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Abstract—Hand gesture recognition based on 

Electromyography (EMG) signals is a challenging approach 

for developing natural and intuitive human-computer 

interfaces. In this paper, a hand gesture recognition system 

will be proposed that uses deep learning techniques, 

specifically a Convolutional Neural Network (CNN) and a 

Long Short-Term Memory (LSTM) by merging them into 

one architecture called CNN+LSTM model. CNN is used to 

extract relevant features from the EMG signals, while the 

LSTM captures the temporal dynamics of the gestures. The 

proposed model is a fusion technique that combines the 

strengths of CNN and LSTM. Therefore, incorporating 

CNN+LSTM would be crucial in improving the accuracy of 

the model. The proposed system was trained and evaluated 

on two datasets publicly available. The first one, DualMyo, 

includes EMG signals recorded from one subject performing 

8 different hand gestures, with each class of gestures recorded 

110 times. The second dataset was collected from 36 subjects 

performing 8 different hand gestures. Results demonstrate 

that our proposed system achieved outstanding performance, 

with an average recognition accuracy for both data sets of 

approximately 99% for the DualMyo and about 97% for the 

second. To tackle the testing time issue, we introduce a second 

model that incorporates cascading CNN and max pooling 

layers, achieving a substantial reduction rate of 1/20 

compared to the first model in testing time without 

significantly compromising recognition accuracy 

significantly, ultimately achieving the shortest testing time 

with good accuracy compared to the related methods. 

Experimental results demonstrate the efficacy of this 

approach, making it suitable for real-time applications in 

gesture-controlled systems.  

 

Keywords—hand gesture recognition, signal 

electromyography, Convolutional Neural Network (CNN), 
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I. INTRODUCTION 

The Electromyography (EMG) signal is a biomedical 

signal that measures electrical activity produced by 

skeletal muscles. The EMG has been employed for many 

purposes including the estimation of finger motions, 

gesture recognition, diagnosis of neuromuscular illnesses 

and control systems such as robots and prosthetics. The 

development of relevant machine-assisted systems that 

promote the autonomy of individuals with special needs 

can be facilitated using EMG signals in conjunction with 

efficient gesture recognition [1]. 

Hand gesture recognition based on EMG signals is a 

challenging research area in Human-Computer Interaction 

(HCI) with various applications, including sign language 

recognition, prosthetic control, and virtual reality. Hand 

gesture recognition based on EMG signal has garnered 

significant attention in the field of assistive technology, 

particularly for individuals with limb amputations. 

Myoelectric prosthetic devices typically operate by 

analyzing and categorizing the recorded EMG signals, 

thereby enabling the synthesis of desired hand gestures [2]. 

Traditional approaches to hand gesture recognition, such 

as vision-based methods, have limitations such as being 

affected by lighting conditions and occlusion [3].  

Utilizing Machine Learning (ML) for EMG-based 

gesture recognition is a popular yet challenging endeavor. 

It necessitates diverse and accurately labeled EMG 

datasets, considering variable EMG signals influenced by 

factors like fatigue and electrode placement. Moreover, 

meaningful feature extraction from raw signals, the 

selection of appropriate ML algorithms or neural 

architectures, optimal hyperparameter configuration, 

noise/artifact handling, user-specific model adaptation, 

real-time processing, intent recognition, and ethical 

considerations all come into play. 

Deep learning is a subset of ML algorithms, particularly 

Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs), have achieved remarkable 

success in various applications, including image and 

speech recognition. One distinguishing factor of deep 

learning techniques, compared to conventional ML 

approaches, is their integration of feature extraction as part 

of the model construction, thereby eliminating the need for 

manually crafted features [4]. In recent years, deep 

learning has also been applied to EMG-based hand gesture 

recognition. A deep learning-based approach offers the 
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potential to automatically learn features that are important 

for recognizing hand gestures from raw EMG signals. 

Therefore, the combination of EMG signals and deep 

learning techniques holds great promise for developing 

robust and accurate hand gesture recognition systems [5]. 

EMG-based hand gesture recognition utilizing CNN 

and Long Short-Term Memory (LSTM) networks 

separately faces certain limitations, prompting the 

exploration of a combined approach to mitigate these 

drawbacks. CNN, while adept at learning spatial features 

from data, might struggle with capturing the intricate 

temporal dynamics inherent in EMG signals. The grid-like 

nature of CNN doesn’t inherently align with the sequential 

nature of EMG data, potentially causing the loss of 

essential temporal information. Furthermore, CNN might 

not always discern the most relevant features specific to 

EMG signals, leading to suboptimal performance [6]. 

On the other hand, LSTM networks excel at modeling 

sequences and temporal dependencies, making them well-

suited for processing time-series data like EMG signals. 

However, the length of EMG sequences can lead to 

computational overhead during training. Additionally, 

vanishing gradient issues might arise when dealing with 

prolonged sequences, hindering the LSTMs’ ability to 

capture long-term dependencies. 

