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Abstract—Speech is most likely the simplest and efficient 

type of human-human communication, as well as the most 

intuitive and effective way of human-machine interaction. 

Human voice is often damaged in real-world contexts by 

both reverberation and noise from the surroundings, which 

has a detrimental impact on speech intelligibility and 

quality. In terms of denoising, a model-based approach has 

been thoroughly researched, and several practical solutions 

have been created. In comparison, study on dereverberation 

has been sparse. Significant advances have been achieved in 

the study of a model-based strategy for dereverberation. 

The resultant approach may be used to any deep neural 

network that provides masks in the time-frequency domain 

with just a few extra variables that can be trained and an 

overhead of computation that is low for state-of-the-art 

neural networks. A deep learning-based approach in this 

article is developed that eliminates early reverberations, late 

reverberations, and noise from speech signals in order to 

enhance speech signal quality. The method is tested using 

data from three simulated rooms—a conference room, a 

seminar hall, and a room from reference paper number 

seven—with Reverberation Time (RT60) of 0.3 s and variety 

of noise like Additive White Gaussian Noise (AWGN), 

realistic noise such as babble, restaurant and a variety of 

signal-to-noise ratio values. The proposed technique 

outperforms baseline multichannel dereverberation and 

denoising algorithms as well as a cutting-edge multichannel 

dereverberation and denoising algorithm, resulting in a 

considerable improvement.   

 

Keywords—deep learning, dereverberation, denoising, 

Room Impulse Response (RIR) 

 

I. INTRODUCTION 

Speech is most certainly the most basic and efficient 

method of communication between humans, and it is also 

probably the more natural and effective form of 

interaction between humans and machines [1]. In hands-

free communication, speech is captured using only one 

microphone or a cluster of microphones set up at various 

locations around the room. 
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Multiple microphones capture more than just the 

intended voice signal; reverberation, background noise, 

and other interferences are also included in the recorded 

audio [2]. However, speech in rooms is degraded by 

acoustic reverberation as well as ambient noise. Room 

reverberation is one of the two primary sources of speech 

deterioration (the other being background noise), 

therefore there is a rising need for voice dereverberation 

in different speech processing and communication 

applications. Disturbing sounds, on the other hand, often 

disrupt genuine speech signals and undermine the 

efficacy of information transmission in real life [3]. 

Reverberation occurs when an audio signal travels from 

its origin to many recording devices through multiple 

paths. Because of the many reflections, the received 

sound (e.g., a distant microphone or a listener) lasts even 

after the originating sound ends. The combination of 

direct transmitted and reflected sound waves affects 

speech intelligibility or perception of the received 

acoustic wave and lowers the performance of many 

signal processing applications such as automated speech 

recognition systems, speaker identification systems, and 

so on. The first sound you hear and the sounds that 

bounce back right away (called early reverberation), as 

well as reflections arriving beyond the early reflections 

(called late reverberation) all contribute to the received 

signal. This negative perceptual impact often rises as the 

distance between the source and microphone increases. 

One of the most difficult issues in the current context is 

improving the quality of a damaged voice signal. When a 

voice signal is captured by a remote microphone, 

reverberation is one of the key elements that degrade its 

quality. Speech intelligibility suffers as a result of this 

reverberation [4–6]. We tried to design a “memory 

efficient” dereverberation technique for Additive White 

Gaussian Noise (AWGN) noise that produces few 

artefacts in this research. Deep Dense Neural Network 

(DDNN) is a novel network architecture that removes 

redundant representations of a noisy and reverb spectrum 

during the decomposition step and maps them back to a 

clean spectrum during the reconstruction stage. This may 

be thought of as mapping the spectrum to higher 
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dimensions (e.g., the kernel approach) and then 

projecting the characteristics back down to lower 

dimensions. 

Additional tests are carried out in this work by taking 

into account three different room sizes (seminar hall, 

conference room and room size given in reference paper) 

and acoustic circumstances The suggested method of 

using a Deep Neural Network with a delay sum 

beamformer produces improved results. In addition, the 

source position is changed at six various positions in the 

room, and results are produced. The goal of this project is 

to create and implement a dereverberation algorithm that 

eliminates early reverberations, late reverberations, and 

noise from speech signals in order to enhance the speech 

quality.  

