
 

Assamese Dialect Identification Using Static and 

Dynamic Features from Vowel  
 

Hem Chandra Das 1,2,* and Utpal Bhattacharjee 2 

1 Department of Computer Science and Technology, Bodoland University, Assam, India  
2 Department of Computer Science and Engineering, Rajiv Gandhi University, Arunachal Pradesh, India 

Email: hemchandradas78@gmail.com (H.C.D.); utpal.bhattacharjee@rgu.ac.in (U.B.)  

*Corresponding author 

 

 

 
Abstract—This paper introduces a novel method for 

identifying Assamese dialects by analyzing the acoustic and 

prosodic aspects of vowel sounds in speech signals. The 

distinctive characteristics of these dialects are captured 

through the use of acoustic parameters such as formants (F1, 

F2, and F3), as well as prosodic features like energy, 

fundamental frequency (F0), and duration. To evaluate this 

approach, a comprehensive vowel speech corpus is collected 

from native Assamese speakers representing four different 

dialectal regions. Frame-level statistical features are 

extracted from vowel sounds, while temporal dynamic 

features are obtained from steady-state vowel segments. The 

data collection process involves using a phonetically rich 

script to record both read and spontaneous speech 

interactions from speakers of the four dialects. Various 

classification methods, including three decision tree-based 

classifiers, i.e., Random Forest (RF), Extreme Random 

Forest (ERF), and Extreme Gradient Boosting (XGB), are 

applied to distinguish the four dialects. The performance of 

each feature, whether static or dynamic, is individually 

evaluated. The study reveals that the identification of 

Assamese dialects is influenced by factors such as speech 

length, intensity, pitch, and formant frequencies. To assess 

the significance of these features in distinguishing dialects 

and to measure their combined impact on the identification 

system, single-factor Analysis of Variance (ANOVA) tests 

are conducted. Notably, when static features are combined 

with the Extreme Random Forest (ERF) ensemble model, 

the overall accuracy of dialect identification reaches 77%. 

This research demonstrates the efficacy of using acoustic 

and prosodic features to accurately classify Assamese 

dialects, shedding light on the subtle variations within them. 

In summary, this paper provides a robust framework for 

Assamese dialect identification and contributes to our 

understanding of dialect discrimination, paving the way for 

more advanced dialect identification systems.  
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I. INTRODUCTION 

Dialects represent distinct pronunciation patterns 

within a language, observed among speakers in specific 

geographic regions. These dialectal variations encompass 
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differences in grammar, phonology, and prosody. 

Multiple environmental factors, such as socioeconomic 

class, cultural heritage, geographical location, and 

educational level, influence the pronunciation variations 

of speakers [1]. The integration of advanced technologies 

for classifying and distinguishing dialects has the 

potential to significantly enhance the performance of 

interactive speech systems. The presence of dialectal 

characteristics significantly affects the effectiveness of 

Automated Speech Recognition (ASR) and Human-

Computer Interface (HCI) systems [2]. By incorporating 

dialect knowledge into pronunciation dictionaries and 

providing training on acoustic features, the effectiveness 

of speech-based systems can be greatly improved [3]. 

Dialect recognition plays a crucial role in various forensic 

science tasks, including speaker verification, speech 

verification, and speaker profiling [4]. Integrating dialect 

recognition into user-machine interactions holds promise 

for enhancing the overall experience of interaction. 

Moreover, dialect recognition systems have demonstrated 

their usefulness in various applications such as dialogue 

processing, retrieval of spoken documents, translation of 

spoken language, and efficient conversion of speech into 

text [5]. Moreover, dialect recognition finds applications 

in identifying native languages, aiding in medical fields, 

indexing and retrieving previously spoken materials, 

supporting the media industry, and more [6]. 

The Language Identification (LID) issue has garnered 

considerable interest in the field of speech and language 

processing, and it can be viewed as a specific case of 

Automatic Dialect Identification (ADI). Creating a 

resilient ADI system presents difficulties as it must 

precisely distinguish dialects that belong to the same 

language category. Consequently, most existing models 

are language-specific and struggle to generalize to other 

languages. This challenge arises from the inherent 

dissimilarities in pronunciation patterns, phonology, and 

grammatical structures across different languages [7, 8]. 

To differentiate between various dialects, researchers 

have proposed examining the differences in 

pronunciation of phonemes, consonants, or syllables [9]. 

Acoustic-phonetic variables with spectral and prosodic 

properties have proven successful in investigating these 

differences [10]. This study incorporates acoustic-

phonetic and prosodic features for dialect recognition, 
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comparing the performance of an ensemble method and a 

single Support Vector Machines (SVM) classifier. 

Spectral features, such as formant frequencies, are 

extracted to capture pronunciation variations, while 

energy, duration, and pitch features represent prosodic 

distinctions between dialects.   

To evaluate the system, a new database is created, 

comprising speech samples from four distinct dialect 

groups. Experimental analysis includes the application of 

different techniques, such as a single SVM classifier, 

three tree-based classifiers, and an SVM-based ensemble 

classifier. Cross-dataset evaluation is conducted by 

considering possible combinations of read and 

spontaneous speech datasets, enabling comprehensive 

analysis of the system’s performance and results. 

Previous studies on Automatic Dialect Identification 

(ADI) have mainly concentrated on popularly spoken 

languages, including English, Chinese, Japanese, Dutch, 

Arabic, Spanish, and various others. However, Indian 

languages like Hindi, Bengali, Kannada, Punjabi, Telugu, 

Tamil, Assamese, and others, which can be categorized 

into Indo-Aryan and Dravidian language families, have 

received relatively less attention. The research endeavors 

towards dialect identification in various regional 

languages spoken in India are still at an early stage of 

development. This is partially because there aren’t many 

pertinent datasets available for the specific regional 

languages. There have been only a handful of present-day 

systems that have tried to analyze and classify dialects by 

utilizing shorter utterances such as vowels and 

consonants. Furthermore, there is a lack of studies that 

have specifically explored the static as well as dynamic 

behavior of vowels in relation to dialects.  

This part highlights some works in dialect processing 

that consider the overall behavior of vowel utterances. 

The use of vowel acoustics analysis to identify dialects is 

yet mostly unexplored. Despite the current knowledge 

gap, a few noteworthy efforts in this direction show 

potential for advancing the study of dialect recognition. 

The prosodic differences between dialects are 

expressed by the vowel characteristics energy (loudness), 

duration, and pitch (F0). Evaluation is performed using 

read and semi-spontaneous speech samples from four 

different dialects of Assamese. The study introduces 

feature extraction techniques such as the mean to capture 

static phenomena and fluctuations in vowel signals to 

illustrate the dynamic behavior of vowels. These 

characteristics are quantified to measure variations in 

vowel pronunciation. To capture the dynamic behavior, 

Legendre polynomials of degree five are fitted to each 

contour, with each coefficient representing formant 

frequency features within the contour. The same 

Legendre polynomials are utilized to extract pitch and 

energy contours, simulating dialectal variations in 

Assamese. These dynamic contour features exhibit 

distinctive shapes that capture dialect-specific patterns in 

vowels. 

Significant acoustic relationships are determined 

through a one-way Analysis of Variance (ANOVA) 

(Single Factor) test, analyzing the eight Assamese vowels 

across the four dialects. The classification of dialects 

based on vowels is performed using three ensemble 

approaches with multiple classifiers. These ensemble 

techniques outperform traditional single classifier-based 

methods. The decision tree method serves as the base 

classifier, and bagging and boosting approaches are 

employed to investigate how static and dynamic features 

contribute to the development of the vowel-based ADI 

system.  

Assam, located in northeastern India, is home to the 

Assamese language, which is spoken by the inhabitants of 

the region. Assamese has several regional dialects that 

differ in pronunciation, syntax, and vocabulary across the 

state. The four major regional dialects of Assamese are: 

The section should be organized as:  

• Central dialect: Spoken in and around the Nagaon 

district. 

• Eastern dialect: Spoken in the Sibsagar district 

and its neighboring districts.  

• Kamrupia dialect: Spoken in Kamrup, Nalbari, 

Barpeta, Kokrajhar, and some parts of 

Bongaigaon district. 

