MRI 

classified into glioma, meningioma and no tumor 

classification are presented below. The training progress 

graph and confusion matrix for CNN classification for the 

Brats dataset are shown in Fig. 10.  

The Convolutional Neural Network (CNN) is subjected 

to 50 training epochs using rmsprop optimizer and a 

learning rate set at 0.001.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 10. Raining performance of CNN. (a) accuracy (b) Loss (c) 

Confusion Matrix. 
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The results of the VGG19 algorithm brain MRI 

classification into glioma, meningioma and no tumor are 

presented below. The training progress graph and 

confusion matrix for the VGG19 classification are shown 

in Fig. 11. 
 

 
(a) 

 
(b) 

 
(c) 

Fig. 11. Training performance of VGG19. (a) accuracy (b) Loss (c) 

Confusion Matrix. 

The VGG19 model is trained for 30 epochs with a 

rmsprop optimizer and a learning rate 0.00001. Below are 

the outcomes of the hybrid CNN-SVM algorithm’s 

classification for distinguishing between glioma, 

meningioma, and No tumors. Fig. 12 displays the training 

progress graph and the confusion matrix related to the 

hybrid CNN-SVM classification. 

The CNN-SVM model is trained for 50 epochs with 

adam optimizer, kernel regularizer L2 of 0.001 and hinge 

loss.  

 
(a) 

 
(b) 

 
(c) 

Fig. 12. Training performance of CNN-SVM. (a) accuracy (b) Loss (c) 

Confusion Matrix. 

Table VII compares the precision, recall, F1-score, and 

accuracy of the CNN, VGG19, and hybrid CNN-SVM 

algorithms for classifying brain MRI scans into glioma, 

meningioma, and no tumor. Table VII presents a 

comparative analysis of various classifiers’ performance 

on the Sartaj Dataset, evaluating their ability to classify 

data correctly. The table includes five algorithms: CNN, 

VGG19, and CNN-SVM, and corresponding metrics for 

each algorithm’s performance. Sensitivity, or recall, 

evaluates how well positive cases are correctly identified, 

while specificity measures the accuracy in identifying 

negative cases. Accuracy indicates correct classification, 

precision assesses the accuracy of positive predictions, and 

the F1-score combines precision and recall for a balanced 

performance measure. Among the algorithms, CNN-SVM 

stands out as the top performer, showing the highest 
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sensitivity, specificity, accuracy, precision, and F1-score, 

indicating its superior performance in classifying the 

dataset. Additionally, CNN and VGG19 also exhibit 

strong performance across these evaluation metrics. 

TABLE VII. COMPARATIVE ANALYSIS OF DIFFERENT CLASSIFIERS ON THE SARTAJ DATASET 

Algorithm Sensitivity/recall Specificity Accuracy Precision F1-score 

CNN 0.8802 0.9428 0.9281 0.9067 0.8884 

VGG19 0.8912 0.9509 0.9321 0.9092 0.8881 

CNN-SVM 0.9473 0.9756 0.9683 0.9536 0.95 

 

The depiction in Fig. 13 illustrates the qualitative 

assessment of the proposed system when applied to the 

Brats dataset, specifically for distinguishing between HGG 

and LGG. Meanwhile, Fig. 14 displays the system’s 

performance in categorizing brain MRI scans into glioma, 

meningioma, and no tumor. 

 

   

   

Fig. 13. Testing results of the proposed system on the Brats dataset. 

     

     

     

Fig. 14. Testing results of the proposed system on the Brats dataset. 

The multiclass classification of brain MRI using the 

CNN, VGG19, and CNN-SVM algorithm yielded 

promising results and demonstrated the potential for 

accurate and reliable classification of brain tumors. 

The results highlight the proposed approach’s potential 

for accurate and reliable multiclass classification of brain 

MRI images. This holds substantial importance in aiding 

healthcare practitioners in identifying, planning treatments, 

and tracking brain tumors. Continued progress in deep 

learning methods, optimization approaches, and the 

accessibility of more extensive datasets has the potential to 

significantly improve the precision and utility of MRI-

based brain tumor classification systems. 