The following is how the paper is structured. Section II 

includes a review of the literature. Section III presents 

deep neural network architectures, including the 

proposed deep dense neural network. Section IV 

describes the experimental techniques. The results are 

described in Section V, and the research is concluded in 

Section VI. 

II. LITERATURE SURVEY 

Gannot et al. [7] proposed multimicrophone speech 

dereverberation and denoising using Minimum Variance 

Distortionless Response (MVDR) beamformer and 

wiener post filter. Masuyama et al. [8] created a ground-

breaking end-to-end architecture for automatic speech 

recognition that incorporates de-embracement, 

beamforming, self-supervised data methodology, and 

neural network-based de-noising. Han et al. [9] propose a 

parallel interpreting structure based on Distributed Beam-

Forming and Multiple-Channel Linear Prediction (DB-

BFMCLP) consisted of a Generalised Sidelobe Canceller 

(GSC) and multiple channels linear prediction for 

concurrently speech dereverberation as well as noise 

reduction by sharing the same desired response vector. 

Lemercier et al. [10] provide a strategy for converting 

multiplicative maskers built with deep neural networks 

into deeper subband filters for time-frequency audio 

restoration. Lemercier et al. [11] evaluate the efficacy of 

generative diffusion models and discriminatory 

techniques on different speech restoration tasks using 

earlier contributions on diffusion-based speech 

improvement in the complicated time-frequency domain, 

and then apply this knowledge to the goal of band with 

extension. Zheng et al. [12] explored both single and 

multi-speaker recordings are recovered in the Deep 

Learning (DL) based monaural voice augmentation 

methods. For this challenging speech augmentation 

challenge, Convolutional Neural Network (CNN) based 

models are provided in particular since to their parameter 

effectiveness and state-of-the-art performance.  

Sheeja et al. [13] developed a novel approach to voice 

separation and dereverberation using Principal 

Component Analysis (PCA) based on Locally Weighted 

Projection Regression (LWPR) and Weighted Prediction 

Error (WPE) based on a Deep Neural Network (DNN), 

The technique uses Blind Source Separation (BSS) as 

well as Blind Dereverberation (BD) after the 

preprocessing of the reverberant signal, resulting in a 

mixture of sources. BSS and BD are abbreviations for 

blind source separation and blind dereverberation, 

respectively. Lemercier’s [14] demonstrate of a two-stage 

online lightweight dereverberation approach focused on 

hearing aids.  Combining a single-channel post-filter with 

a multi-channel linear filter can result in a better output. 

Both of these components are dependent on the DNN’s 

estimates of Power Spectral Density (PSD).  

Routray et al. [15] provided Deep Neural Network 

(DNN) technique for concurrent denoising and 

dereverberation of speech. The technique that is being 

proposed may be broken down into two stages: denoising 

and dereverberation. Denoising is the process of reducing 

additive noise by developing a phase-sensitive mask with 

the use of DNN. The process of dereverberation is the 

next step that is taken in order to obtain noise-free 

reverberant speech. During the deverberation phase, we 

dereverberate using a reverberation time-aware DNN-

based model. This model takes advantage of 

superposition attributes and frame-wise temporal 

correlations for a variety of reverberation circumstances 

via two parameters that are time-dependent on the 

reverberation time: frameshift size and acoustic context 

size. Ai et al. [16] demonstrate a hierarchical neural 

vocoder called DNR-HiNet that is capable of denoising 

and dereverberation to clean up acoustic data, we make 

some adjustments to the Magnitude Spectrum Predictor 

(ASP) of the default HiNet vocoder so that we may build 

the DNR-HiNet vocoder. With the help of this improved 

enhanced Denoising and Dereverberation ASP (DNR-

ASP), it is possible to anticipate clean log amplitude 

spectra from distorted input. DNR-ASP is able to 

accomplish this goal by first using signal processing 

methods to anticipate the log amplitude spectra of noisy 

as well as reverberant speech, the log amplitude spectra 

of additive noise with the room impulse response, and 

then carrying out initial denoising and dereverberation. 

