

Hand Gesture Recognition Based on

Electromyography Signals and Deep Learning

Techniques

Mai H. Abdelaziz *, Wael A. Mohamed, and Ayman S. Selmy

Benha Faculty of Engineering, Benha University, Benha, Egypt

 Email: may.hassan@bhit.bu.edu.eg (M.H.A.); wael.ahmed@bhit.bu.edu.eg (W.A.M.);

ayman.mohamed01@bhit.bu.edu.eg (A.S.S.)

*Corresponding author

Abstract—Hand gesture recognition based on

Electromyography (EMG) signals is a challenging approach

for developing natural and intuitive human-computer

interfaces. In this paper, a hand gesture recognition system

will be proposed that uses deep learning techniques,

specifically a Convolutional Neural Network (CNN) and a

Long Short-Term Memory (LSTM) by merging them into

one architecture called CNN+LSTM model. CNN is used to

extract relevant features from the EMG signals, while the

LSTM captures the temporal dynamics of the gestures. The

proposed model is a fusion technique that combines the

strengths of CNN and LSTM. Therefore, incorporating

CNN+LSTM would be crucial in improving the accuracy of

the model. The proposed system was trained and evaluated

on two datasets publicly available. The first one, DualMyo,

includes EMG signals recorded from one subject performing

8 different hand gestures, with each class of gestures recorded

110 times. The second dataset was collected from 36 subjects

performing 8 different hand gestures. Results demonstrate

that our proposed system achieved outstanding performance,

with an average recognition accuracy for both data sets of

approximately 99% for the DualMyo and about 97% for the

second. To tackle the testing time issue, we introduce a second

model that incorporates cascading CNN and max pooling

layers, achieving a substantial reduction rate of 1/20

compared to the first model in testing time without

significantly compromising recognition accuracy

significantly, ultimately achieving the shortest testing time

with good accuracy compared to the related methods.

Experimental results demonstrate the efficacy of this

approach, making it suitable for real-time applications in

gesture-controlled systems.

Keywords—hand gesture recognition, signal

electromyography, Convolutional Neural Network (CNN),

Long Short-Term Memory (LSTM)

I. INTRODUCTION

The Electromyography (EMG) signal is a biomedical

signal that measures electrical activity produced by

skeletal muscles. The EMG has been employed for many

purposes including the estimation of finger motions,

gesture recognition, diagnosis of neuromuscular illnesses

and control systems such as robots and prosthetics. The

development of relevant machine-assisted systems that

promote the autonomy of individuals with special needs

can be facilitated using EMG signals in conjunction with

efficient gesture recognition [1].

Hand gesture recognition based on EMG signals is a

challenging research area in Human-Computer Interaction

(HCI) with various applications, including sign language

recognition, prosthetic control, and virtual reality. Hand

gesture recognition based on EMG signal has garnered

significant attention in the field of assistive technology,

particularly for individuals with limb amputations.

Myoelectric prosthetic devices typically operate by

analyzing and categorizing the recorded EMG signals,

thereby enabling the synthesis of desired hand gestures [2].

Traditional approaches to hand gesture recognition, such

as vision-based methods, have limitations such as being

affected by lighting conditions and occlusion [3].

Utilizing Machine Learning (ML) for EMG-based

gesture recognition is a popular yet challenging endeavor.

It necessitates diverse and accurately labeled EMG

datasets, considering variable EMG signals influenced by

factors like fatigue and electrode placement. Moreover,

meaningful feature extraction from raw signals, the

selection of appropriate ML algorithms or neural

architectures, optimal hyperparameter configuration,

noise/artifact handling, user-specific model adaptation,

real-time processing, intent recognition, and ethical

considerations all come into play.

Deep learning is a subset of ML algorithms, particularly

Convolutional Neural Networks (CNNs) and Recurrent

Neural Networks (RNNs), have achieved remarkable

success in various applications, including image and

speech recognition. One distinguishing factor of deep

learning techniques, compared to conventional ML

approaches, is their integration of feature extraction as part

of the model construction, thereby eliminating the need for

manually crafted features [4]. In recent years, deep

learning has also been applied to EMG-based hand gesture

recognition. A deep learning-based approach offers the

Manuscript received August 24, 2023; revised September 18, 2023;

accepted October 11, 2023; published February 24, 2024.