By combining CNNs and LSTMs, a hybrid architecture, 

which can address these challenges and harness the 

strengths of both approaches, emerges. CNNs can serve as 

effective feature extractors, capturing local spatial patterns 

within the EMG data. The CNN layers’ outputs can then 

be fed into LSTMs, enabling the modeling of temporal 

dependencies over the sequence. 

In this paper, an approach is proposed for hand gesture 

recognition based on EMG signals and deep learning 

techniques. Our approach consists of preprocessing EMG 

signals, building and combining a CNN+LSTM 

architecture, and training the model on a large dataset of 

hand gestures. The performance of the proposed approach 

is evaluated then compared with the state-of-the-art 

methods. 

The rest of the paper is organized as follows. In 

Section  II, we give a summary of the associated gesture 

recognition techniques. Section III provides the 

methodology of the proposed system. Results and 

discussion are presented in Section IV. Finally, the paper 

is concluded, and future work is described in Section V. 

II. LITERATURE REVIEW 

Hand gesture recognition has been an active research 

topic in recent years due to its potential applications in 

various fields such as human-computer interaction, 

robotics, and healthcare. Among different modalities, 

EMG signals have been widely used for hand gesture 

recognition because they are non-invasive, easy to acquire, 

and can reflect the muscle activities related to hand 

movements. In addition, deep learning techniques have 

shown promising results in EMG-based hand gesture 

recognition by automatically extracting discriminative 

features from the raw EMG signals. 

Miguel et al. [7] used R-CNN network and Wavelet 

Packet Transform (WPT) feature extraction to learn the 

features from the EMG signals and achieved a recognition 

accuracy of 96.48%. However, their method utilized a 2-

channel EMG signal collection approach, which may not 

have captured all the nuances of muscle activity associated 

with both the contraction and relaxation phases during 

different hand gestures. This limitation could have had an 

impact on the overall classification performance. In 

Ref.  [8], a dilated CNN-based approach for EMG 

classification is presented, which can capture both local 

and global features from the EMG signals. Their method 

achieved an accuracy of 99% on a dataset of six hand 

gestures. 

Recurrent Neural Networks (RNNs) have also been 

explored for EMG-based hand gesture recognition. For 

example, Li et al. [1] proposed a deep RNN-based 

approach using LSTM units. Their method achieved an 

accuracy of 97.75% on a dataset of four hand gestures. 

Miguel et al. [9] used LSTM network for EMG-based hand 

gesture recognition which achieved an accuracy of 95% 

for the DualMyo and about 91% for the NinaPro DB5 

datasets. Toro et al. [10] introduced a gesture classifier 

based on RNN with LSTM units and dense layers. Their 

study aimed to enhance the model’s scalability for 

embedded systems by reducing the number of 

Electromyography (EMG) channels and overall 

complexity. Using only four EMG channels, the proposed 

model successfully identified five hand movements, 

significantly reducing the required electrodes. The 

researchers trained the model with a dataset of gesture 

EMG signals recorded using a custom EMG armband, 

spanning 20 seconds. During training and validation, the 

model achieved up to 97% accuracy. In real-time testing, 

it demonstrated 87% accuracy. 

Transfer learning has also been applied to EMG-based 

hand gesture recognition to improve the performance of 

deep learning models. Tayyip et al. [11] proposed a 

transfer learning approach that fine-tunes a pre-trained 

CNN on EMG dataset. achieving an accuracy of 98.40%.  

In the realm of practical applications for gesture 

recognition, Yash et al. [12] introduced a controller 

designed for easy attachment to a user’s arm band. This 

controller enables the control of an Unmanned Aerial 

Vehicle (UAV) using EMG signals. Gesture recognition is 

achieved through the utilization of an Artificial Neural 

Network, effectively harnessing the combined capabilities 

of both the user and the chosen UAV, which in this case, 

is a quadcopter. 

In summary, EMG-based hand gesture recognition 

using deep learning techniques has achieved significant 

progress in recent years. Different deep learning 

architectures, such as CNNs, RNNs, and two-stream 

networks, have been explored to extract discriminative 

features from EMG signals. Transfer learning has also 

been applied to improve the performance of deep learning 

models on small EMG datasets. These developments have 

paved the way for the practical applications of EMG-based 

hand gesture recognition in various fields. 
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EMG-based hand gesture recognition using CNN and 

LSTM networks offers a powerful approach, but it’s not 

without its disadvantages. When CNNs and LSTMs are 

used separately, limitations arise. CNNs are excellent at 

extracting spatial features from EMG data but may 

struggle to capture temporal dependencies in gestures. On 

the other hand, LSTMs excel at modeling temporal 

information but may not fully exploit the spatial features 

present in the EMG signals. However, combining these 

two techniques can effectively address these drawbacks. 

By integrating CNNs for spatial feature extraction and 

LSTMs for modeling temporal dependencies, the resulting 

hybrid model can achieve higher accuracy and robustness 

in hand gesture recognition. This approach benefits from 

the complementary strengths of both architectures, 

enabling it to capture intricate patterns and nuanced 

movements in EMG data. Consequently, it enhances the 

precision and reliability of hand gesture recognition 

systems, making them more suitable for applications in 

prosthetics, virtual reality, and human-computer 

interaction, where accurate and intuitive gesture 

recognition is paramount. 