Fu et al. [17] proposed that voice augmentation and 

dereverberation can be performed simultaneously with 

former, an Unet-based dilated complex & real dual-path 

conformer system in both the complex as well as 

magnitude domains. In order to represent dimensional 

data, we use both local and global context, as well as 

temporal attention and dilated convolution. Li et al. [18] 

presented a work which showed that voice denoising 

performance may be enhanced by self-supervised 

learning. The proposed Pre-training Auto Encoder (PAE) 

needs just a few unpaired and unseen clean speech 

signals to obtain speech latent representations. Following 

an analysis of existing multi-microphone speech 

dereverberation methods, we came to the conclusion that 

deep neural networks provide enticing outcomes. 

Performance metrics like Perceptual evaluation of speech 

quality and Log-spectral distance can be used to gauge 

how well an algorithm performs, allowing for the 

creation of a robust, adaptive algorithm capable of 

handling early and late reverberation, as well as additive 

noise in the presence of acoustic parameter variations.  
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III. METHODOLGY 

In Fig. 1, reverberant signals are generated by 

convolving an anechoic sound with the impulse response 

of a modelled room prior to adding white Gaussian noise. 

The reflected signals from each microphone may be 

represented as 

 𝑦𝑙[𝑘] = ℎ𝑙[𝑘] × 𝑠[𝑘] + 𝑣𝑙[𝑘] = 𝑥𝑙[𝑘] + 𝑣𝑙[𝑘]  (1) 

where ℎ𝑙[𝑘] Impulse response of acoustic channel from 

source to microphone 𝑙 
s[𝑘] is Speech signal  

𝑣𝑙[𝑘]  is additive noise component in 𝑙𝑡ℎ 

microphone signal 

𝑥𝑙[𝑘] is reverberant speech component 

When there are many nodes between the input and 

output layers, we call it a Deep Neural Network (DNN). 

No matter how linear or non-linear the connection 

between input and output, the DNN will determine the 

appropriate mathematical manipulation to make the 

transformation. The network iteratively processes 

through the layers, determining the likelihood of each 

output as it goes. Data in DNNs is often sent from the 

input layer to the output layer in a feed forward fashion. 

At first, the DNN builds a network of hypothetical 

neurons and gives each link an arbitrary numerical value 

(the “weights”). An output value between 0 and 1 is 

calculated by multiplying the weights and inputs.  
 

 

Fig. 1. DSB-DNN system. 

Each block in Fig. 1 stands in for a feature in the 

proposed Deep Dense Network (DDN). The proposed 

DDN comprises of symmetric decomposition layers and 

reconstruction layers. Each stage of the decomposition—

convolution, batch normalization, max pooling, and 

ReLU activation—is repeated until the desired result is 

achieved. Layers of convolution, batch normalization, 

and up sampling are iterated in order to reconstruct the 

original data. Normal DDN operation involves 

compressing features along the decomposition and 

reconstructing them along the reconstruction. To solve 

our specific challenge, we replaced the original SoftMax 

layer in the last layer of the DDN with a thick layer. In 

the latter phases of a neural network, a layer that is 

referred to as a dense layer (also known as a totally 

coupled layer) is used. This layer contributes to the 

process of adjusting the output dimensionality of the 

layer that came before it. This makes it possible for the 

model to offer a more precise description of the 

relationship that exists among each value of the data that 

it is processing.  In a model, the neurons of the dense 

layer all receive input from the neurons of the layer 

above it. Additionally, these neurons do matrix and 

vector multiplication. Matrix vector multiplication 

involves multiplying the row vector supplied by the 

dense layer by the column vector provided by the sparse 

layer. It is necessary for the row vector to have the 

identical number of columns as the column vector in a 

matrix multiplication. Backpropagation is widely used as 

a training technique for feedforward neural networks. 