255

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

doi: 10.12720/jait.15.2.255-263

mailto:may.hassan@bhit.bu.edu.eg
mailto:wael.ahmed@bhit.bu.edu.eg
mailto:ayman.mohamed01@bhit.bu.edu.eg

potential to automatically learn features that are important

for recognizing hand gestures from raw EMG signals.

Therefore, the combination of EMG signals and deep

learning techniques holds great promise for developing

robust and accurate hand gesture recognition systems [5].

EMG-based hand gesture recognition utilizing CNN

and Long Short-Term Memory (LSTM) networks

separately faces certain limitations, prompting the

exploration of a combined approach to mitigate these

drawbacks. CNN, while adept at learning spatial features

from data, might struggle with capturing the intricate

temporal dynamics inherent in EMG signals. The grid-like

nature of CNN doesn’t inherently align with the sequential

nature of EMG data, potentially causing the loss of

essential temporal information. Furthermore, CNN might

not always discern the most relevant features specific to

EMG signals, leading to suboptimal performance [6].

On the other hand, LSTM networks excel at modeling

sequences and temporal dependencies, making them well-

suited for processing time-series data like EMG signals.

However, the length of EMG sequences can lead to

computational overhead during training. Additionally,

vanishing gradient issues might arise when dealing with

prolonged sequences, hindering the LSTMs’ ability to

capture long-term dependencies.

By combining CNNs and LSTMs, a hybrid architecture,

which can address these challenges and harness the

strengths of both approaches, emerges. CNNs can serve as

effective feature extractors, capturing local spatial patterns

within the EMG data. The CNN layers’ outputs can then

be fed into LSTMs, enabling the modeling of temporal

dependencies over the sequence.

In this paper, an approach is proposed for hand gesture

recognition based on EMG signals and deep learning

techniques. Our approach consists of preprocessing EMG

signals, building and combining a CNN+LSTM

architecture, and training the model on a large dataset of

hand gestures. The performance of the proposed approach

is evaluated then compared with the state-of-the-art

methods.

The rest of the paper is organized as follows. In

Section II, we give a summary of the associated gesture

recognition techniques. Section III provides the

methodology of the proposed system. Results and

discussion are presented in Section IV. Finally, the paper

is concluded, and future work is described in Section V.

II. LITERATURE REVIEW

Hand gesture recognition has been an active research

topic in recent years due to its potential applications in

various fields such as human-computer interaction,

robotics, and healthcare. Among different modalities,

EMG signals have been widely used for hand gesture

recognition because they are non-invasive, easy to acquire,

and can reflect the muscle activities related to hand

movements. In addition, deep learning techniques have

shown promising results in EMG-based hand gesture

recognition by automatically extracting discriminative

features from the raw EMG signals.

Miguel et al. [7] used R-CNN network and Wavelet

Packet Transform (WPT) feature extraction to learn the

features from the EMG signals and achieved a recognition

accuracy of 96.48%. However, their method utilized a 2-

channel EMG signal collection approach, which may not

have captured all the nuances of muscle activity associated

with both the contraction and relaxation phases during

different hand gestures. This limitation could have had an

impact on the overall classification performance. In

Ref. [8], a dilated CNN-based approach for EMG

classification is presented, which can capture both local

and global features from the EMG signals. Their method

achieved an accuracy of 99% on a dataset of six hand

gestures.

Recurrent Neural Networks (RNNs) have also been

explored for EMG-based hand gesture recognition. For

example, Li et al. [1] proposed a deep RNN-based

approach using LSTM units. Their method achieved an

accuracy of 97.75% on a dataset of four hand gestures.