III. METHODOLOGY

In this section, we explain the data characteristics, 

preprocessing for model fitting and testing, the network’s 

architecture, training methodology and performance 

metrics. The block diagram of the proposed hand gesture 

recognition network is shown in Fig. 1, which will be 

detailed in the next subsections. 

Fig. 1. The block diagram of the proposed hand gesture recognition 
network. 

A. Datasets

The provided methodology was tested on two datasets,

the first synthetic sequences from the UC2018 DualMyo 

dataset and second dataset we called EMG36, both used 

for EMG-based hand gesture detection. A fixed data split 

of 60% for training, 20% for validation, and 20% for 

testing is employed for all tests. While the performance of 

the validation set is used to optimize the hyperparameters 

of classification model 

The UC2018 DualMyo was gathered from two EMG 

sensors (Myo) where the participant made 8 different hand 

gestures, each gesture has been recorded 110 times in total 

during 5 recording sessions. The UC2018 DualMyo 

dataset, comprising a substantial 880 samples, was further 

enhanced through data augmentation techniques, resulting 

in an extensive dataset containing 9,062 samples [13]. This 

augmentation involved generating additional variations of 

the recorded gestures, introducing controlled noise, and 

systematically expanding the dataset to improve the 

robustness and diversity of the data for training and 

evaluating hand gesture recognition models [9]. Hand 

shape of gestures is shown in Fig. 2. 

The EMG36 dataset was gathered from a MYO Thalmic 

bracelet worn on a user’s forearm; 36 participants made a 

sequence of motionless hand gestures. Two series are 

performed by the subject, each consisting of six (or seven) 

fundamental gesture which are: unmarked data (0), hand at 

rest (1), hand clenched in a fist (2), wrist flexion (3), wrist 

extension (4), radial deviations (5), ulnar deviations (6), 

and the last one extended palm (7) which was not 

performed by all subjects. The duration of each gesture 

was 3 seconds, with a 3 second break in-between each 

gesture [14]. The EMG36 dataset comprises a substantial 

4,237,907 samples. 

Preprocessing is a crucial step in gesture recognition 

based on EMG signals. While filtering is often used to 

remove noise or artifacts; in the proposed approach, only 

the normalization is applied. The EMG signals of the two 

datasets were normalized to a common scale to make them 

easier to compare and analyze. This involved scaling each 

signal to a range of (0, 1) or standardizing them to have 

zero mean and unit variance. Normalization helps to 

prevent any features from dominating others due to their 

larger magnitudes and to make the data more suitable for 

the model to learn.  

Fig. 2. UC2018 DualMyo dataset gestures: (G0) rest, (G1) closed fist, 
(G2) open hand, (G3) wave in, (G4) wave out, (G5) double-tap, (G6) 
hand down, (G7) hand up [9]. 

B. CNN+LSTM Architecture

Both CNN and LSTM networks have been widely used

for sequential data analysis. While LSTM are proficient at 

identifying long-term dependencies in sequential data, 

CNNs are great at learning local patterns in data. These 

two network types can be combined to handle time series 

classification tasks more effectively. A one-dimensional 

CNN is used for processing and analyzing one-

dimensional sequential data, such as time series, audio 

signals, natural language sentences, or any other form of 

sequential data. The basic idea behind a 1D CNN is to 

apply convolutional operations to the input sequence to 

extract relevant features and patterns. The convolutional 

layers in a 1D CNN consist of small filters (kernels) that 

slide over the sequence and compute dot products with 

local regions, generating feature maps capturing different 

patterns in the data. The convolution operation in a CNN 
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is defined by a filter (kernel) K of size k, which slides over 

the input sequence. The output feature map F is computed 

as in Eq. (1). 

Fi = ∑(ki × Xi+j Fi = ∑(ki  Xi+j) (1) 

where X is the input data, and the sum is taken over the 

filter size k and j ranges from 0 to k−1. The process 

continues for each position i, generating the entire feature 

map F. 

The CNN component of the architecture extracts spatial 

features from the raw EMG signals by convolving them 

with a set of learnable filters. The resulting feature maps 

are then passed through a series of pooling and activation 

layers to reduce their spatial dimensionality and enhance 

their discriminative power. The output of the CNN is a 

high-level feature representation of the EMG signals that 

remains invariant to small translations and rotations [15]. 

LSTMs, on the other hand, are effective at modeling 

sequential data and capturing long-term dependencies in 

the input sequence. The LSTM component of the 

architecture models the temporal dependencies between 

the extracted features by learning a sequence of hidden 

states that capture the history of the signals. The core idea 

behind LSTM is its ability to retain important information 

over extended time intervals, mitigating the vanishing and 

exploding gradient problems commonly faced by 

traditional RNNs. This is achieved by LSTM cells, which 

can remember and forget information over long time 

periods.  