Backpropagation is a common method used in neural 

network training, and it entails determining the gradient 

of the loss function with respect to the weights of the 

network for a single input or output. Mini-batch 

stochastic gradient descent is used to minimize the error 

function below, 

 𝐸𝑠𝑔𝑑 =
1

𝑀
∑ ‖𝑆�̂�(𝑇𝑛−𝜏

𝑛+𝜏, 𝑊, 𝑏) − 𝑆𝑛‖
2

2𝑀
𝑛=1  (2) 

where 𝐸𝑠𝑔𝑑  is the mean squared error 

𝑆�̂�(𝑇𝑛−𝜏
𝑛+𝜏, 𝑊, 𝑏) is estimated signal frame 

𝑆𝑛  is reference normalized frame at index 𝑛 

𝑀 is Minibatch size 

(𝑊, 𝑏)  indicating the trainable parameters of 

weight and bias. 

The revised prediction of  𝑊𝜄  and 𝑏𝜄 in the 𝑖𝑡ℎ layer, 

at a certain learning rate, may be repeatedly calculated as 

follows: 

Δ(𝑊𝑛+1
𝜄 , 𝑏𝑛+1

𝜄 ) = −𝜆
𝜕𝐸𝑠𝑔𝑑

𝜕(𝑊𝑛
𝜄  ,𝑏𝑛

𝜄 )
− 𝜅𝜆(𝑊𝑛

𝜄,  𝑏𝑛
𝜄 ) +

𝜔Δ(𝑊𝑛
𝜄 , 𝑏𝑛

𝜄 ), 1 ≤ 𝜄 ≤ 𝐿 + 1              (3) 

where 𝐿 shows the number of layers under the surfaces 

and 𝐿 + 1 show the last layer of output. 𝜅 is the weight 

decay coefficient. And 𝜔 is the momentum. If given 

enough training samples, DDNN may automatically learn 

the complex connection required to isolate speech from 

the noisy and reverberant sounds. 

The foregoing intuition suggests that the dense layer’s 

output will be a vector with N dimensions. It’s clear that 

it’s decreasing the size of the vectors involved. Therefore, 

a dense layer is used to alter the vectors’ dimensions, 

with each neuron playing a role in the process. DDN 

compresses the features during the reconstruction phase 

and encrypts them into higher dimensions during the 

decomposition phase. Symmetry in the number of filters 

is maintained by progressively increasing the number of 

filters during the decomposition and decreasing the 

number of filters during the reconstruction.  Due to its 

completely convolutional nature, DDN includes a 

convolution layer as its last layer. As the function that 

converts noisy speech qualities to clean ones, a DDNN is 

used. The well-trained DDNN model is used in the 

improvement phase to analyze the noisy speech 

characteristics and forecast the clean and anechoic speech 

features. The DNN’s input characteristics were 

normalized to have a mean of zero and a standard 

deviation of one.  

The output of DNN 𝑆�̂�(𝑣) should be transformed back 

as follows: 

 �̂�′(𝑣) = �̂�(𝑣) × 𝐷(𝑣) + 𝐾(𝑑) (4) 

where 𝐷(𝑣) 𝑎𝑛𝑑 𝐾(𝑑)  are the component of the input 

noisy speech characteristics mean and variance 

Microphone N 

Microphone 1 
Delay 

Sum 

Beam 

Former 

 

DNN 

Dereverberated 

Speech  
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respectively. The equalization factor might then be 

employed as a post processing step to reduce the variance 

of the reconstructed signal: 

 �̂�′′(𝑣) = �̂�(𝑣) × 𝜂 × 𝐷(𝑣) + 𝐾(𝑑) (5) 

Since the DNN output �̂�(𝑣) was in the logarithm of 

the power spectrum, thus the exponential function was 

used to multiply by the multiplicative factor. Furthermore, 

this exponential factor has the potential to both reduce 

residual noise and increase the clarity of the recovered 

speech’s formant peaks. 

IV. EXPERIMENTATION 

Three different rooms are taken into consideration 

during the experimentation. Reference paper’s room 

measures [6.1×5.3×2.7] m, the conference room 

measures [9.7×5.9×3.5] m, and the seminar room 

measures [17.7×9.6×3.5] m.  The array of four 

microphone is used, and the space between each 

microphone is [3, 4, 3] cm. By maintaining the source 

and receiver microphone positions constant and a 2 m 

distance between them, RT60 of 0.3 s the RIR is 

produced using the image source method [19]. 