• Goalporia dialect: Spoken in Goalpara, Dhuburi, 

and parts of Bongaigaon district. 

Identifying the specific dialect being spoken is 

essential for developing a universal Assamese voice 

recognition system that can accurately recognize words 

spoken in the Assamese language and its various dialects. 

Understanding the distinctions between these dialects is 

crucial for effective communication and language 

processing in the region. 

Assamese is indeed the official language of the state of 

Assam in north-eastern India. It belongs to the Indo-

Aryan family of languages and has evolved over time 

through influences from various non-Aryan languages. 

The pronunciation of Assamese as “Axamiya” by local 

speakers is a valid representation of the phonetics in the 

region. Sanskrit, an ancient language, is considered to be 

the ancestor of Assamese and many other languages 

spoken in the Indian subcontinent [11]. Assamese has 

borrowed vocabulary from Sanskrit and has also 

incorporated words from other languages it has interacted 

with during its evolutionary history. Within Assam, there 

are numerous regional dialects spoken in various regions 

of the state, along with the overall phonemic diversity of 

the Assamese language. These dialects can be broadly 

classified into two primary groups: the dialect spoken in 

upper Assam and the dialect spoken in lower Assam. The 

standard colloquial Assamese language predominantly 

derives from the speech patterns found in upper Assam. 

Linguist Banikanta Kakati has distinguished Eastern and 

Western dialects of Assamese based on linguistic 

similarities. Western Assamese pertains to the language 

spoken in the area encompassing undivided Kamrup and 

Goalpara, whereas Eastern Assamese refers to the region 

extending from Sadiya to Guwahati. It is important to 

acknowledge that languages and dialects can exhibit 

variations and sub-varieties, and linguistic categorizations 

may vary depending on the viewpoints of different 

researchers or experts. 
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The Western Assamese dialect displays significant 

variations between Goalpara and Kamrup speakers, 

resulting in the emergence of numerous sub-dialects. 

Linguist G. C. Goswami identified a central dialect 

situated between upper and lower Assamese. He 

categorized the regional dialects into three groups: Upper 

Assamese, Lower Assamese, and Central Assamese. 

Upper Assamese is spoken from Nagaon in the south to 

Sonitpur in the north, Lower Assamese is spoken from 

east Kamrup to Goalpara, and Central Assamese is 

spoken in Darang in the north, Morigaon in the southeast, 

and Kamrup in the southwest [12, 13]. 

However, recent studies by contemporary linguists 

have established four major Assamese dialect groups: 

Eastern, Central, Kamrupia, and Goalporia dialects [14]. 

These studies presented the intra-division depiction of 

each dialect, as shown in Fig. 1. In the districts of Barpeta, 

Nalbari, and Kamrup, the Kamrupia dialect is spoken, 

which includes various sub-dialects such as Barpetiya, 

Nalbaria, Kamrupia, and South Kamrupia. A notable 

feature of the Kamrupia dialect is the utilization of stress 

on the first syllable rather than the second-to-last syllable, 

as observed in Eastern dialects. This change in stress 

placement significantly affects the pronunciation of 

words. As an illustration, in the Kamrupia dialect, the 

Assamese word for vegetable “gourd” is pronounced as 

/kumra/, whereas in standard Assamese, it is pronounced 

as /komora/. Unlike Eastern Assamese, which 

predominantly uses medial vowels, Kamrupia dialect 

incorporates additional high vowels. 

 

 

Fig. 1. Assamese dialect’s internal division. 

The undivided Goalpara district in Assam, which 

includes the current Dhubri, Goalpara, Kokrajhar, and 

Bongaigaon districts, is linked to the Goalporia dialect. 

This dialect also encompasses eastern and western sub-

dialects spoken in the Goalpara, Bongaigaon, and Dhubri 

regions. Furthermore, the Goalporia dialect shares several 

morphological and phonological traits with Bengali, 

another widely spoken language in India [15]. 

In summary, the Assamese language exhibits 

variations in dialects, and the categorization of these 

dialects has evolved over time. The Western Assamese 

dialects have sub-dialects, and recent studies have 

identified four major dialect groups: Eastern, Central, 

Kamrupia, and Goalporia. These dialects differ in stress 

placement, pronunciation, vowel usage, and linguistic 

traits, reflecting the rich linguistic diversity within the 

Assamese language. One of the primary phonological 

differences among dialects in Assamese often relates to 

differences in vowels sounds. For example, the word 

“king” is pronounced as /rɔza/ (ৰজা) in standard 

Assamese but as /raza/(ৰাজা) in the Kamrupia and 

Goalporia dialects [16]. These differences in vowel 

pronunciation contribute to the overall variation observed 

in the Assamese language across different locations and 

among different speakers. 

The Assamese language is characterized by eight 

vowel phonemes. Every language possesses a distinct set 

of vowels that differentiate words from each other. 

According to scholars such as G. C. Goswami, J. Tamuli, 

and others, Assamese consists of the following eight 

vowels: /i/, /e/, /ɛ/, /a/, /u/, /ʊ/, /o/, and /ɔ/ [11, 17]. 

Among these, the central vowel is represented by /a/, 

while /i/, /e/, and /ɛ/ are categorized as front vowels, and 

/u/, /ʊ/, /o/, and /ɔ/ are classified as back vowels. Table I 

illustrates the organizational structure of the eight 

Assamese vowels. 

TABLE I. EXPLANATION OF VOWEL ORGANIZATION IN ASSAMESE 

LANGUAGE 

 Front Central Back 

High i  u 
High   ʊ 

High-Mid e  o 

Low-Mid ɛ  ɔ 
Low  a  

 

In order to analyse how dialectal differences affect 

eight monophthongal vowels, the paper seeks to 

summarize the acoustic-phonetic properties of vowels. By 

manually segmenting vowels from phonetic-units 

collected from recordings of both read and semi-

spontaneous speech by native speakers, a distinctive 

dataset of Assamese vowel dialect is created. In this 

research, an Automatic Dialect Identification (ADI) 

method based on vowels is presented. In order to do this, 

the system extracts from vowels energy or loudness or 

duration information as well as static and dynamic 

behaviours of spectral formant frequencies (F1−F3) and 

prosodic parameters like F0 or pitch. The research 

proposes a feature extraction approach that takes into 

account features that capture fluctuations in the vowel 

signals, representing their dynamic behaviour, as well as 

features that compute mean values to describe the overall 

static qualities of vowels. To quantify the differences in 

vowel pronunciation, these characteristics are studied in 

vowels. These changes can be a result of dialectal 

differences. The paper uses a Legendre polynomial 

function of degree five for each contour to capture 

dynamic behaviours. Within the contour, each 

polynomial coefficient correlates to particular formant 

frequency properties. Applying the same Legendre 

polynomials to represent the dialectal variances in 

Assamese yields pitch and energy contours as well. These 
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dynamic contour features have a distinctive form that 

captures vowel patterns unique to a particular dialect.  

The fundamental premise of the paper is that vowel 

qualities in four Assamese dialects exhibit significant 

acoustic variance. One-way ANOVA (Single Factor) test 

is used to assess and identify significant acoustic 

correlations between the eight Assamese vowels from the 

four dialects. Three ensemble approaches that make use 

of various classifiers are used to categorise dialects based 

on vowels. These techniques have proven to perform 

better than traditional single classifier-based approaches. 

For the purpose of introducing an ADI system based on 

vowels, the study focuses on collecting static as well as 

dynamic patterns in spectral formant frequencies. 