The LSTM model’s ability to control the information 

flow through the input, forget, and output gates, along with 

the cell state update, enables it to effectively capture long-

term dependencies in sequential data and make informed 

predictions. 

1) Input gate (it)

The input gate determines how much of the new input

(current time step) should be added to the cell state. It takes 

the current input (xt) and the previous hidden state (ht−1) as 

inputs and produces the input gate activation (it) using a 

sigmoid activation function as in Eq. (2). 

it = σ (Wxi × xt + whi × ht-1 + bi)it = σ (Wxi × xt +
whi × ht-1 + bi)                         (2)

where Wxi and Whi are weight matrices, and bi is the bias 

vector for the input gate. 

2) Forget gate (ft)

The forget gate decides what information from the

previous cell state (ct-1) should be retained or forgotten. It 

takes xt and ht-1 as inputs and produces the forget gate 

activation (ft) using a sigmoid activation function as in 

Eq.  (3). 

𝑓𝑡 = 𝜎 (𝑊𝑥𝑓 × 𝑥𝑡 + 𝑤ℎ𝑓 × ℎ𝑡−1 + 𝑏𝑓)𝑓𝑡 = 𝜎 (𝑊𝑥𝑓 𝑥𝑡 +

𝑤ℎ𝑓 × ℎ𝑡−1 + 𝑏𝑓)                      (3)

where Wxf and Whf are weight matrices, and bf is the bias 

vector for the forget gate. 

3) Cell state update (ćt)

The cell state update captures the new candidate

information to be added to the cell state. It takes xt and ht-1 

as inputs and produces the candidate cell state update(ćt) 

using the tanh activation function as in Eq. (4). 

ć𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑥𝑐 × 𝑥𝑡 + 𝑤ℎ𝑐 × ℎ𝑡−1 + 𝑏𝑐)ć𝑡 =
𝑡𝑎𝑛ℎ (𝑊𝑥𝑐𝑥𝑡 + 𝑤ℎ𝑐 ℎ𝑡−1 + 𝑏𝑐) (4) 

where Wxc and Whf are weight matrices, and bc is the bias 

vector for the forget gate. 

4) Cell state (ct) update

The cell state (ct) is updated by combining the

information from the forget gate and the candidate cell 

state update as in Eq. (5). 

𝑐𝑡 = 𝑓𝑡   𝑐𝑡−1 + 𝑖𝑡   ć𝑡c𝑡 = 𝑓𝑡   𝑐𝑡−1 + 𝑖𝑡   ć𝑡  (5) 

where × represents elementwise multiplication. 

5) Output gate (ot)

The output gate determines what information from the

updated cell state should be used to produce the current 

hidden state (ht). It takes xt and ht−1 as inputs and produces 

the output gate activation (ot) using a sigmoid activation 

function as in Eq. (6). 

𝑜𝑡 = 𝜎 (𝑊𝑥𝑜 × 𝑥𝑡 + 𝑤ℎ𝑜 × ℎ𝑡−1 + 𝑏𝑜)𝑜𝑡 = 𝜎 (𝑊𝑥𝑜 𝑥𝑡 +
𝑤ℎ𝑜   ℎ𝑡−1 + 𝑏𝑜)                         (6)

where Wxo and Who are weight matrices, and bo is the bias 

vector for the output gate. 

6) Hidden state (ht) update

The hidden state (ht) is computed by applying the output

gate to the cell state as in Eq. (7). 

ℎ𝑡 = 𝑜𝑡   𝑡𝑎𝑛ℎ 𝑐𝑡 ℎ𝑡 = 𝑜𝑡   𝑡𝑎𝑛ℎ 𝑐𝑡 (7) 

where × represents elementwise multiplication. 

The output of the LSTM is a compressed representation 

of the EMG signals that encodes both the spatial and 

temporal information [16]. The final output of the 

CNN+LSTM architecture is obtained by passing the 

output of the LSTM through one or more fully connected 

layers, which perform the classification task. The output 

layer uses a SoftMax activation function to produce a 

probability distribution over the different hand gesture 

classes [17]. 

C. Optimization

Optimization, in the context of machine learning and

deep learning, refers to the process of finding the best set 

of parameters for a model that minimizes or maximizes a 

specific objective function. The objective function is 

typically a measure of how well the model performs on a 

given task, such as minimizing the error or loss on a 

training dataset or maximizing the accuracy on a validation 

dataset. We used NADAM optimizer, Nadam, short for 

Nesterov-accelerated Adaptive Moment Estimation, is an 

optimization algorithm used to update the weights of a 

neural network during the training process. It is an 

extension of two popular optimization algorithms: 

Nesterov Accelerated Gradient (NAG) and Adaptive 

Moment Estimation (Adam). The Nadam optimizer 

combines the benefits of both NAG and Adam, making it 

an efficient and effective optimization method.  