Diagnosing brain cancer types is at the heart of our 

methodology, and it is accomplished by applying a CNN, 

VGG19 and hybrid CNN-SVM technique. The hybrid 

CNN-SVM method improves the performance of 

classification tasks by combining the capabilities of these 

two types of networks. There are two prominent use cases 

for the model that have been developed. To begin, it may 

be educated and utilized for the autonomous classification 

of Brain MRI into different classes with minimal 

computing power. 

The CNN-SVM algorithm combines the strengths of 

both CNNs and SVMs, resulting in improved classification 

performance. Unlike CNNs alone, which rely on SoftMax 

or sigmoid activation functions for classification, the 

hybrid approach uses SVMs, which are robust and 

effective classifiers. SVMs can handle high-dimensional 

feature spaces and create optimal decision boundaries, 

making them suitable for complex classification tasks. 

Moreover, the CNN-SVM algorithm takes advantage of 

the robust feature extraction abilities of CNNs, which 

autonomously acquire hierarchical and distinguishing 

characteristics from unprocessed data. The algorithm can 

capture relevant visual features using a pre-trained CNN, 

even with limited training data. 

The CNN-SVM algorithm offers a more efficient 

solution than the VGG19 architecture, a deep and 

computationally expensive model. It reduces the 

computational burden by utilizing the CNN for feature 

extraction and then employing the SVM classifier, 

resulting in faster inference times while maintaining 

competitive accuracy. Overall, the CNN-SVM algorithm 

combines the best of both worlds, benefiting from the 

strong feature representation of CNNs and the powerful 

classification capabilities of SVMs, leading to improved 

classification performance and computational efficiency. 

Table VIII compares the suggested system when pitted 

against the most advanced techniques on the Brats 2018 

dataset.  
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TABLE VIII. COMPARATIVE ANALYSIS OF THE PROPOSED SYSTEM 

WITH STATE-OF-THE-ART METHODS ON THE BRATS DATASET 

Author Method Dataset Accuracy 

Soltaninejad et al. [26] 

Texture Features 

from Super voxels 

and Random Forest 

as the Classifier 

Brats2018 80% 

Melegy et al. [27] 

Ten Statistical 

Features and 

Random Forest as 

the Classifier 

Brats2018 80.85% 

Xue et al. [28] 

Dual-Path Residual 

Convolutional 

Neural Network 

Brats2018 84.90% 

Sajjad et al. [29] 

Deep CNN with 

Extensive Data 

Augmentation 

Brats2018 94.58% 

Proposed (DL 

algorithm) 
CNN-SVM Brats2018 98.01% 

 

Table VIII presents a comparative analysis of the 

proposed system, CNN-SVM, with state-of-the-art 

methods on the Brats dataset for brain tumor classification. 

Four existing methods by different authors are compared 

to the proposed system. Soltaninejad et al. [26] and El-

Melegy et al. [27] achieved an accuracy of around 80% 

using texture features and random forests as classifiers. 

Xue et al. [28] achieved a higher accuracy of 84.90% using 

a Dual-Path Residual Convolutional Neural Network. 

Sajjad et al. [29] achieved an even higher accuracy of 

94.58% by employing deep Convolutional Neural 

Networks (CNN) with extensive data augmentation 

techniques. In contrast, the proposed system, CNN-SVM, 

outperforms all these methods with an impressive accuracy 

of 98.01%, showcasing its superiority in brain tumor 

classification on the Brats dataset. 

Table IX presents a comparative analysis of the 

proposed system, a deep learning (DL) algorithm with a 

CNN-SVM architecture, alongside state-of-the-art 

methods for the Sartaj dataset. Latif et al. [30] employed 

Support Vector Machines (SVM) and achieved an 

accuracy of 80%. Khan et al. [31] utilized the VGG19 

architecture, achieving a slightly higher accuracy of 

80.85%. Yahyaouni et al. [32] applied DenseNet and 

obtained an accuracy of 84.90%. Bhathele et al. [33] 

introduced a Hybrid Ensemble method, significantly 

improving accuracy to 94.58%. Murthly et al. [34] 

employed a CNN Ensemble approach, achieving an 

accuracy of 84.27%. Notably, the proposed DL algorithm 

with CNN-SVM achieved the highest accuracy among all 

methods, reaching an impressive accuracy of 95.16% on 

the Sartaj dataset, indicating its superior performance 

compared to the state-of-the-art methods. 