Reverberant signal is generated by convolving anechoic 

speech signal with room impulse response. The 

reverberant signal is combined with Additive White 

Gaussian Noise (AWGN), realistic noise, such as babble 

noise and restaurant noise, at Signal to Noise (SNR) 

ratios of −10 dB, 0 dB, 10 dB, 20 dB, and 30 dB to 

produce reverberant and noisy(unprocessed) signal. The 

signals are processed frame by frame where each frame 

of 32 ms with 8 ms overlaps between each frame and an 

8 kHz sampling rate. Performance of the proposed 

algorithm is assessed using objective metrics like Log 

Spectral Distance (LSD) and Perceptual Evaluation of 

Speech Quality (PESQ) [20]. PESQ has a range of −0.5 

to 4.5. In order to get a dereverberated signal, a 

reverberant and noisy signal is given to a delay sum 

beamformer, which combines the signals from four 

microphones into a single channel and then it is passed to 

DNN. A source-to-microphone distance of 2 m and RT60 

of 0.3 s are tested for each room’s performance. When 

the performance of all three rooms is compared to the 

PESQ and LSD values of an unprocessed signal, it shows 

that speech quality has improved. Additionally, 

experiments are run with various source positions in the 

reference paper room, and performance is assessed using 

PESQ and LSD with the same types of noise and SNRs. 

The IEEE database contains phonetically-balanced 720 

sentences with relatively low word-context predictability. 

Out of that 30 IEEE sentences (produced by three male 

and three female speakers) are used for 

experimentation  [21].  

Experimentation for room impulse response generation 

of simulated room is carried out for three rooms.  

Figs. 2–4 shows simulated room experimental setup and 

Tables I–III are used to model the room acoustic setting 

in which test is conducted for reference paper room, 

conference room and seminar hall, respectively. 

 

Fig. 2. Experimental set up for room given in reference paper. 

 

Fig. 3. Experimental set up for conference room. 

 

Fig. 4. Experimental set up for seminar hall. 

TABLE I. EXPERIMENTAL SETUP STRUCTURE FOR ROOM GIVEN IN 

REFERENCE PAPER 

Fs 8000 (Hz) 

Room size [6.1, 5.3, 2.7] in m 
Number of microphones 4 

RT60 0.3 s 

c (speed of acoustic wave) 343 m/s 

TABLE II. EXPERIMENTAL SETUP STRUCTURE FOR CONFERENCE ROOM 

Fs 8000 (Hz) 

Room size [9.7, 5.9, 3.5] in m 

Number of microphones 4 

RT60 0.3 s 

c (speed of acoustic wave) 343 m/s 

TABLE III. EXPERIMENTAL SETUP STRUCTURE FOR SEMINAR HALL 

Fs 8000 (Hz) 

Room size [17.7, 9.6, 3.5] in m 

Number of microphones 4 

RT60 0.3 s 
c (speed of acoustic wave) 343 m/s 

V. RESULTS 

This section is divided in two subsections. In first 

section of result two parameters are kept constant RT60 

of 0.3 s and source to microphone distance is of 2 m. The 

proposed algorithm is tested for different noise types 

namely AWGN, babble, and restaurant noise with 
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different values of SNRs −10 dB, 0 dB, 10 dB, 20 dB, 

and 30 dB for three different rooms, including a reference 

paper room, conference room, and seminar hall. For this 

the performance of proposed algorithm is evaluated by 

using two metrics, Perceptual Evaluation of Speech 

Quality (PESQ) and Log Spectral Distortion (LSD) for 

speech quality assessment.  

The obtained PESQ and LSD values are summarized 

in Table IV and plotted in Fig. 5. This shows that 

increase in PESQ and decrease in the LSD values, which 

signifies an improvement in the speech quality of the 

processed signal for different types of noise and several 

SNR levels in comparisons with the unprocessed signal. 

It also shows that there is increase in value of PESQ for 

restaurant signal with decreasing SNR. The variation in 

room size shows slightly better performance for seminar 

hall demonstrating that even though room size is 

increased, algorithm gives better performance. 