NAG is a variant of the traditional gradient descent 

method that incorporates momentum to accelerate 
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convergence. It calculates the gradient of the loss function 

not only at the current position but also at a point slightly 

ahead in the direction of the momentum term. The updated 

weights are then based on this adjusted gradient. NAG 

helps to reduce oscillations and overshooting during 

optimization.  

Adam is another popular optimization algorithm that 

uses adaptive learning rates for each parameter. It keeps 

track of both the first-order moment (mean) and the 

second-order moment (uncentered variance) of the 

gradients. This allows Adam to scale the learning rates 

differently for each parameter based on their historical 

gradient behavior, leading to more stable and efficient 

updates. 

Nadam combines the concepts of NAG and Adam to 

leverage their advantages. During each iteration, Nadam 

computes the gradient using NAG to account for the 

momentum effect and then adapts the learning rates based 

on the historical gradients using Adam [18]. the Nadam 

optimizer computes the gradient of the loss function (g) 

with respect to the weights as in Eq. (8), then update the 

first-order momentum (mt) as in Eq. (9), and second-order 

momentum (vt) as in Eq. (10), then computes the NAG-

corrected gradient(mth) as in Eq. (11). Finally Updates the 

weights (w) using the NAG-corrected gradient and the 

adapted learning rate (a) as in Eq. (12). 

𝑔 = 𝑑𝑙𝑜𝑠𝑠 𝑑𝑤𝑒𝑖𝑔ℎ𝑡𝑠⁄ (8) 

𝑚𝑡 = 𝐵1 × 𝑚𝑡 + (1 − 𝐵1) × 𝑔 𝑚𝑡 = 𝐵1 𝑚𝑡 +
(1 − 𝐵1) 𝑔 (9)

𝑣𝑡 = 𝐵2 × 𝑣𝑡 + (1 − 𝐵2) × 𝑔2𝑣𝑡 = 𝐵2 𝑣𝑡 + (1 −
𝐵2)  𝑔2  (10)

𝑚𝑡ℎ = 𝑚𝑡 (1 − 𝐵1
𝑡⁄ )𝑚𝑡ℎ=𝑚𝑡 (1−𝐵1

𝑡)⁄  (11) 

𝑤 = 𝑤 − 𝑎 × (𝑚𝑡ℎ √𝑣𝑡 + 𝑒⁄ )𝑤 = 𝑤 −

𝑎  (𝑚𝑡ℎ √𝑣𝑡 + 𝑒⁄ )                      (12)

where B1 and B2 are the exponential decay rates for the first 

and second moments, respectively, t is the current iteration, 

and e is a small value to prevent division by zero. 

Nadam combines the momentum effect of NAG with 

the adaptive learning rate mechanism of Adam, resulting 

in faster convergence and improved performance in many 

cases, especially for high-dimensional and noisy 

optimization problems commonly encountered in training 

deep neural networks. 

D. Proposed System Model

The architecture of the model comprises input nodes, a

convolution layer, and a max pooling layer. These are 

followed by a recurrent layer that has 1,024 LSTM cells. 

The output from this layer is then fed into a dense layer 

that consists of 512 units. Finally, a SoftMax transfer 

function is applied to generate a probability distribution for 

the classification output. The architecture of the model is 

shown in Fig. 3. The hyperbolic tangent activation 

function is used in the dense, convolution, max pooling, 

and LSTM hidden layers. To optimize the parameters, the 

NADAM optimizer is utilized with a learning rate of 0.001 

and a batch size of 256. Hyperparameters were carefully 

chosen by systematically experimenting with various 

configurations to identify the most optimal settings. We 

computed several evaluation metrics, including accuracy, 

precision, recall, F1-score, and generated a confusion 

matrix once the model has been tested on all data splits 

(training, validation, and testing). 

Fig. 3. The model architecture. 

Accuracy is the proportion of correctly predicted 

instances out of the total instances in the dataset. It 

measures overall correctness. While accuracy is 

informative, it might not be suitable for imbalanced 

datasets where one class is significantly more prevalent 

than the other. Precision is a metric that focuses on the 

accuracy of the positive predictions made by the model. It 

calculates the proportion of true positive predictions 

(correctly predicted positives) out of all instances 

predicted as positive. Recall, also known as sensitivity or 

true positive rate, measures the model’s ability to correctly 

identify all instances of a specific class. It calculates the 

proportion of true positive predictions out of all instances 

that actually belong to the positive class. Recall is crucial 

when the cost of false negatives is high, as it quantifies the 

model’s ability to capture all instances of the positive class. 
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F1-score is the harmonic mean of precision and recall, 

offering a balance between accurate positive predictions 

and capturing all positive instances. 

A confusion matrix is a tabular representation that 

displays the model’s predictions against the actual class 

labels in a classification problem. It consists of four main 

values: True Positives (TP), True Negatives (TN), False 

Positives (FP), and False Negatives (FN). These values 

help quantify the model’s performance, making it easier to 

calculate metrics like accuracy, precision, recall, and the 

F1-score. The confusion matrix is a valuable tool for 

understanding the distribution of predictions across 

different classes and evaluating the model’s strengths and 

weaknesses. These metrics and concepts collectively 

provide a comprehensive view of a model’s performance, 

enabling practitioners to assess its accuracy, ability to 

make precise predictions, capacity to capture all relevant 

instances, balance between precision and recall, and the 

distribution of predictions across different classes [7]. 