II. LITERATURE REVIEW 

This study examines the existing literature on 

automatic dialect processing, focusing on language 

models, acoustic-phonetic procedures, phonotactic 

approaches, and classification methods. The majority of 

the existing systems for Automatic Dialect Identification 

(ADI) integrate acoustic-phonetic with phonotactic 

methods. Scholars have proposed the extraction of 

dialectal cues from segmental acoustic features 

(individual speech sounds) and supra-segmental acoustic 

features (prosodic characteristics). Text-dependent and 

text-independent speech samples, encompassing both 

scripted and spontaneous speech modes, are assessed for 

the purpose for dialect recognition [18]. Researchers have 

extensively used Mel-Frequency Cepstral Coefficients 

(MFCC) and Shifted Delta Coefficients (SDC) to analyze 

spectral acoustic variations between dialects. Gaussian 

Mixture Models (GMM) are frequently used to capture 

and analyze spectral cues and temporal variations in order 

to categorize dialects [8, 10, 19−21]. Moreover, prosodic 

variations are modeled by extracting rhythmic, intonation, 

and stress components from pitch, intensity, and duration 

measurements [22−24]. Certain studies have examined i-

vector models that employ joint factor analysis to reduce 

dimensionality when extracting acoustic features. The 

inclusion of an i-vector alongside MFCC-SDC features 

has demonstrated notable enhancements in the 

performance of dialect recognition [25−27]. The most 

effective GMM mixtures specific to dialects are 

generated through the utilization of Kullback-Leibler 

Divergence-GMM (KLD-GMM) techniques. Moreover, 

to enhance classification accuracy, Frame Selection 

Decoding (FSD) is employed by eliminating confounding 

auditory zones [28]. 

Several researchers have noted that language 

boundaries are distinct, and they have suggested the same 

for dialects. Consequently, they have applied Language 

Identification (LID) methodologies to Automatic Dialect 

Identification (ADI) [19, 28]. Standard LID techniques 

such as language modeling and phone recognition 

procedures have shown promising results when treating 

dialects as subclasses of languages [7, 29]. Dialects, 

being variations within a common language, generally 

share vocabulary, syntax, and semantics, with variations 

primarily occurring in phonology and pronunciation 

patterns, and minimal differences in grammar. Therefore, 

methods used for LID may not be directly applicable to 

ADI [28]. Various studies have focused on dialect 

processing at different levels, including sentence, word, 

syllable, or phoneme levels. Both read and spontaneous 

speech have been considered in text-dependent and text-

independent scenarios for dialect processing [18, 22]. 

Acoustic-phonetic techniques [22, 30, 31] and 

phonotactic approaches [9, 32, 33] have demonstrated 

effectiveness in addressing the dialect recognition 

problem. 

Dialect identification can make use of various 

phonotactic methods when speech transcriptions are 

accessible, although it can be difficult when 

transcriptions are unavailable [34]. Within the realm of 

dialect processing, several techniques receive emphasis, 

including Parallel Phone Recognition (PPR), Parallel 

Phone Recognition Language Modeling (PPRLM), and 

Phone Recognition Language Modeling (PRLM). An 

example of such a technique is PPRLM, which is 

employed to distinguish four colloquial dialects from 

Modern Standard Arabic (MSA) dialects [32, 35]. 

To characterize dialects and identify their 

distinguishing features, researchers have explored various 

phonetic segments. Extensive research has been 

conducted on the intrinsic characteristics of vowels, 

including F1, F2, pitch, and duration, to investigate the 

acoustic distinctions among linguistic dialects [36−39]. 

For instance, research conducted on the acoustics of 

Brazilian and European Portuguese dialects revealed 

substantial disparities in intrinsic vowel attributes, such 

as F1, F2, pitch, and duration [36]. Another approach has 

been developed that improves dialect classification 

performance by fusing phonetic data with vowel acoustic 

properties [37]. Similar studies have examined how the 

fifteen normal Dutch vowels are pronounced in different 

Dutch and Belgian accents by looking at the initial three 

formants, fundamental frequencies, and duration 

characteristics [39]. In a recent study focusing on Greek 

dialects, the dynamic formant frequencies (F1−F4) and 

acoustic parameters related to vowel duration were taken 

into account to classify the dialects of Cypriot Greek and 

Athens Greek [40]. Moreover, it was proposed to 

compare acoustic and articulatory methodologies to 

investigate the distinctions in vowels between the English 

dialects of Australia and America. In this study, vowel 

data obtained with the aid of electromagnetic 

articulography were employed, uncovering noteworthy 

connections between tongue position and formant 

frequencies [41]. 

Only a few attempts have been made to differentiate 

dialects based on vowels in Indian languages. One 

proposed method involves the utilization of a fuzzy 

neural network-based system for Assamese dialect 

recognition. This approach uses prosodic and formant 

data produced with vowel sounds employing vowel 

sounds in an acoustic speech stream to identify dialects. 

They found that the Neural Fuzzy Classifier (NFC) 

provided a 23% increase in accurate classification rate 

compared to FFNN, demonstrating its efficacy in 
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identifying dialects [42]. Koolagudi [43] developed a 

system capable of recognizing fifteen different languages, 

including Assamese, Bengali, Hindi, English, and others, 

by extracting twenty-one Mel-Frequency Cepstral 

Coefficient (MFCC) features from audio signals obtained 

from television news networks in India. The extracted 

features were then used with a GMM-based classifier to 

differentiate the languages, achieving an average 

recognition rate of 88% for the 15 languages. Another 

study by Verma et al. [44] presented an automatic 

language recognition system that used K-means 

clustering on MFCCs and Support Vector Machines 

(SVM) for classification. This system achieved an 

average classification accuracy of 81% for short duration 

speech signals in English, Hindi, and Tibetan. For dialect 

identification, Ismail et al. [45] worked on Kamrupia and 

Goalporia dialects as well as the Assamese language 

using GMM and GMM-UBM techniques. They created a 

corpus using spontaneous speech and achieved an 

identification rate of 98.3% with GMM-UBM compared 

to 85.7% with GMM. Overall, these studies highlight 

various methods, including neural networks, clustering 

techniques, and Gaussian mixture models, to effectively 

recognize and classify dialects based on vowel 

characteristics in Indian languages. This study focuses on 

examining the impact acoustic characteristics of vowel on 

four distinct Hindi dialects. By examining formants (F1, 

F2 and F3), pitch (F0), and pitch slope data, the 

researchers explore the eight vowel’s acoustic 

characteristics from Hindi language [46].  

Support Vector Machine (SVM) models have proven 

to be highly effective for prediction and classification 

tasks, especially when dealing with high-dimensional 

input spaces. These models are particularly suitable for 

working with voice representations that contain a large 

number of features [47]. In a study focused on three 

Spanish dialects, a hybrid GMM-SVM classifier was 

utilized to classify the dialects. The experiments 

encompassed different variables, including formant 

frequencies, Line Spectral Pairs (LSP), MFCC, intensity, 

pitch, and zero crossing rate (MEPZ) attributes. Both 

individual and combined analyses were conducted on 

these variables [48]. However, training SVMs with a 

large dataset can lead to increased computational costs. 

To address this issue, the Minimal Enclosing Ball (MEB) 

technique is employed as a solution [49]. 

Chittaragi and Koolagudi [50] used both a single 

classifier based on the multi-class Support Vector 

Machine (SVM) technique and a multiple classifier-based 

ensemble SVM (ESVM) technique to classify Assamese 

dialects. The ESVM technique has shown superior 

performance compared to a single SVM. When using 

spectral features alone, the dialect recognition 

performance reached 83.12%, while prosodic features 

achieved a recognition rate of 44.52%. Moreover, the 

study examines the synergy between spectral and 

prosodic features by merging their respective feature 

vectors for dialect recognition. Remarkably, this 

combination leads to a substantial increase in dialect 

recognition performance, achieving an impressive 

86.25% accuracy. These results suggest the presence of 

complementary and dialect-specific evidence within both 

spectral and prosodic features. Notably, when tested on 

the standard IViE corpus, the ESVM approach achieves a 

significantly higher recognition rate of 91.38%. 

In order to identify Assamese dialects, Das and 

Bhattacharjee [51] presented a method utilizing the 

Gaussian Mixture Model (GMM) and Gaussian Mixture 

Model with Universal Mixture Model (GMM-UBM). By 

combining MFCC and ∆MFCC features and applying this 

model, they achieved an identification accuracy of 

97.57%. 

Sarmah and Dihingia [52] utilized a random forest 

approach to identify Assamese dialects based on acoustic 

features of Assamese vowels, achieving a classification 

accuracy of 94.0% for the test data. 

In general, for classification statistical i.e. probabilistic 

or rule based approach were used by single classifier. The 

single classifier algorithm depends on a single approach 

to achieve classification performance. The classification 

method used Gaussian Mixture Model (GMM), Linear 

Discriminate Analysis (LDA), Support Vector Machines 

(SVM) and neural network [10, 24, 53, 54]. 