Miguel et al. [9] used LSTM network for EMG-based hand

gesture recognition which achieved an accuracy of 95%

for the DualMyo and about 91% for the NinaPro DB5

datasets. Toro et al. [10] introduced a gesture classifier

based on RNN with LSTM units and dense layers. Their

study aimed to enhance the model’s scalability for

embedded systems by reducing the number of

Electromyography (EMG) channels and overall

complexity. Using only four EMG channels, the proposed

model successfully identified five hand movements,

significantly reducing the required electrodes. The

researchers trained the model with a dataset of gesture

EMG signals recorded using a custom EMG armband,

spanning 20 seconds. During training and validation, the

model achieved up to 97% accuracy. In real-time testing,

it demonstrated 87% accuracy.

Transfer learning has also been applied to EMG-based

hand gesture recognition to improve the performance of

deep learning models. Tayyip et al. [11] proposed a

transfer learning approach that fine-tunes a pre-trained

CNN on EMG dataset. achieving an accuracy of 98.40%.

In the realm of practical applications for gesture

recognition, Yash et al. [12] introduced a controller

designed for easy attachment to a user’s arm band. This

controller enables the control of an Unmanned Aerial

Vehicle (UAV) using EMG signals. Gesture recognition is

achieved through the utilization of an Artificial Neural

Network, effectively harnessing the combined capabilities

of both the user and the chosen UAV, which in this case,

is a quadcopter.

In summary, EMG-based hand gesture recognition

using deep learning techniques has achieved significant

progress in recent years. Different deep learning

architectures, such as CNNs, RNNs, and two-stream

networks, have been explored to extract discriminative

features from EMG signals. Transfer learning has also

been applied to improve the performance of deep learning

models on small EMG datasets. These developments have

paved the way for the practical applications of EMG-based

hand gesture recognition in various fields.

256

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

EMG-based hand gesture recognition using CNN and

LSTM networks offers a powerful approach, but it’s not

without its disadvantages. When CNNs and LSTMs are

used separately, limitations arise. CNNs are excellent at

extracting spatial features from EMG data but may

struggle to capture temporal dependencies in gestures. On

the other hand, LSTMs excel at modeling temporal

information but may not fully exploit the spatial features

present in the EMG signals. However, combining these

two techniques can effectively address these drawbacks.

By integrating CNNs for spatial feature extraction and

LSTMs for modeling temporal dependencies, the resulting

hybrid model can achieve higher accuracy and robustness

in hand gesture recognition. This approach benefits from

the complementary strengths of both architectures,

enabling it to capture intricate patterns and nuanced

movements in EMG data. Consequently, it enhances the

precision and reliability of hand gesture recognition

systems, making them more suitable for applications in

prosthetics, virtual reality, and human-computer

interaction, where accurate and intuitive gesture

recognition is paramount.

III. METHODOLOGY

In this section, we explain the data characteristics,

preprocessing for model fitting and testing, the network’s

architecture, training methodology and performance

metrics. The block diagram of the proposed hand gesture

recognition network is shown in Fig. 1, which will be

detailed in the next subsections.

Fig. 1. The block diagram of the proposed hand gesture recognition
network.

A. Datasets

The provided methodology was tested on two datasets,

the first synthetic sequences from the UC2018 DualMyo

dataset and second dataset we called EMG36, both used

for EMG-based hand gesture detection. A fixed data split

of 60% for training, 20% for validation, and 20% for

testing is employed for all tests. While the performance of

the validation set is used to optimize the hyperparameters

of classification model

The UC2018 DualMyo was gathered from two EMG

sensors (Myo) where the participant made 8 different hand

gestures, each gesture has been recorded 110 times in total

during 5 recording sessions. The UC2018 DualMyo

dataset, comprising a substantial 880 samples, was further

enhanced through data augmentation techniques, resulting

in an extensive dataset containing 9,062 samples [13]. This

augmentation involved generating additional variations of

the recorded gestures, introducing controlled noise, and

systematically expanding the dataset to improve the

robustness and diversity of the data for training and

evaluating hand gesture recognition models [9]. Hand

shape of gestures is shown in Fig. 2.

The EMG36 dataset was gathered from a MYO Thalmic

bracelet worn on a user’s forearm; 36 participants made a

sequence of motionless hand gestures. Two series are

performed by the subject, each consisting of six (or seven)

fundamental gesture which are: unmarked data (0), hand at

rest (1), hand clenched in a fist (2), wrist flexion (3), wrist

extension (4), radial deviations (5), ulnar deviations (6),

and the last one extended palm (7) which was not

performed by all subjects. The duration of each gesture

was 3 seconds, with a 3 second break in-between each

gesture [14]. The EMG36 dataset comprises a substantial

4,237,907 samples.