TABLE IX. COMPARATIVE ANALYSIS OF THE PROPOSED SYSTEM WITH 

STATE-OF-THE-ART METHODS ON THE SARTAJ DATASET 

Author Method Dataset Accuracy 

Latif et al. [30] SVM Sartaj 80% 

Khan et al. [31] VGG19 Sartaj 80.85% 

Yahyaouni et al. [32] DenseNet Sartaj 84.90% 

Bhathele et al. [33] Hybrid Ensemble Sartaj 94.58% 

Murthly et al. [34] CNN Ensemble Sartaj 84.27% 

Proposed (DL algorithm) CNN-SVM Sartaj 95.16% 

Table X summarizes the results of one-way Analysis of 

Variance (ANOVA) tests, aiming to assess and compare 

the precision, recall, and F-measure of three distinct 

algorithms: SVM, VGG19, and CNN-SVM. These 

evaluations are conducted on two distinct datasets, namely 

the “Brats Dataset” and the “Sartaj Dataset.” 

For each dataset, the “Parameters” column specifies the 

pairs of algorithms being compared, with entries like 

“CNN-CNN_SVM.” “CNN-VGG19.” and “VGG19-

CNN_SVM.” The “f_statistic” and “p_value” columns 

display the outcomes of the ANOVA tests, with the 

“f_statistic” representing the ratio of variation between the 

groups (algorithms) to the variation within the groups. The 

“p_value” quantifies the likelihood of obtaining the 

observed or more extreme results if the null hypothesis (no 

significant differences) were true. 

TABLE X. RESULTS OF ONE-WAY ANALYSIS OF VARIANCE (ANOVA) 

COMPARING PRECISION, RECALL, AND F-MEASURE OF SVM, VGG19, 

AND CNN-SVM ALGORITHMS 

Dataset Parameters f_statistic p_value Decision 

Brats 

Dataset 

CNN-

CNN_SVM 
12,615,285 0.012045 

Reject the null 

hypothesis 

CNN-

VGG19 
41,053,524 0.000681 

Reject the null 

hypothesis 

VGG19-

CNN_SVM 
49,643,596 0.000408 

Reject the null 

hypothesis 

Sartaj 

Dataset 

CNN-

CNN_SVM 
0.0903362 0.771412 

Fail to reject the 

null hypothesis 

CNN-

VGG19 
146,487,284 0.0050367 

Reject the null 

hypothesis 

VGG19-

CNN_SVM 
113,597,383 0.0097794 

Reject the null 

hypothesis 

 

The “Decision” column succinctly conveys the 

conclusion drawn from each ANOVA test. “Reject the null 

hypothesis” indicates substantial and statistically 

significant variations in precision, recall, or F-measure 

among the compared algorithms. Conversely, “Fail to 

reject the null hypothesis” implies that the observed 

differences can be attributed to random fluctuations and 

are not statistically significant. 

In the case of the Brats Dataset, all three comparisons 

(CNN-CNN_SVM, CNN-VGG19, and VGG19-

CNN_SVM) lead to the rejection of the null hypothesis, 

signifying meaningful distinctions in performance metrics 

among SVM, VGG19, and CNN-SVM on this dataset. 

Conversely, for the Sartaj Dataset, the “CNN-CNN_SVM” 

and “CNN-VGG19” comparisons do not yield p-values 

below the significance level, suggesting that there are no 

significant differences in precision, recall, or F-measure 

between these algorithm pairs on this dataset. However, 

the “VGG19-CNN_SVM” comparison does show a p-

value below the significance level, indicating significant 

differences between VGG19 and CNN-SVM on this 

dataset. These results provide valuable insights into the 

comparative performance of these algorithms in different 

data contexts. 

The following points provide a clear and thorough 

explanation of the innovative contribution made by this 

research in the specified field:  
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• A specially tailored Convolutional Neural Network 

(CNN) was created from scratch, featuring three 

convolutional layers and three pooling layers for 

effective feature extraction. Instead of the traditional 

final layer of a CNN, this model employs an SVM 

algorithm to automatically classify brain MRI 

images into multiple classes, distinguishing between 

benign and malignant cases and further categorizing 

them into glioma, meningioma, and no tumor. 