Recently, the concept of combining multiple classifiers 

has gained attention as a means to enhance performance 

compared to using individual classifiers alone. One 

approach to tackle robustness issues across various 

dialects is the utilization of rotation forest, which is an 

ensemble of decision trees [22]. However, there have 

been limited efforts to apply ensemble approaches for 

addressing dialect identification challenges [30, 55]. 

Similarly, the AdaBoost ensemble method has been 

employed for word-based dialect detection, where instead 

of operating in the feature space, this approach focuses on 

improving performance [30]. These ensemble techniques 

have demonstrated significant improvements compared to 

using single classifiers. Furthermore, the majority of 

studies in this domain have primarily relied on n-gram 

features in natural language processing to identify 

dialects from datasets that are text-based [56]. 

Nowadays, the majority of electronic devices rely on 

automatic speech recognition systems. For dialect 

recognition to be efficient, especially in resource-

constrained scenarios, it is crucial to have faster and 

simpler computations. Previous research indicates that 

most existing systems consider dialect recognition when 

processing longer-duration data, such as the complete 

signal. Nevertheless, these existing models suffer from 

computational complexity issues and lack language 

independence. When applied to another language, their 

performance may not be as reliable, given the significant 

variations in pronunciation patterns among different 

languages. 

The absence of a standard Automatic Dialect 

Identification (ADI) system for the Assamese language 

serves as the driving force behind the development of a 

novel system that aims to characterize and identify the 

four dialects of the Assamese language. 
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III. EXPERIMENTAL SETUP 

A. Creating a Vowel Database and Assembling a 

Speech Database for Assamese Dialects 

The vowel database utilized in this work was generated 

by gathering spoken samples from indigenous speakers of 

four distinct Assamese dialects, encompassing read and 

semi-spontaneous speech in both. The recording sessions 

primarily involved participants from rural areas who were 

either native-born or had lived there for a considerable 

duration. Most of the speakers had a minimum 

educational qualification at or below the level of 

matriculation, indicating a lower level of formal 

education. Their way of speaking in their native dialect is 

less influenced by written and standard Assamese due to 

their limited education. Approximately 90% of the 

selected speakers only spoke Assamese. The speakers’ 

ages ranged from 25 to 65 years old. 

The recordings were made with a Sony voice recorder 

that has a 44.1 kHz sampling rate and a 16-bit mono 

resolution for every sample. The speech data consists of 

10 individuals, five male and five female, who can read 

and speak semi-spontaneous styles and represent all of 

the Assamese dialects. Separate database was created for 

the read speech and the semi-spontaneous speech. The 

recording environment was relatively quiet. For the read 

speech dataset, a script with a rich set of phonetic content 

was used. For instance, semi-spontaneous speech, random 

questions were asked to elicit natural and spontaneous 

conversations about topics such as childhood, schooling, 

personal history, and professional experience. The 

recorded data was subsequently subjected to pre-

processing to eliminate noise and prominent pauses in the 

speaker’s speech. Careful selection of speakers was done 

based on the collected database, ensuring that their 

speech was clear and understandable, to create the vowel 

database. Table II presents a concise summary of the 

primary Assamese dialect database, which served as the 

foundation for generating the vowel database. 

The process illustrated in Fig. 2 demonstrates the 

manual segmentation technique for identifying vowels 

using the Praat open-source software tool [57]. To create 

the vowel database, a minimum of ten speakers with clear 

speech from the actual Assamese dialect database are 

selected. The manual segmentation focuses on breaking 

down continuous speech into individual words. 

Specifically, words that exhibit well-articulated and 

interesting vowels are chosen. Words with phonetic unit 

patterns like /VcV/ and /cVcV/—where V stands for a 

vowel and C for a consonant—are favored when vowels 

are retrieved from spontaneous speech. This selection is 

made considering that the co-articulation of the particular 

consonants has a relatively negligible impact on the 

stability of the vowels preceding and following them. 

Vowels are identified from the particular phonetic unit by 

visually inspecting the waveform, formants, and intensity 

parameters in Praat. When there is a progressive increase 

in intensity, the F1 and F2 values are examined to 

determine the onset of the vowel. The F1 and F2 readings 

at the beginning of a progressive reduction in intensity 

might also be used to predict the vowel’s termination. 

The segment between the beginning (onset) and end 

(offset) of the vowel, known as the steady-state portion, is 

regarded as the signal that represents both short and long 

vowels. Since, the majority of the vowels are derived 

from the beginning and end of words because co-

articulation has a lesser impact in these portions.  

TABLE II. ASSAMESE DIALECT VOWEL DATABASE INFORMATION  

Dialects Total Speaker Read Mode (in Minutes) Semi-read Mode (in Minutes) No. of Vowel (In Total) 

Eastern 10(5M+5F) 58 54 540 

Central 10(5M+5F) 63 58 540 

Kamrupia 10(5M+5F) 58 56 540 
Goalporia 10(5M+5F) 63 58 540 

 

 

Fig. 2. Manual transcription of the word “Abiskar” (Assamese word for Discover) in .wav file using Praat. 

B. Feature Extraction  

This research advances the ADI system by employing 

acoustic-phonetic information extracted from Assamese 

vowels. The acoustic properties, such as formant 

frequencies, obtained from the steady-state regions of the 

vowels play an important role in distinguishing between 

different vowel sounds. Additionally, the statistical 

analysis of each feature derived from the vowels gives 
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details about their relevance in the classification of 

dialects based on vowel sounds. It is crucial to consider 

factors like gender differences, emotional states, co-

articulation effects, the setting of sound units, and 

articulatory configurations, as they contribute to the 

acoustic variation observed in vowel sounds [58]. Fig. 3 

displays the mean LP spectra of the vowel /e/ as 

pronounce by a speaker randomly chosen from the four 

Assamese dialects. The image demonstrates the presence 

of distinct spectral shapes among the dialects, indicating 

systematic and significant differences in vowel intrinsic 

spectral features. The variations in energy levels, spectral 

peaks, spectral sharpness, and the positions of formant 

frequency values (F1−F4) can be discerned in these 

differences. In this study, the formant frequencies F1 to 

F3, along with pitch, speech frame energy, and vowel 

duration, are employed to characterize the four dialects. 

Formants, which are resonant frequencies in connection 

with shape of the mouth cavity during phoneme 

production, play an important part in vowel recognition. 

Among the formants, F1 is associated with vowel height, 

where low values correspond to high front vowels (/i/, /e/, 

/u/, and /u:/ as shown in Table I), while high values are 

linked to low mid vowels (/a/ and /a:/). Similarly, F2 is 

related to tongue advancement, with high values 

indicating fronting and low values indicating backing. F3 

is commonly used to distinguish between rounded and 

unrounded vowels and the degree of lip rounding and 

constriction influences F2 and F3 proportionally. 

 

 

Fig. 3. Typical LP spectrum of vowel /e/ in four dialects. 

Instead of relying solely on energy attributes, it is 

advantageous to analyze the dynamic and static behaviors 

of the steady-state region of a vowel to characterize 

languages. The process employed in this research 

involves retrieving three formants (F1, F2, F3), pitch and 

energy contours, along with local variations in vowel 

pronunciation across dialects. To represent the temporal 

dynamics of phonation, intonation, and loudness in local 

variations, six features are extracted from formants, pitch, 

and energy using a Legendre polynomial fit function of 

order five. To create a feature vector with a size of 56, 

i.e., 30, these characteristics are joined in the following 

order: F1, F2, F3, pitch, and energy. Additionally, the 

duration of each individual vowel in milliseconds is 

incorporated into the feature vector to capture regional 

variations, resulting in a feature vector of dimension 25. 

Vowels are used to extract both regional and global 

properties. The mean, minimum, maximum, standard 

deviation and variance of F1, F2, F3, pitch, and energy 

are retrieved for each vowel. These represent the static 

characteristics of the vowels. Consequently, four static 

features are derived from each vowel, encompassing F1, 

F2, F3, pitch, and energy, resulting in a feature vector of 

25 dimensions. 

