
A Virtual Reality Game Utilizing L-Systems for

Dynamic Level Generation

Matthew Yaswinski *, Jeyaprakash Chelladurai, and Shivani Barot

Department of Computer Science, East Stroudsburg University of Pennsylvania, East Stroudsburg, Pennsylvania, USA

Email: myaswinski@live.esu.edu (M.Y.); jchelladur@esu.edu (J.C.); sbarot@live.esu.edu (S.B.)

*Corresponding author

Abstract—Virtual reality escape room games have gained

popularity for their immersive and challenging nature. This

paper presents an L-Systems enhanced virtual reality escape

room game that leverages L-Systems to generate unique and

intricate room environments. L-Systems are a formal

language-based approach used to model and generate

geometric forms. By incorporating L-Systems into the room

design, the game creates realistic and distinct environments

that vary with each gameplay. The paper provides a

background introduction, outlines the problems addressed,

describes the methods used for L-System integration,

presents the results and analysis of player feedback, and

proposes a credible algorithm for room generation over

traditional techniques. This research showcases the potential

of L-Systems as a powerful tool for enhancing the visual

richness of virtual environments in VR game development.

Keywords—virtual reality, L-Systems, android, escape rooms,

unity, blender, graphics, modeling, GoogleVR

I. INTRODUCTION

The virtual reality gaming market has witnessed rapid

growth, driven by technological advancements, and

increasing consumer demand for unique and immersive

experiences. This paper aims to contribute to this growing

industry by creating a virtual reality escape room game for

Android smartphones, where players are trapped

underground and must solve puzzles to escape the

catacombs and subsequently explore an outdoor castle area

and its indoor rooms. In addition to utilizing GoogleVR and

Unity, our project incorporates L-Systems, a type of formal

language and parallel rewriting system, to generate realistic

and dynamic room environments. While the technical

aspects of the game and plugin have been explored, this

paper will also delve into the impact of the plugin on player

experience.

To create this game, we employed Blender, Unity, and

GoogleVR. Unity serves as the game engine for running

code and implementing physics, using version 2019.4.40f1

and programming language C#. GoogleVR, integrated in

Unity, enables the game to run on virtual reality headsets

and tracks the player’s head movement using the

smartphone’s gyroscope. Blender was utilized for creating

custom models of the underground rooms and castle, as

well as using L-Systems to generate the walls for each floor

of the catacombs. The version of Blender used for this game

is 3.3.1, and the programming language for L-Systems

structure is Python.

In this paper, we will first provide an overview of the

background and history of escape rooms as a form of

entertainment. We will then delve into the details of L-

Systems, including its definition and the various

applications it can be used for. Following this, we will

discuss the GoogleVR library for Unity, including its

capabilities and how it is utilized in virtual reality gaming.

Finally, we will describe how these concepts have been

implemented in our own virtual reality game, which utilizes

Blender, Unity, GoogleVR, and L-Systems to create a

unique and immersive experience for players. The paper

will conclude with a summary of our findings, including an

analysis of the plugin’s impact on player experience, and

any suggestions for future research.

II. RELATED WORKS

Escape rooms are a form of game in which players are

locked in a room and must solve puzzles using clues hidden

within to escape and progress to the next area. These rooms

often have a dungeon, prison, or other real-world setting

and typically require multiple players to work together. Our

game, featuring a castle setting, incorporates this concept

by dividing the underground area into floors, each

containing various puzzles that must be solved to move on

to the next area, similar to traditional escape rooms.

L-Systems, also known as Lindenmayer systems, are a

type of formal language and parallel rewriting system that

utilizes four elements: an alphabet of symbols, production

rules for transforming symbols into a string of symbols, an

initial string known as the axiom, and a method for

converting the generated strings into geometric forms [1].

Developed in 1968 by Aristid Lindenmayer, L-Systems

were initially used for modeling the growth processes of

plants and understanding the behavior of individual plant

cells [2]. Today, L-Systems are also used to create various

structures, including snowflakes and roads, beyond just

plants. In our game, L-Systems are utilized to generate the

walls of each floor in the underground dungeon area,

enhancing the realism and complexity of the game design.

Manuscript received June 19, 2023; revised July 21, 2023; accepted

September 12, 2023; published February 24, 2024.

276

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

doi: 10.12720/jait.15.2.276-280

mailto:myaswinski@live.esu.edu
mailto:jchelladur@esu.edu
mailto:sbarot@live.esu.edu

An L-system is composed of an initial string, known as

the axiom, along with a collection of production rules that

determine the substitution of symbols within the string with

new strings. Mathematically, an L-system is defined as a

tuple (V, ω, P), where:

• V is a finite set of symbols, called the alphabet or

vocabulary of the L-system.