Regarding its architectural design, this CNN-SVM 

approach is notably less complex and less 

susceptible to overfitting than transfer learning 

models typically used for image classification tasks 

in this specific domain. Consequently, this CNN-

SVM model is well-suited for portable automated 

brain MRI classification systems.  

• The performance of this customized CNN-SVM 

algorithm for brain MRI classification was evaluated 

on previously unseen MRI data, resulting in a high 

level of accuracy in recognizing different brain 

conditions.  

• The analysis of the results revealed that the custom 

CNN-SVM model achieved accuracy rates of up to 

98.01% and 95.16% on the Brats and Sartaj datasets, 

respectively. When applied to the same dataset, 

these accuracy rates surpass those achieved by a 

standard CNN and the transfer learning model VGG 

19. Consequently, the learned weights of the 

proposed CNN-SVM model can potentially be 

utilized for other image classification tasks based on 

the ImageNet dataset within this specific domain. 

VI. DISCUSSION ON LIMITATIONS OF THE PROPOSED 

SYSTEM 

While holding great promise, the proposed system for 

brain tumor classification through a hybrid CNN-SVM 

approach in MRI presents several noteworthy limitations 

that warrant consideration in the context of this research. 

Firstly, it is crucial to acknowledge that the performance 

and generalizability of the model hinge significantly on the 

quality and quantity of available training data. Suppose the 

dataset used for training is limited in size or not adequately 

representative of the broader population. In that case, the 

model’s predictive accuracy may be compromised, 

potentially restricting its real-world applicability. 

Another critical limitation pertains to interpretability. 

Deep learning models, including the hybrid CNN-SVM 

model proposed, can be inherently challenging to interpret. 

Understanding the rationale behind specific predictions or 

identifying the specific features that drive these predictions 

may prove challenging, particularly in medical 

applications where interpretability and transparency are 

paramount. 

Additionally, the computational demands of the model 

must be considered. Training deep learning models, 

particularly Convolutional Neural Networks (CNNs), can 

be computationally intensive, posing constraints for 

researchers or practitioners with limited access to high-

performance computing resources. Furthermore, the class 

imbalance in medical datasets, where certain tumor classes 

may have significantly fewer samples than others, can 

introduce bias and hinder model performance, 

necessitating specialized techniques for addressing this 

limitation. 

Finally, like all medical diagnosis systems, the proposed 

model may still produce false positives and negatives, 

requiring careful assessment and quantification to 

understand their potential clinical impact fully. To mitigate 

these limitations, it is imperative to conduct 

comprehensive validation studies, engage closely with 

domain experts and clinicians, and continuously refine and 

update the system as more data becomes available and 

technology advances. Furthermore, addressing ethical and 

regulatory aspects should be an integral part of the overall 

development and deployment strategy to ensure the 

responsible and effective use of the system in clinical 

practice. 

VII. CONCLUSION AND FUTURE DIRECTIONS 

This paper presents a comprehensive approach for 

multiclass classification of brain MRI images using a 

combination of CNN, VGG19, and the CNN-SVM 

algorithm. This method used the Brats 2018 dataset for 

HGG and LGG classification and the SARTAJ dataset for 

glioma, meningioma, and no tumor classification. The goal 

of the work was to correctly identify brain cancers in MRI 

images using the strength of deep learning for feature 

extraction and the adaptability of SVM for classification.  

The results obtained from the experiments on the 

selected dataset demonstrate the effectiveness of the 

proposed approach. The combination of CNN and the 

SVM classifier achieved the accurate and reliable 

multiclass classification of brain tumors. The approach 

showed promising performance in differentiating between 

tumor types and provided valuable insights into the 

classification of brain MRI images. 

In future, it is imperative to focus on advancing both the 

technical and practical aspects of this research. Firstly, 

consider further refining the model’s performance by 

exploring advanced deep learning techniques and 

architectures, such as attention mechanisms or capsule 

networks, to capture intricate features within MRI images, 

thereby potentially enhancing classification accuracy. In 

parallel, investigate the potential for multimodal analysis 

by incorporating complementary imaging data from 

sources like CT or PET scans. This could lead to a more 

comprehensive understanding of brain tumor 

characteristics. Furthermore, explore the dynamic aspect 

of tumor growth by delving into longitudinal analysis, 

enabling better treatment planning and monitoring. 
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