C. Statistical Evaluation of Features 

A conventional F2−F1 plot was created using the mean 

F2 and F1 values of all five vowels from four dialects, as 

shown in Fig. 4. The plot arranges the vowels in the order 

of fronting to backing: /i/, /e/, /a/, /o/, and /u/. The Central 

and Kamrupia dialects can be distinguished from other 

dialects by their higher F1 and F2 values for front vowels. 

These dialects exhibit distinct speech styles characterized 

by stronger energy levels, higher vocal tonalities, and 

faster speech rates, which contribute to larger F2 values 

for front vowels. All dialects, however, share almost 

identical F1 and F2 values for the central-low vowel /a/. 

In the Goalporia dialect spoken in lower Assam, the 

vowels /e/, /a/, and /u/ have lower F1 and F2 values, 

while the back-mid vowel /o/ exhibits higher F1 and F2 

values. Speakers from this region tend to exhibit less 

variation from the standard Assamese pronunciation 

when they are conscious. Similarly, the Eastern dialect 

also shows small F1 and F2 values for its vowels. 

 

 

Fig. 4. Vowel articulation in four distinct dialects, with F2 and F1. 

The Eastern and Central speaking styles resemble the 

written/standard form of Assamese more closely, with 

each phonetic phrase being distinct. The plot Fig. 4 

clearly demonstrates the presence of different vowel 

pronunciation patterns among the four dialects. Fig. 5 

illustrates the F1, F2, and F3 formants for the vowels /a/, 

/i/, and /u/ in Assamese dialects, obtained through 

Legendre curve fitting of order five using male speakers. 

The figure clearly demonstrates significant variations in 

the vowels across different dialects. These three vowels, 

due to their distinctiveness, are considered as 

representative formants in the plot. For instance, the 

vowel /i/ is characterized by a lower F1 and a higher F2, 

while the vowel /u/ exhibits a lower F1 and a higher F2. 

In contrast, the vowel /a/ displays a higher F1 and a lower 

F2 [59]. 
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Fig. 5. Three formants (F1, F2, F3) for three vowels (/a/, /i/, /u/) for all four dialects. 

To assess the impact of speakers’ native dialect, 

ANOVA tests were conducted on formant frequencies, 

pitch slope, intensity, and duration. For the purpose of 

identifying the acoustic factors associated with these 

dialects, an ANOVA test is executed on the vowel sound 

units in Assamese. Agrawal et al. [60] examine the 

variations in Hindi dialects by employing Analysis of 

Variance (ANOVA) on acoustic attributes including 

formant frequency, pitch, pitch slope, duration, and 

intensity in vowel sounds. They employ a kernel-based 

Support Vector Machine (SVM) to gauge the capacity of 

these acoustic features to distinguish dialects, achieving a 

classification accuracy of 66.97%. Through the 

incorporation of shifted delta cepstral coefficients with 

Mel-Frequency Cepstral Coefficients (MFCC), the 

accuracy rises to 74% for prosodic feature combinations, 

and when spectral and prosodic features are combined, 

they attain a classification accuracy of 88.77%. One-way 

ANOVA is used for the statistical examination of the 

features. The mean values of F1, F2, F3, and duration 

features for all are computed of the eight vowels. 

Tables  III and IV present the outcomes of the F-test, 

including the F-statistic, mean values, and standard 

deviations of the eight vowels across the four different 

dialects. The F-statistic, or F-ratio, determines whether 

the means of different samples significantly differ. 

However, relying solely on the F-statistic is often 

insufficient, so the P-value is also considered. The P-

value indicates the likelihood of obtaining the observed 

results. In this analysis, the hypothesis is that the 

formants extracted from the vowels exhibit significant 

differences among the four dialects. The significance 

threshold α is set at 0.05, meaning that if the P-value is 

below 0.05, the observed differences are considered 

statistically significant. 

Table III reveals that the Kamrupia dialect exhibits 

higher F1 values for the /i/, /a/, /o/, and /o:/ vowels. In the 

Goalporia region, front vowels (/i/, /e/, /e:/, and /a/) are 

associated with high F2 values. The Eastern, Central, and 

Kamrupia dialects share a common characteristic of 
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having low F2 and F3 values across all vowels. The 

Central region shows higher F3 values for the /e:/, /a/, 

and /u/ vowels, while the Eastern region exhibits higher 

F3 values for the /i/, /i:/, /e/, and /u:/ vowels. The P-

values for the /e/ and /u:/ vowels, highlighted in bold in 

Tables III and IV, are found to be less than 0.05. 

Furthermore, the f-statistic is greater than the critical f-

value, indicating significant pronunciation variations 

among dialects. For example, the ANOVA results for the 

/e/ vowel are as follows: [f(4,434) = 4.51, P = 0.0029] for 

F1, [f(4,434) = 2.71, P = 0.034] for F2, and [f(4,434) = 

3.65, P = 0.017] for F3. Here, f(4,434) denotes the f-

statistic with degrees of freedom representing the within-

group (N−k) and between-group (number of classes −1, 

4−1). Similarly, it has been noted that the /u:/ vowel 

varies significantly across dialects with [f(4,220) = 10.34, 

P = 0.0001] for F1 and [f(4,220) = 10.05, P = 0.0001] for 

F2 values. However, F3 does not contribute significantly 

to the differentiation of dialects containing the /u:/ vowel. 

Table III represents the F2 statistics, and it is noted that 

the vowel /o/ shows [f(4,220) = 9.19, P = 0.0006], 

indicating significant differences in F2 values among the 

dialects. Furthermore, variations in F2 values are noted 

across the dialects. Moreover, statistically significant 

differences in F2 values among the four Assamese 

dialects were found for the vowels /i:/ [f(4,210) = 4.90, P 

= 0.002] and /e/. These tables demonstrate that only a 

subset of vowels exhibit a range of F1, F2, and F3 values. 

These characteristics (F1, F2, F3) can be leveraged for 

automatic classification as they exhibit substantial 

changes across the four Assamese dialects, providing 

strong evidence for differentiation. 

Table IV presents the results of an ANOVA test 

conducted to analyze the statistical significance of vowel 

duration in differentiating the four dialects. It was 

hypothesized that vowel duration plays a crucial role in 

distinguishing between the dialects. The outcomes show 

significant differences for the vowels /i/ [f(4,210) = 2.67, 

P = 0.041], /a/ [f(4,310) = 6.01, P = 0.0002], /a:/ [f(4,160) 

= 4.31, P = 0.0053], /o/ [f(4,200) = 9.1, P = 0.0005], /u/ 

[f(4,240) = 4.91, P = 0.005], and /u:/ [f(4,200) = 7.41, P = 

0.0005]. The Kamrupia dialect typically has shorter 

vowel durations. With the exception of /e/, most vowels 

demonstrate differences among the dialects. 

TABLE III. COMPUTE MEAN AND STANDARD DEVIATION OF THE F1 FEATURE FOR EIGHT LONG AND SHORT VOWELS USED IN THE F-TEST, SD 

(STANDARD DEVIATION), EASTERN (L-1), CENTRAL (L-2), KAMRUPIA (L-3), AND GOALPORIA (L-4) PAPERS 

Assamese 

vowels 

F1 formant F2 formant F3 formant 

f-stat P-value F-crit f-stat P-value F-crit f-stat P-value F-crit 

/i/ 0.51 0.68 2.59 1.25 0.27 2.55 1.77 0.145 2.56 

/i:/ 2.01 0.12 2.65 1.34 0.25 2.63 4.90 ˂0.002 2.65 

/e/ 4.51 ˂0.0029 2.51 2.71 ˂0.034 2.54 3.65 ˂0.017 2.53 

/e:/ 0.94 0.42 2.58 0.97 0.39 2.58 1.02 0.387 2.59 
/a/ 1.85 0.09 2.39 1.98 0.08 2.41 1.04 0.372 2.39 

/a:/ 1.41 0.21 2.60 0.33 0.81 2.61 1.44 0.221 2.61 

/o/ 2.29 0.10 3.09 9.19 ˂0.0006 3.06 1.24 0.324 3.09 
/o:/ 0.86 0.47 3.01 1.11 0.37 3.06 1.41 0.265 3.01 