In second section of result room size is fixed, RT60 is 

0.3s and various types of noise are added with speech 

signal namely AWGN, babble, and restaurant noise with 

different values of SNRs −10 dB, 0 dB, 10 dB, 20 dB, 

and 30 dB for different source positions in room as 

shown in Fig. 6. Performance for this is evaluated by 

using PESQ and LSD metrics.  

TABLE IV. SIMULATED RESULTS OF PESQ & LSD AT THE OUTPUT OF BF+DNN FOR RT60 = 0.3 S, S-M DISTANCE = 2 M 

SNR (−10) dB 0 dB 10 dB 20 dB 30 dB 

PESQ 

Noise AWGN 
Babble 

noise 

Restaurant 

noise 
AWGN 

Babble 

noise 

Restaurant 

noise 
AWGN 

Babble  

noise 

Restaurant 

noise 
AWGN 

Babble  

noise 

Restaurant  

noise 
AWGN 

Babble 

noise 

Restaurant  

noise 

Unprocessed 1.33 1.47 1.42 1.72 1.69 1.79 2.25 2.17 2.29 2.54 2.47 2.61 2.64 2.58 2.63 
Ref. paper room [7] 3.12 3.15 3.19 3.14 3.17 3.2 3.16 3.18 3.19 3.15 3.17 3.21 3.16 3.18 3.21 

Conf. room 3.14 3.17 3.2 3.13 3.16 3.19 3.13 3.19 3.18 3.16 3.2 3.19 3.12 3.19 3.2 

Seminar hall 3.13 3.2 3.19 3.12 3.17 3.19 3.14 3.16 3.17 3.16 3.18 3.19 3.16 3.2 3.25 

LSD 

Unprocessed 4.96 4.6 4.59 4.16 4.27 3.8 3.36 3.4 3.06 2.71 2.73 2.56 2.26 2.28 2.14 

Ref. paper room [7] 1.24 1.25 1.23 1.26 1.25 1.23 1.29 1.27 1.25 1.28 1.26 1.27 1.28 1.27 1.25 

Conf. room 1.23 1.22 1.21 1.26 1.23 1.22 1.27 1.25 1.22 1.29 1.28 1.25 1.28 1.25 1.24 
Seminar hall 1.24 1.22 1.23 1.27 1.22 1.25 1.29 1.27 1.26 1.28 1.25 1.26 1.29 1.27 1.25 

 

  
(a) Plot of PESQ                                                                                         (b) Plot of LSD 

Fig. 5. Plot of PESQ and LSD at the output of BF+DNN for RT60 = 0.3 s, S-M distance = 2 m. 

     
Source Position1(SP1)                                                 Source Position2(SP2) 

   
Source Position3(SP3)                                                 Source Position4(SP4) 
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Source Position5(SP5)                                                 Source Position6(SP6) 

Fig. 6. Various position of source in room. 

Tables V and VI summarizes the results for various 

source positions in room and plotted in Fig. 7. Fig. 7(a) is 

plot of PESQ metric, and Fig. 7(b) is LSD metric. These 

plots demonstrate that good speech quality is achieved 

even though the source position is changed at various 

locations in the room. The comparison of various source 

position results shows the promising results at source 

position 3.  