• ω is an initial string, called the axiom, made up of

symbols from the alphabet V.

• P is a set of production rules, also called rewriting

rules, that describe how to transform symbols in the

string ω according to certain conditions.

The production rules defined in set P are sequentially

applied to the initial string ω, starting with the axiom. This

iterative process generates a sequence of strings, where

each string represents a specific generation of the L-system.

The nth string in this sequence is called the nth generation of

the L-system, The application of production rules to the

string, also known as a derivation or development, results

in the transformation and evolution of the L-System

structure.

The GoogleVR library is a tool for creating virtual reality

experiences in Unity [3]. Originally designed for the

Google Daydream device, it enables developers to create

VR games for Android devices using Google Cardboard.

The library is distributed as a Unity Package file on

GitHub [4]. When developing a game with GoogleVR,

players can preview the experience by simulating head

movement with the Alt key and mouse and tilting the head

with the Control key and mouse movement. Additionally,

the library features a pointer called GvrReticlePointer,

which can be attached to the virtual reality camera and used

to interact with objects based on the direction the player is

looking. This, along with button inputs from a controller, is

the main method of interaction in our game enhancing the

immersive quality of the game.

The use of L-Systems in this game is unique as it is not

a common approach in the development of virtual reality

escape rooms. L-Systems, also known as Lindenmayer

systems, is a formal language and parallel rewriting

system [1]. It allows for the creation of complex geometric

structures by using a set of symbols, production rules, an

axiom, and a method for transforming the generated strings

into geometric forms [2]. In this game, L-Systems is

utilized to generate the walls of each floor of the

underground dungeon area, adding an additional layer of

complexity to the game design. This approach not only

adds to the realism of the game but also provides a new and

exciting challenge for players. While many materials and

models were created by us, few other assets were gotten

from the Unity asset store. These assets, listed at [5–13],

were used to enhance the overall gaming experience.

III. PROPOSED WORK

A. Custom Models and Terrain

For this project, we used Blender, a free and open-source

3D modeling program, to create a treasure chest model

(Fig. 1), utilizing various tools such as basic

transformation, extrude geometry, extrude vertices, and

split edges. This chest model was then exported to Unity

and animation was added to it as a puzzle for the players to

solve. We then apply an animation for opening this chest in

Unity for one of our puzzles.

Fig. 1. Treasure chest model.

The castle layout depicted in Fig. 2 was designed to

emulate the look and feel of a traditional castle escape game.

Utilizing the terrain tool in Unity, a variety of features were

employed to create a unique and realistic landscape. Most

of the terrain’s texture was created using three brushes

(raise and lower terrain, paint texture, and set height).

Additionally, the Terrain Tools plugin was utilized to

simplify the process of building the environment within

Unity. To enhance the visual aesthetic, tree and grass

elements from the Unity package were incorporated to

create a natural exterior for the scene.

Fig. 2. Castle model.

B. L-Systems Model

L-systems are composed of an alphabet of symbols,

production rules P, for transforming symbols into strings of

symbols, an initial string known as the axiom ω, and a

mechanism for converting the generated strings into

geometric forms [1, 14]. Within the L-system framework,

edge rewriting and node rewriting serve as two operational

modes that draw upon concepts from graph grammars.

These modes provide means for manipulating and

transforming figures within the L-system structure. Node

rewriting involves replacing or modifying individual nodes

or vertices within a structure. Production rules are applied

to specific nodes, thereby altering their properties or

connections. On the other hand, edge rewriting entails

substituting figures or shapes for polygon edges. This mode

employs production rules to replace specific edges with

new combinations of edges, resulting in the generation of

intricate and complex structures. In the context of dungeon

walls, edge rewriting involves substituting specific

segments or sections of the walls with novel combinations

277

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

of segments. In our game, we utilized the Blender plugin to

implement the following L-system model with the given

axiom and production rules, as documented in [1].

ω : Fl

Fl → Fl + Fr ++ Fr − Fl − Fl Fr −Fr +

Fr→ −F l + Fr Fr ++ Fr + Fl − Fl − Fr

In this model, the symbols “Fl” and “Fr” represent edges

that are generated when the turtle executes the “move

forward” command. These edges serve as fundamental

building blocks for the structure. During the L-System

execution, the production rules substitute instances of “Fl”

or “Fr” with pairs of lines that form left and right turns. The

symbols “−” and “+” indicate the direction of the turns,

with “−” denoting a right turn and “+” denoting a left turn.