/u/ 1.20 0.31 2.81 2.14 0.09 2.89 0.60 0.654 2.98 

/u:/ 10.34 ˂0.0001 2.86 10.05 ˂0.0001 2.85 0.71 0.574 2.88 

TABLE IV. COMPUTE MEAN AND STANDARD DEVIATION OF DURATION IN MILLISECONDS AND PERFORM AN F-TEST FOR 8 LONG AND SHORT 

VOWELS, SD-STANDARD DEVIATION, EASTERN (L-1), CENTRAL (L-2), KAMRUPIA (L-3), AND GOALPORIA (L-4) 

Vowels 
Duration(ms)-mean Duration(ms)-SD F-Test 

L1 L2 L3 L4 L1 L2 L3 L4 f-stat P-value F-crit 

/i/ 60 59 52 75 12 11 3 14 2.65 ˂0.041 2.54 

/i:/ 105 96 87 100 9 18 18 20 0.97 0.418 2.64 

/e/ 56 68 54 62 10 9 9 13 1.96 0.112 2.54 
/e:/ 106 124 116 112 24 26 8 17 1.06 0.373 2.61 

/a/ 55 61 51 61 11 14 8 14 6.01 ˂0.0002 2.41 

/a:/ 111 105 87 103 20 13 6 7 4.32 ˂0.0053 2.60 
/o/ 78 63 49 73 11 13 2 2 9.1 ˂0.0005 3.9 

/o:/ 114 104 90 115 5 5 11 10 2.59 0.079 3.9 

/u/ 56 93 56 63 9 26 6 11 4.93 ˂0.005 2.81 
/u:/ 123 128 83 117 24 12 6 8 7.41 ˂0.0005 2.79 

 

The outcomes of the ANOVA test carried out on the 

eight vowel durations distinctly demonstrated that, in the 

case of the majority of the vowels, one set of speakers 

differed from another group of speakers. It can be 

deduced that the duration of most vowels can serve as a 

discriminative factor for identifying dialects. 

D. Prosodic Features  

Features extracted from the frame of the signal only 

capture limited local information. As a means to capture 

changes within and across sequences of sound units, it is 

necessary to derive some features from a larger time 

frame of the speech. Elements such as intonation, 

intensity patterns, and varying speaking rates contribute 

to the naturalness of conversational speech [61]. These 

aspects, known as prosodic cues, facilitate the utilization 

of distinct speaking patterns unique to each dialect. 

Prosodic features are typically examined through pitch, 

intensity fluctuations, stress patterns, and rhythmic output. 

These additional characteristics of speech units offer 

valuable insights for dialect identification purposes. 
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Prominent distinctions in acoustic and linguistic 

characteristics have been discovered between 

spontaneous and read speech, even when utilizing two 

distinct speech datasets from the Assamese dialect speech 

corpus. These differences encompass intonation, loudness, 

speaking rate, and other perceptual aspects of speech. By 

incorporating these features, speech acquires a more 

natural quality by the utilization of intonation variations, 

varied durations, and intensity patterns. Dialect 

identification primarily relies on discerning distinct 

pronunciation patterns employed by different speakers 

within the same language. It has been established that 

prosodic variations genuinely exist in speech and play a 

crucial part in conveying dialect-specific information [22]. 

Reports indicate that prosodic Variations frequently occur 

in a majority of Indian dialects [8, 24, 62]. 

To detect prosody cues, pitch, energy, and duration 

parameters are derived from shorter segments of vowels. 

A pitch estimation technique depending on the 

subharmonic-to-harmonic ratio is used to extract pitch 

(F0) information [63]. Intonation patterns, which 

encompass the differences in rise and fall of pitch over 

time, help identify specific dialectal patterns. The energy 

level of the speech signal is utilized to calculate the 

voiced and unvoiced parts of speech. By combining 

energy, pitch, and duration, the stress patterns of speakers 

can be expressed. Frame energy, a prosodic property 

frequently employed in accent and dialect recognition 

research, is considered by some researchers as a separate 

stream [16], while others incorporate it alongside spectral 

features [64]. Both approaches improve the system’s 

efficiency. The energy of each segmented speech frame, 

which overlaps with adjacent frames, is computed by 

summing the squared amplitudes of each sample. 

The speech signal exhibits time-varying energy 

characteristics, which might be thought of as representing 

the loudness property. Short-time energy, derived from 

vowel sounds, is used to capture this aspect of loudness, 

which plays an important role in how sound is perceived 

by individuals. The development of energy over time is 

assessed by comparing the variations in sample 

amplitudes within a frame. Eq. (1) is utilized to compute 

the short-term energy feature. 

 𝐸(𝑖) = ∑ |𝑥𝑖(𝑛)|
2𝑊𝐿

𝑛=1  (1) 

Here, xi (n), n=1, 2... WL is the audio samples in the 

frame with WL denoting the frame’s length. 

 𝐸(𝑖) =
1

𝑊𝐿
∑ |𝑥𝑖(𝑛)|

2𝑊𝐿
𝑛=1  (2) 

To eliminate the dependence on the frame length, 

energy is normalized over a frame by dividing it with WL. 

A box plot employed to represent the first-order 

statistics of energy values taken from voice samples 

among the four Assamese dialects. Fig. 6 presents the 

statistical information, including the median, maximum, 

minimum, and first and third quartiles. It is obvious that 

the Kamrupia dialect exhibits a larger interquartile range 

in relation energy. This suggests that speakers of this 

dialect have higher overall energy levels and a greater 

variability in their energy patterns. In contrast, the 

Central and Eastern dialects have a narrower range of 

energy values, indicating lower energy levels and a more 

consistent speaking pattern across the region.  

Goalporia dialect, similar to Kamrupia, shows a wider 

energy range because of the usage of higher energy 

values in speech. The interquartile ranges of the Central 

and Eastern dialects are observed to be similar. Outliers, 

denoted by the symbol “+”, are present in all dialects 

except for Goalporia, and they are usually skewed 

towards the maximum values The findings from Figs. 4–6 

represent that the Kamrupia and Goalporia dialects 

exhibit higher F1 and F2 values, which are connected to a 

wider interquartile range in those dialects. Moreover, the 

energy feature shows higher values in these dialects as 

well. Conversely, the central and eastern dialect region is 

related to lower F1 and F2 values, together with a 

noticeably narrower interquartile range. Interestingly, 

there is correlation observed between F1, F2 values, and 

the energy features. 

 

 

Fig. 6. Energy data for speakers of four dialects. 

E. Prosodic Features  

This study implements an approach for dialect 

identification that combines acoustic and prosodic 

behaviors. The main objective is to look at the 

performance of individual classifiers and ensemble 

classifiers (Random Forest, Extreme Random Forest, and 

Extreme Gradient Boosting) in dialect identification 

using acoustic and prosodic data. Individual classifiers 

use statistical techniques to estimate class-conditional 

probability, while ensemble classifiers aggregate the 

predictions of multiple base models to improve accuracy. 

Ensemble classifiers aim to leverage the collective 

wisdom of a panel of experts rather than relying solely on 

the judgment of a single expert (base learner). The 

selection of base models can be done through 

independent or dependent approaches. Bagging methods 

are employed to combine predictions from different base 

models obtained from bootstrap samples of the initial 

data. Boosting algorithms, on the other hand, grow the 

base models in a dependent manner, iteratively modifying 

them based on training to reduce errors in the ensemble. 

The workflow of both single and ensemble classification 

algorithms is illustrated in Fig. 7. 
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Fig. 7. Single vs. ensemble classifier workflow. 

Ensemble methods have emerged as highly effective 

strategies for voice recognition tasks by combining 

predictions from multiple classifiers. These methods 

leverage the strengths of different algorithms, thereby 

enhancing the overall predictive performance. In this 

study, dialect identification algorithms are developed 

using both boosting, specifically Extreme Gradient 

Boosting (XGB), and bagging techniques, including 

Random Forest (RF) and Extreme Random Forest (ERF). 

During the second phase of the analysis, the individual 

models within the ensemble are compared to one 

another  [48, 65]. This study introduces a Random Forest 

(RF) classifier built on decision trees. A forest 

comprising 2048 decision trees is created using a 

combination of randomized tree predictors and 

bootstrapping techniques applied to the training dataset.  