IV. RESULT AND DISCUSSION

The Keras library using TensorFlow was used to define 

and train the networks. The hardware used was a laptop 

with an Intel i7-7820HQ CPU and 16 GB of RAM. The 

classification models were trained following the 

methodology described earlier. The performance of the 

CNN + LSTM model is compared with different deep 

learning techniques. Fig. 4 shows the training and 

validation accuracy of the model, where the final accuracy 

of training and validation were 99.66% and 98.64%, 

respectively for the DualMyo dataset and 98.94 % and 

97.24% for the EMG36 dataset respectively. In Fig. 5, the 

test split accuracy, precision, recall, and F1-score is 

displayed. We display them for both datasets. In terms of 

accuracy, accuracy for DualMyo and EMG36 is 0.989 and 

0.972 respectively. And the precision is 0.9896 and 0.9772 

for two datasets respectively. And for the recall is 0.989 

and 0.9719 for two datasets respectively. Finally, the F1-

score is 0.9893 and 0.9720 for two datasets, respectively. 

The performances matrices are similar for both datasets. 

(a) 

(b) 

Fig. 4. The training and validation accuracy of the model (a) for 
DualMyo dataset (b) EMG36 dataset. 

Fig. 5. The performance matrices for the two datasets. 

TABLE I. CONFUSION MATRIX FOR DUALMYO DATASET 

Output Class 
Target Class  

G0 G1 G2 G3 G4 G5 G6 G7 G8 

G0 
1123 0 3 1 0 1 1 1 99.38% 

64.99% 0.00% 0.17% 0.06% 0.00% 0.06% 0.06% 0.06% 0.62% 

G1 
1 79 0 0 0 0 1 0 97.53% 

0.06% 4.57% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 2.47% 

G2 
2 0 92 0 1 0 0 0 96.84% 

0.12% 0.00% 5.32% 0.00% 0.06% 0.00% 0.00% 0.00% 3.16% 

G3 
1 0 0 89 0 0 0 0 98.89% 

0.06% 0.00% 0.00% 5.15% 0.00% 0.00% 0.00% 0.00% 1.11% 

G4 
0 0 0 0 80 0 0 0 100.00% 

0.00% 0.00% 0.00% 0.00% 4.63% 0.00% 0.00% 0.00% 0.00% 

G5 
1 0 0 0 0 85 0 1 97.70% 

0.06% 0.00% 0.00% 0.00% 0.00% 4.92% 0.00% 0.06% 2.30% 

G6 
2 0 1 0 0 0 72 0 96.00% 

0.12% 0.00% 0.06% 0.00% 0.00% 0.00% 4.17% 0.00% 4.00% 

G7 
1 0 0 0 0 0 0 89 98.89% 

0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 5.15% 1.11% 

G8 
99.29% 100.00% 95.83% 98.89% 98.77% 98.84% 97.30% 97.80% 98.90% 
0.71% 0.00% 4.17% 1.11% 1.23% 1.16% 2.70% 2.20% 1.10% 
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The confusion matrices were analyzed to gain deeper 

insights into the model’s performance. In Table I, which 

presents the confusion matrix for the DualMyo dataset, we 

observe that the accuracy of most gestures exceeded 97%. 

Notably, the gesture labeled as G2 exhibited the lowest 

accuracy at 95.83%. Similarly, in Table II, which displays 

the confusion matrix for the EMG36 dataset, most gestures 

achieved accuracies greater than 96%. Nevertheless, the 

“hand at rest” gesture (labeled as 2) displayed the lowest 

accuracy, standing at 93.23%. 