Preprocessing is a crucial step in gesture recognition

based on EMG signals. While filtering is often used to

remove noise or artifacts; in the proposed approach, only

the normalization is applied. The EMG signals of the two

datasets were normalized to a common scale to make them

easier to compare and analyze. This involved scaling each

signal to a range of (0, 1) or standardizing them to have

zero mean and unit variance. Normalization helps to

prevent any features from dominating others due to their

larger magnitudes and to make the data more suitable for

the model to learn.

Fig. 2. UC2018 DualMyo dataset gestures: (G0) rest, (G1) closed fist,
(G2) open hand, (G3) wave in, (G4) wave out, (G5) double-tap, (G6)
hand down, (G7) hand up [9].

B. CNN+LSTM Architecture

Both CNN and LSTM networks have been widely used

for sequential data analysis. While LSTM are proficient at

identifying long-term dependencies in sequential data,

CNNs are great at learning local patterns in data. These

two network types can be combined to handle time series

classification tasks more effectively. A one-dimensional

CNN is used for processing and analyzing one-

dimensional sequential data, such as time series, audio

signals, natural language sentences, or any other form of

sequential data. The basic idea behind a 1D CNN is to

apply convolutional operations to the input sequence to

extract relevant features and patterns. The convolutional

layers in a 1D CNN consist of small filters (kernels) that

slide over the sequence and compute dot products with

local regions, generating feature maps capturing different

patterns in the data. The convolution operation in a CNN

257

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

is defined by a filter (kernel) K of size k, which slides over

the input sequence. The output feature map F is computed

as in Eq. (1).

Fi = ∑(ki × Xi+j Fi = ∑(ki  Xi+j) (1)

where X is the input data, and the sum is taken over the

filter size k and j ranges from 0 to k−1. The process

continues for each position i, generating the entire feature

map F.

The CNN component of the architecture extracts spatial

features from the raw EMG signals by convolving them

with a set of learnable filters. The resulting feature maps

are then passed through a series of pooling and activation

layers to reduce their spatial dimensionality and enhance

their discriminative power. The output of the CNN is a

high-level feature representation of the EMG signals that

remains invariant to small translations and rotations [15].

LSTMs, on the other hand, are effective at modeling

sequential data and capturing long-term dependencies in

the input sequence. The LSTM component of the

architecture models the temporal dependencies between

the extracted features by learning a sequence of hidden

states that capture the history of the signals. The core idea

behind LSTM is its ability to retain important information

over extended time intervals, mitigating the vanishing and

exploding gradient problems commonly faced by

traditional RNNs. This is achieved by LSTM cells, which

can remember and forget information over long time

periods.

The LSTM model’s ability to control the information

flow through the input, forget, and output gates, along with

the cell state update, enables it to effectively capture long-

term dependencies in sequential data and make informed

predictions.

1) Input gate (it)

The input gate determines how much of the new input

(current time step) should be added to the cell state. It takes

the current input (xt) and the previous hidden state (ht−1) as

inputs and produces the input gate activation (it) using a

sigmoid activation function as in Eq. (2).

it = σ (Wxi × xt + whi × ht-1 + bi)it = σ (Wxi × xt +
whi × ht-1 + bi) (2)

where Wxi and Whi are weight matrices, and bi is the bias

vector for the input gate.

2) Forget gate (ft)

The forget gate decides what information from the

previous cell state (ct-1) should be retained or forgotten. It

takes xt and ht-1 as inputs and produces the forget gate

activation (ft) using a sigmoid activation function as in

Eq. (3).

𝑓𝑡 = 𝜎 (𝑊𝑥𝑓 × 𝑥𝑡 + 𝑤ℎ𝑓 × ℎ𝑡−1 + 𝑏𝑓)𝑓𝑡 = 𝜎 (𝑊𝑥𝑓 𝑥𝑡 +

𝑤ℎ𝑓 × ℎ𝑡−1 + 𝑏𝑓) (3)

where Wxf and Whf are weight matrices, and bf is the bias

vector for the forget gate.