Through the utilization of 2048 decision trees and the 

Assamese vowel dialect speech corpus, empirical analysis 

yields higher accuracy results. During the construction of 

each tree, the split-node procedure is regulated by 

selecting the ideal split in light of the Gini criterion 

selected at random from a set of features. 

 𝐺𝑖𝑛𝑖 = 𝑁𝐿 ∑ 𝑝𝑘𝐿(1 − 𝑝𝑘𝐿) + 𝑁𝑅 ∑ 𝑝𝑘𝑅(1 − 𝑝𝑘𝑅)𝑡=1…𝑇𝑡=1…𝑇  (3) 

The quantities pkL and pkR indicate the ratios of the t 

class in the left side and right side nodes of the tree 

The quantities pkL and pkR indicate the ratios of the t 

class in the left side and right side nodes of the tree, while 

NL and NR represent the respective counts of nodes in the 

left side and right side of the tree. The division of a node 

involves considering √n features, where n is equivalent 

to the length of the feature vector. In the case of 

constructing the entire forest using decision trees, the 

categorization process involves aggregating the 

predictions made by multiple trees trained on different 

subsets from the training set through voting. 

An ERF, that is a simplified version of RF, constructs 

2048 randomized trees by sampling with replacement. 

Unlike RF, ERF selects the optimal threshold for every 

potential feature from a set of randomly generated 

thresholds, rather than using an optimized split. Similar to 

RF, the maximum features parameter in ERF is also set to 

√n, where n represents the size of the feature vector. 

In XGB Boosting, the forecasts of the base learner are 

progressively improved in a greedy manner, aiming to 

reduce the selected loss function (error) and enhance 

accuracy. In this study, the multi-class logloss function is 

employed as the chosen loss function for XGB Boosting. 

 𝑙𝑜𝑔𝑙𝑜𝑠𝑠 = −
1

𝑝
∑ ∑ 𝑧𝑖,𝑗 log(𝑡𝑖,𝑗)

𝑄
𝑠=1

𝑃
𝑟=1   (4) 

where P represents the dimension of the feature vector, Q 

denotes the total count of class labels, and Zi,j of the base 

learner takes the value 1 when observation r corresponds 

to class s, and 0 otherwise. The projected probability of 

observation r belonging to class s is denoted as ti,j   

In this study, a decision tree classifier is used as the 

base learner. The decision tree construction involves 

several steps: setting the learning rate (η) to 0.2 to control 

the reduction of feature weights and make the boosting 

process more cautious, imposing a maximum depth limit 

of 6 for each tree, and using a subsample ratio of 0.6 for 

training data instances. The objective function SoftMax is 

employed to handle the four classes in dialect recognition. 

These parameter values are chosen empirically to 

optimize the recognition accuracy. The XGBoost library 

is utilized for implementing the system [66, 67]. The 

proposed dialect recognition system incorporates three 

decision tree and ensemble approaches, and its block 

design is depicted in Fig. 8. 

 

Fig. 8. Dialect recognition system using ensemble. 
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IV. RESULT AND DISCUSSION 

To classify dialects based on their static and dynamic 

characteristics, acoustic-phonetic and prosodic features 

are employed in experimental settings. The aim is to 

develop Automatic Dialect Identification (ADI) systems 

that utilize both static and dynamic feature vectors. Three 

decision tree base learners and ensemble methods are 

used in these systems. Test speech samples are provided 

to all ADI systems, and the dialect corresponding to the 

speech sample is assumed being the model with the 

strongest supporting evidence. The efficiency of dialect 

classification is assessed by using two validation 

techniques. One is Simple Validation (SV) and the other 

one is Cross-fold Validation (CV). Both individual and 

combined features are utilized to evaluate the 

effectiveness of integrating acoustic and prosodic 

characteristics in identifying dialects. 

Cross-validation is utilized to address the dataset’s 

variations and improve the model’s stability. This method 

entails splitting the data into several subsets, enabling the 

training and testing to be performed on various 

combinations of the data. This research utilizes a five-

fold cross-validation strategy, where four sets are 

employed for training purposes, while one set is 

designated for testing. In each iteration, the training and 

testing folds are interchanged to consistently evaluate the 

performance of the system. The database is split into an 

80:20 ratio, 80% data is used for training (1728 vowels) 

and 20% used for testing (432 vowels). The identical 

procedure is replicated five times, employing distinct 

combinations of the 80% training data each time. The 

final predictions for the 20% testing results are 

determined by aggregating the majority votes from each 

of the five predictions. This approach provides a more 

robust and accurate prediction of the model’s 

performance. 

Table V displays the performance outcomes of the 

models on static and dynamic features, including 

Precision, Recall, and F1-score. Additionally, it presents 

the macro average across all dialects. Regarding static 

features, our findings demonstrate that ERF achieves the 

highest performance with an average F1-score of 0.756, 

followed by XGB, which also achieves an average F1-

score of 0.643. Regarding the performance of individual 

dialects, it is evident that all models achieved their most 

impressive results for the dialect variations, particularly 

Goalporia, where the ERF model attained an outstanding 

F1-score of 0.806. Table VI displays the outcomes of all 

models when utilizing dynamic features. The three 

models used in the evaluation are the same as before. 

Among these models, the ERF model achieved the 

highest average score, obtaining an average F1 score of 

0.825.  

The effectiveness of the vowel-based ADI system, 

which focuses on dynamic behavior, is summarized in 

Table VII. The results presented in the table consider 

only the Cross-Validation (CV) outcomes for further 

analysis. The table demonstrates the individual 

contributions of each formant frequency and prosodic 

characteristic of vowels to the overall performance. When 

dynamic formant frequencies are utilized for classifying 

Assamese dialects, the system achieves a performance of 

61.30%. Similarly, when considering the vowel regions 

and their dynamic features such as F0, energy, and 

duration, the system achieves an identification accuracy 

of approximately 58.10%. To leverage the 

complementary information provided by both features, 

they are combined into a new feature vector. By using 

this merged feature vector, the result of the system 

improves significantly to 69.51%. This indicates the 

effectiveness of integrating both prosodic patterns and 

formant frequencies for dialect recognition. 

TABLE V. THE PERFORMANCE SCORES OF INDIVIDUAL DIALECT 

VARIETIES USING THREE MODELS: RF, ERF, AND XGB, WITH STATIC 

FEATURES. THE EVALUATION METRICS USED ARE RECALL, PRECISION, 
AND F1-SCORE. THE MACRO AVERAGE IS REPORTED TO PROVIDE AN 

OVERALL AVERAGE 

Dialects Model Precision Recall F1 Score 

Eastern 
RF 0.772 0.721 0.746 

ERF 0.755 0.744 0.749 

XGB 0.754 0.705 0.729 

Central 

RF 0.731 0.851 0.786 

ERF 0.722 0.765 0.742 
XGB 0.750 0.848 0.769 

Kamrupia 

RF 0.533 0.490 0.485 

ERF 0.728 0.729 0.729 
XGB 0.567 0.446 0.525 

Goalporia 

RF 0.579 0.527 0.512 

ERF 0.833 0.782 0.806 

XGB 0.581 0.458 0.552 

Macro 

RF 0.653 0.642 0.632 

ERF 0.759 0.755 0.756 

XGB 0.663 0.619 0.643 

TABLE VI. THE PERFORMANCE SCORES OF INDIVIDUAL DIALECT 

VARIETIES USING THREE MODELS: RF, ERF, AND XGB, WITH 

DYNAMIC FEATURES. THE EVALUATION METRICS USED ARE RECALL, 

PRECISION, AND F1-SCORE. THE MACRO AVERAGE IS REPORTED TO 

PROVIDE AN OVERALL AVERAGE 

Dialects Model Precision Recall F1 Score 

Eastern 

RF 0.705 0.885 0.784 

ERF 0.714 0.900 0.796 
XGB 0.710 0.890 0.789 

Central 

RF 0.677 0.882 0.766 

ERF 0.896 0.832 0.862 

XGB 0.722 0.787 0.753 

Kamrupia 

RF 0.698 0.787 0.739 

ERF 0.900 0.753 0.819 

XGB 0.776 0.725 0.749 

Goalporia 
RF 0.645 0.724 0.682 

ERF 0.767 0.890 0.823 

XGB 0.689 0.756 0.720 

Macro 
RF 0.681 0.819 0.742 

ERF 0.819 0.843 0.825 

XGB 0.724 0.789 0.752 

 

The ADI system incorporates global features, 

including statistical mean values, along with its analysis. 