Each turn is executed at a 90-degree angle. When our

plugin executes the L-System with 2 iterations, it applies

these rules to generate the corresponding lines and turns,

resulting in the desired structure. To enhance the visual

representation, we scale the model to increase the height of

the walls. The final outcome is depicted in Fig. 3.

Fig. 3. Stairs model.

Once this is imported into Unity, cubes are placed

around it to apply a wall-like texture that the player will see

when they are navigating each floor. This allows for more

complex materials to be used, whereas this model can only

accept solid colors for textures. When it is inserted into

Unity and all cubes have been added, the floor looks like

what is shown in Fig. 4, but with a ceiling added on top of

it.

Fig. 4. Outdoor area.

C. Puzzle Structure

Our virtual reality game has three separate scenes, with

two of them being for each floor of the underground area.

To play our virtual reality game, a player must have an

Android phone and a virtual reality headset that can hold it.

In addition, a Bluetooth controller must be connected to the

phone in order to interact with objects in the game. The

game consists of three scenes, two of which are for each

floor of an underground area. The button used to interact

with objects in the game is the A button on an XBOX Series

X/S controller, though the specific button may vary

depending on the controller being used.

The first floor of our virtual reality game features a

rotating hint marker that can be selected by the player using

a button on a paired Bluetooth controller. The rotation is

achieved using Unity’s Rotate function, with the angle

changing by 90 degrees every second along the Y-axis. The

player can select this hint marker by looking at the object

and selecting it with a button on the controller. To allow a

button press to select the object, the GvrReticlePointer

(which is placed at the center of the player’s eyes, though it

is invisible) must be pointing directly to the collision of the

object. To select the hint marker, the player must look at the

object and use the “Submit” button on the controller, which

is the A button on an XBOX Series X/S controller or the

Enter key on a keyboard. This causes the object to turn blue

and a message to appear on screen, informing the player

that hints can be found by selecting these markers. Once

this button has been pressed while the pointer was on this

object, it will disappear by deleting the object and a

message will pop up on screen telling the player that hints

can be found by selecting these markers, which will cause

a hint message to be shown.

The player can move to different locations in the game

by selecting waypoints scattered throughout the scene.

Similar to selecting a hint marker, the color of the waypoint

changes when the player looks at it. Unlike hint markers,

selecting a waypoint smoothly transports the player to a

new location instead of destroying the object. The

movement is accomplished by Unity’s lerp function, which

moves the player at a speed of 2.5 units per frame.

In the first puzzle room, the player is told to look into

eyes to open the path by selecting the hint marker. The

solution to this puzzle is to look at a specific part of a

painting on the wall, behind the eyes of which there is an

invisible cube. When the pointer is on this cube, it will open

the door that leads to the next room and a message will

appear indicating that the door has been opened.

In the next chamber, players are provided with a new hint

marker that instructs them to proceed along the illuminated

path. To solve this puzzle, players must follow the beams

of light shining on waypoints. These lights are Unity

spotlight objects that have a lower priority than the

spotlight on the player’s camera, allowing the player’s view

to remain unobstructed. The objective is to reach a

particular waypoint with a light shining on it. Once the

player selects this waypoint with their controller, it will be

eliminated, and the next door will open. This is achieved by

checking the name of the object, and if the waypoint with

the specific name has been selected, the object will be

deleted, and the door will open.

The next hint prompts the player to gaze at the door for

a duration of five seconds, after which something beneficial

will occur. Solving this puzzle entails the player directing

their gaze at the door until it eventually opens. To achieve

this, a timer is employed that increases if the pointer is

278

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

directed at the door. Once the timer surpasses five seconds,

the door will open and a message will appear, instructing

the player to select the steps leading to the next level. The

steps are a custom-made Unity object constructed using

cubes that are arranged alongside each other with

increasing elevations, as depicted in Fig. 3. Each of these

cubes possess a “stairs” tag, and if the controller button is

pressed while the player’s gaze is directed at an object with

this tag, the next floor scene will load, enabling the player

to solve additional puzzles.

On the following level, players will encounter a hint

marker instructing them to unlock the treasure chests in a

predetermined sequence. This sequence is determined by a

random generation process once the scene is loaded. To

generate this random order, the tag names of each of the

treasure chest lids are placed into an array. Then, a separate

array is created to hold random values. The first element of

this new array is obtained by selecting a random integer

between zero and two. The next element is acquired by

generating a new random number, however, if it is the same

number as the previous element, a new random number will

be generated until it does not match the previous one.