TABLE II. CONFUSION MATRIX FOR EMG36 DATASET 

Output Class 
Target Class 

0 1 2 3 4 5 6 7 8 

0 
535572 3279 1292 1190 1120 1132 1284 50 98.28% 

63.19% 0.39% 0.15% 0.14% 0.13% 0.13% 0.15% 0.01% 1.72% 

1 
4512 45630 7 5 6 12 9 0 90.93% 

0.53% 5.38% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 9.07% 

2 
1327 1 46693 129 65 82 131 9 96.40% 

0.16% 0.00% 5.51% 0.02% 0.01% 0.01% 0.02% 0.00% 3.60% 

3 
1456 8 119 48059 15 72 233 9 96.17% 

0.17% 0.00% 0.01% 5.67% 0.00% 0.01% 0.03% 0.00% 3.83% 

4 
1652 8 117 13 48277 203 99 13 95.82% 

0.19% 0.00% 0.01% 0.00% 5.70% 0.02% 0.01% 0.00% 4.18% 

5 
1731 6 82 75 169 48239 43 5 95.81% 

0.20% 0.00% 0.01% 0.01% 0.02% 5.69% 0.01% 0.00% 4.19% 

6 
1285 9 125 209 106 37 48754 19 96.46% 

0.15% 0.00% 0.01% 0.02% 0.01% 0.00% 5.75% 0.00% 3.54% 

7 
73 2 8 10 4 7 34 2660 95.07% 

0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.31% 4.93% 

8 
97.80% 93.23% 96.39% 96.72% 97.02% 96.90% 96.38% 96.20% 97.20% 

2.20% 6.77% 3.61% 3.28% 2.98% 3.10% 3.62% 3.80% 2.80% 

We noticed that the model takes a significant amount of 

time during testing, to optimize testing time, we added 

cascading CNN and max pooling layers to the model. By 

incorporation of additional CNN layers and the utilization 

of max pooling, the data entering the LSTM network has 

been significantly reduced. Consequently, this reduction in 

data size has contributed to a notable decrease in testing 

time. CNN has the capability to effectively process 

substantial quantities of raw data with minimal pre-

processing requirements. Additionally, adding more CNN 

layers to a model can enhance its ability to learn intricate 

features from data hierarchically. Deeper networks can 

capture increasingly abstract patterns, making them well-

suited for larger datasets. The architecture of the second 

model is composed of a stack of five CNN layers, each 

accompanied by max-pooling layers directly afterward. 

After these CNN layers, an LSTM layer is introduced, 

followed by a dense layer. The model is finalized with the 

inclusion of a SoftMax layer. We trained the model on 

DualMyo, and we found that the testing time for the second 

model decreased by 1/20 compared to the first model.  

Fig. 6 shows the training and validation accuracy of the 

second model, where the final accuracy of training and 

validation were 99.78% and 97.68%, respectively. In Fig. 

7, we compared the performance matrices for the two 

models. In terms of accuracy, accuracy for Model 1 and 

Model 2 is 0.989 and 0.9769 respectively. And for the 

precision is 0.9896 and 0.978 for two models respectively. 

And for the recall is 0.989 and 0.9763 for two models 

respectively. Finally, the F1-score is 0.9893 and 0.9771 for 

the two models respectively. Where the accuracy, 

precision, recall and F1-score of the Model 2 slightly 

decreased compared to the Model 1. Table III displays the 

confusion matrix for Model 2. 

Fig. 6. The training and validation accuracy of the second model for 
DualMyo dataset. 

Fig. 7. Comparison of performance matrices for the two models. 

We compared our work with other deep learning 

techniques. Table IV presents the results of this 

comparison, which includes details such as the technique 

type, test accuracy, and testing time achieved by each 

technique.  
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TABLE III. CONFUSION MATRIX OF MODEL 2 FOR DUALMYO DATASET 

Output Class 
Target Class 

G0 G1 G2 G3 G4 G5 G6 G7 G8 

G0 
1123 1 1 2 1 0 2 0 99.38% 

64.99% 0.06% 0.06% 0.12% 0.06% 0.00% 0.12% 0.00% 0.62% 

G1 
1 79 0 0 0 0 1 0 97.53% 

0.06% 4.57% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 2.47% 

G2 
2 0 89 0 2 0 2 0 93.68% 

0.12% 0.00% 5.15% 0.00% 0.12% 0.00% 0.12% 0.00% 6.32% 

G3 
2 1 0 87 0 0 0 0 96.67% 

0.12% 0.06% 0.00% 5.03% 0.00% 0.00% 0.00% 0.00% 3.33% 

G4 
0 0 2 0 78 0 0 0 97.50% 

0.00% 0.00% 0.12% 0.00% 4.51% 0.00% 0.00% 0.00% 2.50% 

G5 
2 0 0 2 0 83 0 0 95.40% 

0.12% 0.00% 0.00% 0.12% 0.00% 4.80% 0.00% 0.00% 4.60% 

G6 
1 0 6 0 0 0 68 0 90.67% 

0.06% 0.00% 0.35% 0.00% 0.00% 0.00% 3.94% 0.00% 9.33% 

G7 
2 0 1 0 0 6 0 81 90.00% 

0.12% 0.00% 0.06% 0.00% 0.00% 0.35% 0.00% 4.69% 10.00% 

G8 
99.12% 97.53% 89.90% 95.60% 96.30% 93.26% 93.15% 100.00% 97.69% 
0.88% 2.47% 10.10% 4.40% 3.70% 6.74% 6.85% 0.00% 2.31% 

TABLE IV. COMPARISON OF OUR WORK WITH OTHER DEEP LEARNING 

TECHNIQUES 

Work Technique 
Testing 

accuracy 

Testing 

time 

Alejandro et al. 