Table VIII presents an overview of the efficiency of the 

vowel-based ADI system, focusing on static behaviors. 

The highest performance in dialect recognition is 

achieved using the ERF model, which utilizes both 

acoustic and prosodic characteristics, with recognition 

scores of approximately 63.44% and 65.96%, 

respectively. Vowel prosody traits contribute to a slight 

improvement in the categorization rate. Just like the 
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results observed for dynamic features, the utilization of 

the combined feature vector leads to higher rates of 

dialect recognition. Specifically, the CV (cross-validation) 

settings yield a recognition rate of 76.84%, while the SV 

(simple validation) settings achieve a recognition rate of 

79.89%. Fig. 9 provides a comparison of the 

categorization outcomes obtained from the three 

classification methods. 

TABLE VII. PERFORMANCE OF DIALECT RECOGNITION WITH DYNAMIC FEATURES VECTORS 

Features 

Recognizability rate in % 

RF ERF XGB 

SV CV SV CV SV CV 

Formants (Acoustic) 62.83 57.55 63.30 61.30 64.88 56.97 
F0+E+Dur.(Prosodic) 60.82 55.55 61.65 58.10 56.08 55.86 

Formants+F0+E+Dur.(Acoustic+prosodic) 70.26 65.47 73.88 69.51 72.94 64.95 

TABLE VIII. PERFORMANCE OF DIALECT RECOGNITION WITH STATIC FEATURES VECTORS 

Features 

Recognizability rate in % 

RF ERF XGB 

S-V C-V S-V C-V S-V C-V 

Formants(Acoustic) 69.89 62.33 69.51 63.44 69.89 58.33 
F0+E+Dur.(Prosodic) 71.66 66.65 72.21 65.96 66.65 59.80 

Formants+F0+E+Dur.(Acoustic+prosodic) 78.32 75.23 79.89 76.84 76.66 74.31 

 

 

Fig. 9. Evaluation of dynamic and static features’ performance. 

Fig. 10 displays confusion matrices that illustrate the 

performance of the ADI system when employing both 

dynamic and static features. These matrices provide a 

comprehensive understanding of the recognition results 

achieved by combining formants with prosodic 

characteristics without sacrificing generality. Fig. 10(a) 

displays the confusion matrix for the ERF model, which 

achieves a typical precision of 69.51% approximately. 

Similarly, Fig. 10(b) shows the confusion matrix 

employing global features, leading to average recognition 

accuracy 76.84% in identifying dialect. Confusion 

matrices are shown in Fig. 10 to shows how the ADI 

system performs when dynamic and static features are 

used in both. These matrices provide a comprehensive 

understanding of the recognition results achieved by 

combining formants with prosodic characteristics without 

sacrificing generality. Fig. 10(a) displays the confusion 

matrix for the ERF model, which achieves a typical 

precision of 69.51% approximately. Similarly, Fig. 10(b) 

shows the confusion matrix employing global features, 

leading to average recognition accuracy 76.84% in 

identifying dialect.   

 
(a)  

 
(b) 

Fig. 10. Confusion matrix with (a) dynamic features (b) static features. 

V. CONCLUSION 

The study focused on the analysis and categorization 

of vowels in four Assamese dialects. It examined the 

acoustic and prosodic characteristics of eight vowels, 

both individually and when combined together. The 

research involved extracting acoustic characteristics, 

specifically formant frequencies F1, F2, and F3. 

Additionally, longer frame prosodic features were 

analyzed as well. The study revealed that combining 

formant frequencies (F1, F2, and F3) with pitch (F0), 

energy/loudness, and duration led to better results. Three 

ensemble algorithms based on decision trees, namely RF, 

ERF, and XGB, were utilized for classifying the 
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Assamese dialect using vowel data. Statistical analyses 

using ANOVA highlighted the significant contributions 

of formant frequencies (F1, F2, and F3) in the 

categorization of the Assamese dialect. The study 

extracted acoustic features from vowels to evaluate how 

they exhibited dynamic and static characteristics across 

different dialects. The performance of statistical features 

produced from statistical parameters was higher, and the 

accuracy and consistency of ERF were better than those 

of RF and XGB. Additionally, it was discovered that 

static features outperformed dynamic features produced 

by contour trends. 

In order to classify vowel-based dialects more 

accurately, it was crucial to examine the specific 

contributions made by each characteristic. This study 

conducted an examination of the contributions of each 

feature, both individually and collectively. Cross-

Validation (CV) results from the ERF ensemble model 

were given in Tables IX–XI. When taking into account 

the features, the ERF method outperformed the other two 

algorithms (as shown in Fig. 9). Several interesting 

observations were made: The roles of the three formants 

were observed to be comparable, thereby confirming the 

findings obtained from the Analysis of Variance 

(ANOVA). 

TABLE IX. THE FUNCTION OF FORMANT CHARACTERISTICS IN 

RECOGNIZING DIALECTS 

Features 
Formants (63.44%) 

F3(1) F2(2) F1(3) 

Total Contribution (%) 34.97 34.27 34.20 

TABLE X. THE FUNCTION OF THE PROSODIC FEATURES IN 

RECOGNIZING DIALECTS 

Features 
Formants (63.44%) 

Duration(1) Energy(2) Pitch(3) 

Total 

Contribution (%) 
37.52 34.97 30.69 

TABLE XI. THE FUNCTION OF THE COMBINED FEATURES IN RECOGNIZING DIALECTS 

 

With regard to prosodic characteristics, duration was 

found to be the most influential, followed by energy and 

F0, highlighting the significance of differences in 

speaking duration among dialects. F0 made a relatively 

smaller contribution in comparison. When the features 

were combined, a pattern emerged where duration, 

energy, pitch (F0), formants (F3, F2, and F1) 

demonstrated the most significant contribution to dialect 

classification using Assamese vowels. 

The present study aimed to investigate the relationship 

between the classification of Assamese dialects and the 

acoustic and prosodic characteristics of vowels. The 

classification of four Assamese dialects depended on the 

production of vowels in both read and spontaneous 

speech. Acoustic features were extracted to analyze the 

dynamic and static acoustic behavior of vowels, and 

ensemble algorithms were employed to achieve more 

accuracy in recognizing dialects. The findings revealed 

that although vowels exhibited varying formant 

frequencies, these alone were insufficient to distinguish 

between Assamese dialects. However, through statistical 

analysis, it was determined that the duration feature of 

vowels, showing the vowel’s rate of speech, made a 

significant contribution among the considered acoustic 

features (as observed in Tables IX−XI). Notably, the 

Central dialect demonstrated better categorization with 

the inclusion of both dynamic and static features. These 

results highlighted the significance of the duration 

attribute in classifying different dialects. Among the 

remaining prosodic features, intensity contributed more 

significantly than the F0 feature. In general, the 

integration of prosodic characteristics and formants 

resulted in enhanced recognition of dialects based on 

vowel sounds. 

A significant finding of this study is the potential of 

using formant and prosodic features to differentiate 

between dialects. This research provides the basis for 

future efforts to develop an effective method for 

identifying dialects and languages. Such systems have the 

potential to be designed for consumer-level or edge 

devices, facilitating localization of content and language-

based service selection. 

Future research directions can prioritize the 

exploration of specific distinguishing characteristics of 

dialects, that is, speech intonation, pace, and rhythmic 

patterns. It would be helpful to accurately analyze vowel 

onset and offset locations in the Assamese dialect to 

further enhance performance. Additionally, by carefully 

choosing optimized hyper parameters for ensemble 

classifier techniques, dialect identification performance 

can be improved. Moreover, a valuable endeavor would 

involve identifying characteristics of dialects that are not 

solely reliant on the underlying language, thus expanding 

the understanding of dialect variation.  
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