Finally, the last element is obtained by taking the sum of

the numbers in the two previous elements. If the sum is

equal to one, that means that the previous elements must be

zero and one, so the next element’s integer will be two. If

the sum is equal to two, the previous numbers must have

been zero and two, so the next element must be one. Finally,

if the sum is three, the previous elements must have been

one and two, so the next element must be zero. Once all of

these elements have been found, a new array is created to

hold values from the original string array, each element is

set using the value from the integer array as a position value

for the original array, then the old array of tags is set to the

new array of tags.

The player will have to open the chests in a specific order,

as determined by the randomly generated tag names in the

array. If the player attempts to open a chest and the tag

name matches the one in the array, it will rotate open using

Unity’s rotate function for a quarter of a second. If they try

to open the next chest and it does not match the next tag in

the array, a message will appear telling them that it was not

the correct order, and they must try again. Furthermore, the

previously opened chests will rotate closed with the

opposite angle for the rotate function. Once all the chests

are opened in the correct order, the door will be unlocked.

The player must locate and reach each of the corners in

the subsequent room. Like the previous floor’s lighting

puzzle, the waypoints are identified by their names.

However, this time the player must visit multiple corners.

Once the player reaches a corner’s waypoint, it will be

eliminated. Once all the corners have been reached, the

final door will open.

In the final chamber, the player is confronted with a set

of stairs and a clue marker. When the clue marker is

activated, it will reveal that the player has achieved their

liberation and they are now able to roam the exterior of the

castle. By selecting the stairs, the player will be transported

to the outdoor castle environment.

In the concluding stage, players are presented with a

castle and a number of markers located in various locations

on the terrain, this is illustrated in Fig. 4.

The player can move through the outdoor castle terrain,

visiting each of the designated locations (as indicated by the

waypoints) in the same manner as before. These areas have

been adorned with various assets from Unity’s asset store

and can be seen in Fig. 5.

Fig. 5. First castle room.

IV. RESULTS AND ANALYSIS

In this section, we present the results of our L-Systems

enhanced virtual reality escape room game and conduct a

comparative analysis with existing technologies to

thoroughly discuss the impact of our approach.

A. Player Feedback

During the evaluation phase of our game, participants

from East Stroudsburg University provided valuable

feedback on their experiences. The overall response was

positive, with players praising the immersive nature of the

game and the unique challenges presented by the L-

Systems generated room environments. Participants

appreciated the realistic and dynamic structures, which

enhanced the sense of exploration and discovery.

B. Comparative Analysis

To provide a comprehensive analysis, we compare our

L-Systems enhanced approach with existing technologies

commonly used in virtual reality escape room games.

1) Procedural generation

Procedural generation is a popular technique employed

in escape room game development [15]. It allows for the

creation of randomized room structures, enhancing

replayability. However, compared to procedural generation,

our L-Systems approach offers greater intricacy and

diversity in room designs. The application of L-Systems

enables the generation of complex and organic structures

that feel more natural and visually appealing.

2) Graph grammars and node rewriting

Some previous works have utilized graph grammars and

node rewriting to manipulate and transform room

structures [15–17]. While these techniques offer flexibility

in modifying individual nodes and connections, our L-

Systems approach expands on this concept by generating

entire room layouts. L-Systems provide a systematic and

rule-based approach to generating realistic and intricate

room environments, resulting in a more immersive and

challenging gameplay experience.

279

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

3) Traditional puzzle design

Traditional escape room games often rely on handcrafted

puzzle designs, which can limit the variety and complexity

of gameplay experiences [18–21]. Our L-Systems approach

overcomes this limitation by dynamically generating

puzzle layouts within the room structures. This allows for a

greater variety of puzzles and challenges, making each

playthrough unique and engaging.

Through our comparative analysis, it is evident that the

incorporation of L-Systems in our virtual reality escape

room game provides significant advantages over existing

technologies. The generated room environments offer a

level of intricacy, realism, and variety that enhance player

immersion and enjoyment.

V. CONCLUSIONS AND FUTURE WORK

This paper has presented a virtual reality escape room

game that utilizes L-Systems to generate unique and

engaging room environments. The incorporation of the L-

Systems plugin enhances the realism and complexity of the

game design, offering players an immersive and

challenging experience.

While the technical operation of the L-Systems plugin

has been explored, future research should focus on

conducting user studies or surveys to gather more

comprehensive data on player experiences. This would

involve collecting feedback on player immersion,

enjoyment, and overall engagement with the game. By

analyzing player perceptions and reactions through

qualitative and quantitative research methods, a more

holistic understanding of the plugin’s impact on player

experience can be obtained. This valuable information will

guide future iterations of the game and contribute to the

ongoing development of virtual reality escape room

experiences.