TABLE V. SIMULATED RESULTS OF PESQ AT THE OUTPUT OF BF+DNN FOR RT60 = 0.3S WHEN SOURCE POSITION IS VARIED IN ROOM AT 

DIFFERENT LOCATIONS 

PESQ 

SNR (−10) dB 0 dB 10 dB 20 dB 30 dB 

Noise/  
Position 

AWGN 
Babble 
 noise 

Restaurant  
noise 

AWGN 
Babble 
 noise 

Restaurant 
noise 

AWGN 
Babble 
noise 

Restaurant 
noise 

AWGN 
Babble  
noise 

Restaurant  
noise 

AWGN 
Babble  
noise 

Restaurant  
noise 

Unprocessed 

SP1 

1.49 

2.22 

1.21 

2.40 

1.15 

2.52 

1.58 

2.50 

1.51 

2.64 

1.57 

2.75 

2.22 

2.89 

2.15 

2.99 

2.21 

3.09 

2.14 

3.14 

2.31 

3.35 

2.39 

3.34 

2.26 

3.48 

2.25 

3.61 

2.41 

3.54 
SP2 2.56 2.28 2.31 2.67 2.49 2.57 3.10 2.92 2.95 3.23 3.20 3.00 3.43 3.43 3.44 

SP3 2.76 2.41 2.40 2.85 2.85 2.83 3.27 3.35 3.23 3.57 3.67 3.54 3.81 4.00 3.81 

SP4 2.50 2.61 2.60 2.61 2.83 2.63 2.89 3.16 2.97 3.18 3.29 3.12 3.64 3.65 3.60 
SP5 2.36 2.48 2.41 2.66 2.80 2.62 2.94 3.13 2.92 3.24 3.26 3.15 3.59 3.48 3.37 

SP6 2.28 2.37 2.48 2.50 2.50 2.67 3.03 2.95 3.06 3.31 3.07 3.19 3.53 3.42 3.49 

TABLE VI. SIMULATED RESULTS OF LSD AT THE OUTPUT OF BF+DNN FOR RT60 = 0.3S WHEN SOURCE POSITION IS VARIED IN ROOM AT 

DIFFERENT LOCATIONS 

LSD 

SNR (−10) dB 0 dB 10 dB 20 dB 30 dB 

Noise/  

Position 
AWGN 

Babble 

 noise 

Restaurant 

noise 
AWGN 

Babble 

noise 

Restaurant 

noise 
AWGN 

Babble 

 noise 

Restaurant 

 noise 
AWGN 

Babble 

 noise 

Restaurant  

noise 
AWGN 

Babble 

 noise 

Restaurant 

 noise 

Unprocessed 

SP1 

4.97 

1.72 

4.86 

1.70 

4.71 

1.78 

4.16 

1.57 

4.10 

1.60 

3.98 

1.60 

3.40 

1.32 

3.27 

1.23 

3.21 

1.41 

2.77 

1.31 

2.62 

1.23 

2.57 

1.40 

2.29 

1.19 

2.17 

1.20 

2.11 

1.35 

SP2 1.81 1.83 1.92 1.72 1.68 1.82 1.33 1.49 1.61 1.32 1.39 1.38 1.07 1.35 1.33 
SP3 1.88 1.87 1.79 1.73 1.61 1.71 1.40 1.34 1.33 1.30 1.29 1.20 1.25 1.28 1.19 

SP4 1.78 1.89 1.90 1.61 1.76 1.81 1.16 1.45 1.45 1.13 1.36 1.35 1.10 1.33 1.33 

SP5 1.71 1.77 1.79 1.55 1.59 1.67 1.32 1.32 1.38 1.28 1.26 1.32 1.21 1.18 1.31 
SP6 1.91 1.9 1.92 1.82 1.71 1.80 1.58 1.23 1.42 1.41 1.12 1.38 1.34 1.11 1.33 

 

 

  
(a) Plot of PESQ                                                                                         (b) Plot of LSD 

Fig. 7. Plot of PESQ and LSD with BF+DNN for various source positions. 

VI. CONCLUSION 

Reverberation is the process by which a sound travels 

from its origin to a listener through a number of different 

paths along its journey. It is a blind issue with an 

unknown and non-stationary source signal and an 

unknown and time-varying acoustic channel. As a result, 

reverberation has effect on speech, making it sound 

distant and spectrally distorted, as well as less 

understandable. Human voice is often damaged in real-

world contexts by both reverberation and background 
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noise, which has a detrimental impact on speech 

intelligibility and quality. A noise reduction and 

dereverberation technique was developed in this research 

by integrating delay and sum beamformer with deep 

learning to enhance the speech quality. By using 

proposed method the two speech quality metrics PESQ 

and LSD assessment is carried out and the experimental 

results shows that the quality of speech in seminar hall, 

conference room and reference paper room gets 

improved with AWGN and realistic noise such as babble 

noise, restaurant noise.  
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