[9] 
LSTM 95% 3.8 s 

Shanmuganathan 

et al. [7] 
R-CNN 96.48% − 

Jiang et al. [19] 
Stacked 

LSTM 
97.1% 2.12 s 

Pinzón et al. [8] CNN 99% − 

Alejandro et al. 
[10] 

LSTM 87.29±6.94% − 

Wang et al. [20] 
CNN+LSTM

+ CBAM 
92.159% − 

Our 

CNN+LSTM 98.9% 6 s 

Cascading 
CNN+LSTM 

97.69% 313 ms 

In Ref. [9], both Feedforward Neural Networks (FFNN) 

and Recurrent Neural Networks (RNN) were employed in 

their study, resulting in comparable accuracies of 

approximately 95% for both models. Notably, the RNN 

model exhibited a shorter testing time, approximately 

3.8  s. However, it is essential to recognize that while this 

reduction represents a significant improvement, it may still 

not meet the demands of real-time hand gesture 

recognition applications, where faster response times are 

often imperative. Shanmuganathan et al. [7] achieved a 

test accuracy rate of 96.48% through the utilization of R-

CNN in conjunction with WPT feature extraction. They 

utilized a 2-channel EMG signal collection approach, 

which might not fully capture the intricacies of muscle 

activity responsible for both contraction and relaxation 

during various hand gestures. Consequently, this limitation 

could potentially reduce the overall classification 

performance.  

Jiang et al. [19] utilized EMG signals and IMUs for 

gesture recognition, incorporating various models, 

including LSTM, to boost accuracy, achieving 97.1% 

accuracy rate. Nonetheless, with a testing time of 2.2 

seconds, it may not fully meet the real-time requirements 

of practical applications. In Ref. [8], a Convolutional 

Neural Network (CNN) was employed for hand gesture 

recognition, targeting six specific gestures, and achieving 

an impressive 99% accuracy rate. However, it’s important 

to acknowledge that the relatively small number of 

gestures in the dataset may have contributed to the high 

accuracy observed. Notably, the study did not provide 

information regarding testing time, which is a critical 

parameter, particularly in the context of real-time 

applications. While Ossaba et al. [10] work presents 

promising results in the reduction of EMG channels and 

improved scalability for embedded systems, it’s worth 

noting that further efforts may be needed to enhance 

accuracy, particularly in real-time testing, where the model 

achieved an accuracy of 87%.  

Additionally, the absence of information regarding 

testing time in the study leaves room for future 

investigations to address this critical parameter, which is 

vital for evaluating real-time applicability. Le et al. [20] 

presented an innovative approach for enhancing gesture 

recognition by employing a combination of CNN, LSTM, 

and Convolutional Block Attention Module (CBAM). 

While their reported accuracy of 92.159% is commendable 

and indicative of progress, questions arise regarding its 

suitability for specific applications within the field, with 

the accuracy not meeting certain application requirements. 

The proposed CNN+LSTM model achieved higher 

accuracy, while the cascading CNN+LSTM model not 

only notably reduced testing time but also demonstrated 

good accuracy, making it highly suitable for real-time 

applications in gesture-controlled systems. 

V. CONCLUSION

In this study, a hand gesture recognition system based 

on EMG signals and deep learning techniques using a 

CNN+LSTM architecture was proposed. The system was 

trained and evaluated on two datasets, and our 

experimental results demonstrated that the proposed 

system achieved performance, with an average recognition 

accuracy of 98.9% for the DualMyo dataset and 97.2 for 

the EMG36 dataset.  
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To address the challenge of testing time, a second 

optimized model is presented. By incorporating cascading 

CNN and max pooling layers, we achieve a remarkable 

reduction rate of 1/20 in testing time compared to the first 

model, while maintaining a high level of recognition 

accuracy. Our comparative analysis revealed that the 

proposed model outperformed existing methods, including 

CNN, LSTM, and R-CNN, by achieving the shortest 

testing time while maintaining a high level of accuracy. 

This remarkable combination of speed and accuracy makes 

the model particularly well-suited for real-time hand 

gesture recognition applications. Its ability to process data 

quickly allows for near-instantaneous recognition and 

response, making it an ideal choice for interactive 

applications where low latency is crucial, such as sign 

language interpretation or gesture-controlled interfaces.  

The experimental results provide strong evidence for 

the effectiveness of this approach, rendering it suitable for 

real-time applications in gesture-controlled systems. This 

paper demonstrates the potential of using EMG signals and 

deep learning techniques for developing natural and 

intuitive human-computer interfaces, particularly for 

individuals with physical disabilities. The proposed 

system has potential applications in a variety of domains, 

including prosthetic control, virtual reality, and gaming. 

A significant future challenge lies in testing the model 

with real-time datasets, which will require adapting the 

model to process incoming data swiftly and deliver real-

time recognition and responses. Future work may involve 

exploring the use of other deep learning architectures, such 

as attention-based models, to further improve the accuracy 

and robustness of the proposed system. Additionally, it 

may be useful to investigate the generalization 

performance of the system across different user 

populations, such as individuals with neuromuscular 

disorders.  Expanding the gesture vocabulary to 

encompass a broader range of commands or intricate sign 

language gestures holds great potential. Augmenting 

datasets with diverse examples and exploring synthetic 

data generation techniques can improve model 

generalization.  
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