3) Cell state update (ćt)

The cell state update captures the new candidate

information to be added to the cell state. It takes xt and ht-1

as inputs and produces the candidate cell state update(ćt)

using the tanh activation function as in Eq. (4).

ć𝑡 = 𝑡𝑎𝑛ℎ (𝑊𝑥𝑐 × 𝑥𝑡 + 𝑤ℎ𝑐 × ℎ𝑡−1 + 𝑏𝑐)ć𝑡 =
𝑡𝑎𝑛ℎ (𝑊𝑥𝑐𝑥𝑡 + 𝑤ℎ𝑐 ℎ𝑡−1 + 𝑏𝑐) (4)

where Wxc and Whf are weight matrices, and bc is the bias

vector for the forget gate.

4) Cell state (ct) update

The cell state (ct) is updated by combining the

information from the forget gate and the candidate cell

state update as in Eq. (5).

𝑐𝑡 = 𝑓𝑡  𝑐𝑡−1 + 𝑖𝑡  ć𝑡c𝑡 = 𝑓𝑡  𝑐𝑡−1 + 𝑖𝑡  ć𝑡 (5)

where × represents elementwise multiplication.

5) Output gate (ot)

The output gate determines what information from the

updated cell state should be used to produce the current

hidden state (ht). It takes xt and ht−1 as inputs and produces

the output gate activation (ot) using a sigmoid activation

function as in Eq. (6).

𝑜𝑡 = 𝜎 (𝑊𝑥𝑜 × 𝑥𝑡 + 𝑤ℎ𝑜 × ℎ𝑡−1 + 𝑏𝑜)𝑜𝑡 = 𝜎 (𝑊𝑥𝑜 𝑥𝑡 +
𝑤ℎ𝑜  ℎ𝑡−1 + 𝑏𝑜) (6)

where Wxo and Who are weight matrices, and bo is the bias

vector for the output gate.

6) Hidden state (ht) update

The hidden state (ht) is computed by applying the output

gate to the cell state as in Eq. (7).

ℎ𝑡 = 𝑜𝑡  𝑡𝑎𝑛ℎ 𝑐𝑡 ℎ𝑡 = 𝑜𝑡  𝑡𝑎𝑛ℎ 𝑐𝑡 (7)

where × represents elementwise multiplication.

The output of the LSTM is a compressed representation

of the EMG signals that encodes both the spatial and

temporal information [16]. The final output of the

CNN+LSTM architecture is obtained by passing the

output of the LSTM through one or more fully connected

layers, which perform the classification task. The output

layer uses a SoftMax activation function to produce a

probability distribution over the different hand gesture

classes [17].

C. Optimization

Optimization, in the context of machine learning and

deep learning, refers to the process of finding the best set

of parameters for a model that minimizes or maximizes a

specific objective function. The objective function is

typically a measure of how well the model performs on a

given task, such as minimizing the error or loss on a

training dataset or maximizing the accuracy on a validation

dataset. We used NADAM optimizer, Nadam, short for

Nesterov-accelerated Adaptive Moment Estimation, is an

optimization algorithm used to update the weights of a

neural network during the training process. It is an

extension of two popular optimization algorithms:

Nesterov Accelerated Gradient (NAG) and Adaptive

Moment Estimation (Adam). The Nadam optimizer

combines the benefits of both NAG and Adam, making it

an efficient and effective optimization method.

NAG is a variant of the traditional gradient descent

method that incorporates momentum to accelerate

258

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

convergence. It calculates the gradient of the loss function

not only at the current position but also at a point slightly

ahead in the direction of the momentum term. The updated

weights are then based on this adjusted gradient. NAG

helps to reduce oscillations and overshooting during

optimization.

Adam is another popular optimization algorithm that

uses adaptive learning rates for each parameter. It keeps

track of both the first-order moment (mean) and the

second-order moment (uncentered variance) of the

gradients. This allows Adam to scale the learning rates

differently for each parameter based on their historical

gradient behavior, leading to more stable and efficient

updates.