Additionally, we aim to improve the game by

implementing several new features such as non-player

characters, inventory system, a variety of weather

conditions, and a day-night cycle, adding more depth to the

game, multiplayer environment etc. One of our initial plans

was to make this game compatible with Oculus Meta

Quest 2, however, we were unable to do so due to time

constraints. Therefore, we plan to port the game to this

device in the future. Furthermore, we currently use Blender

to create the L-Systems models, and then export them to

Unity. We hope to eventually integrate this process within

Unity, so that each playthrough of the game will have a

unique room structure, increasing replay ability.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Matthew Yaswinski and Jeyaprakash Chelladurai were

responsible for conducting the research, writing the code in

Blender for L-Systems, and implementing the game in

Unity. Shivani Barot was responsible for creating the castle

and outdoor environment in Blender. All authors approved

of the final version.

REFERENCES

[1] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of

Plants, New York: Springer, 1996.

[2] L-system. [Online]. Available: https://en.wikipedia.org/wiki/L-
system

[3] Quickstart for Google VR SDK for unity with android | Google

developers. [Online]. Available:
https://developers.google.com/vr/develop/unity/get-started-android

[4] Googlevr. Googlevr/GVR-unity-SDK: Google VR SDK for Unity.

[Online]. Available: https://github.com/googlevr/gvr-unity-sdk
[5] Asphalt materials: 2D roads. [Online]. Available:

https://assetstore.unity.com/packages/2d/textures-materials/roads/
asphalt-materials-141036

[6] Big furniture pack: 3D furniture. [Online]. Available:

https://assetstore.unity.com/packages/3d/props/furniture/big-furni
ture-pack-7717

[7] Conifers [BOTD]: 3d trees. [Online]. Available:

https://assetstore.unity.com/packages/3d/vegetation/trees/conifers-
botd-142076

[8] Free Cartoon halloween pack-mobile/VR: 3D fantasy. [Online].

Available: https://assetstore.unity.com/packages/3d/environments/
fantasy/free-cartoon-halloween-pack-mobile-vr-45896

[9] Furniture free pack: 3D furniture. [Online]. Available:

https://assetstore.unity.com/packages/3d/props/furniture/furniture-
free-pack-192628

[10] Grass flowers pack free: 2D nature. [Online]. Available:

https://assetstore.unity.com/packages/2d/textures-materials/nature/
grass-flowers-pack-free-138810

[11] Outdoor ground textures: 2D floors. [Online]. Available:

https://assetstore.unity.com/packages/2d/textures-materials/floors/
outdoor-ground-textures-1255

[12] Paintings free: 3D interior. [Online]. Available:

https://assetstore.unity.com/packages/3d/props/interior/paintings-
free-44185

[13] Yughues free wooden floor materials: 2D wood. [Online].

Available: https://assetstore.unity.com/packages/2d/textures-mater
ials/wood/yughues-free-wooden-floor-materials-13213

[14] P. Prusinkiewicz and J. Hanan, “L-systems: From formalism to

programming languages,” in Lindenmayer Systems: Impacts on
Theoretical Computer Science, Computer Graphics, and

Developmental Biology, 1992, pp. 193–211.

[15] G. S. Etchebehere and M. A. Eliseo, “L-systems and procedural
generation of virtual game maze sceneries,” in Proc. SBGames,

2017.

[16] T. Voncken, J. Rot, and H. Zantema, “Maze generation, an L-
system based approach,” Bachelor thesis, Radboud University,

Netherlands, 2017.

[17] I. Antoniuk and P. Rokita, “Generation of complex underground
systems for application in computer games with schematic maps

and L-systems,” in Proc. International Conference on Computer

Vision and Graphics, ICCVG 2016, Springer International
Publishing, 2016, pp. 3–16.

[18] J. B. Kruskal, “On the shortest spanning subtree of a graph and the

traveling salesman problem,” Proceedings of the American
Mathematical Society, vol. 7, no. 1, pp. 48–50, 1956. doi:

10.2307/2033241

[19] M. T. Trick and S. W. Director, “Lassie: Structure to layout for
behavioral synthesis tools,” in Proc. the 26th ACM/IEEE Design

Automation Conference, 1989, pp. 104–109.

[20] M. Cook, “Universality in elementary cellular automata,” Complex
Systems, vol. 15, no. 1, pp. 1–40, 2004.

[21] P. H. Kim and R. Crawfis, “The quest for the perfect perfect-maze,”

in Proc. 2015 Computer Games: AI, Animation, Mobile,
Multimedia, Educational and Serious Games (CGAMES), IEEE,

2015, pp. 65–72.

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

280

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V15N2-276