Nadam combines the concepts of NAG and Adam to

leverage their advantages. During each iteration, Nadam

computes the gradient using NAG to account for the

momentum effect and then adapts the learning rates based

on the historical gradients using Adam [18]. the Nadam

optimizer computes the gradient of the loss function (g)

with respect to the weights as in Eq. (8), then update the

first-order momentum (mt) as in Eq. (9), and second-order

momentum (vt) as in Eq. (10), then computes the NAG-

corrected gradient(mth) as in Eq. (11). Finally Updates the

weights (w) using the NAG-corrected gradient and the

adapted learning rate (a) as in Eq. (12).

𝑔 = 𝑑𝑙𝑜𝑠𝑠 𝑑𝑤𝑒𝑖𝑔ℎ𝑡𝑠⁄ (8)

𝑚𝑡 = 𝐵1 × 𝑚𝑡 + (1 − 𝐵1) × 𝑔 𝑚𝑡 = 𝐵1 𝑚𝑡 +
(1 − 𝐵1) 𝑔 (9)

𝑣𝑡 = 𝐵2 × 𝑣𝑡 + (1 − 𝐵2) × 𝑔2𝑣𝑡 = 𝐵2 𝑣𝑡 + (1 −
𝐵2)  𝑔2 (10)

𝑚𝑡ℎ = 𝑚𝑡 (1 − 𝐵1
𝑡⁄)𝑚𝑡ℎ=𝑚𝑡 (1−𝐵1

𝑡)⁄ (11)

𝑤 = 𝑤 − 𝑎 × (𝑚𝑡ℎ √𝑣𝑡 + 𝑒⁄)𝑤 = 𝑤 −

𝑎  (𝑚𝑡ℎ √𝑣𝑡 + 𝑒⁄) (12)

where B1 and B2 are the exponential decay rates for the first

and second moments, respectively, t is the current iteration,

and e is a small value to prevent division by zero.

Nadam combines the momentum effect of NAG with

the adaptive learning rate mechanism of Adam, resulting

in faster convergence and improved performance in many

cases, especially for high-dimensional and noisy

optimization problems commonly encountered in training

deep neural networks.

D. Proposed System Model

The architecture of the model comprises input nodes, a

convolution layer, and a max pooling layer. These are

followed by a recurrent layer that has 1,024 LSTM cells.

The output from this layer is then fed into a dense layer

that consists of 512 units. Finally, a SoftMax transfer

function is applied to generate a probability distribution for

the classification output. The architecture of the model is

shown in Fig. 3. The hyperbolic tangent activation

function is used in the dense, convolution, max pooling,

and LSTM hidden layers. To optimize the parameters, the

NADAM optimizer is utilized with a learning rate of 0.001

and a batch size of 256. Hyperparameters were carefully

chosen by systematically experimenting with various

configurations to identify the most optimal settings. We

computed several evaluation metrics, including accuracy,

precision, recall, F1-score, and generated a confusion

matrix once the model has been tested on all data splits

(training, validation, and testing).

Fig. 3. The model architecture.

Accuracy is the proportion of correctly predicted

instances out of the total instances in the dataset. It

measures overall correctness. While accuracy is

informative, it might not be suitable for imbalanced

datasets where one class is significantly more prevalent

than the other. Precision is a metric that focuses on the

accuracy of the positive predictions made by the model. It

calculates the proportion of true positive predictions

(correctly predicted positives) out of all instances

predicted as positive. Recall, also known as sensitivity or

true positive rate, measures the model’s ability to correctly

identify all instances of a specific class. It calculates the

proportion of true positive predictions out of all instances

that actually belong to the positive class. Recall is crucial

when the cost of false negatives is high, as it quantifies the

model’s ability to capture all instances of the positive class.

259

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

F1-score is the harmonic mean of precision and recall,

offering a balance between accurate positive predictions

and capturing all positive instances.

A confusion matrix is a tabular representation that

displays the model’s predictions against the actual class

labels in a classification problem. It consists of four main

values: True Positives (TP), True Negatives (TN), False

Positives (FP), and False Negatives (FN). These values

help quantify the model’s performance, making it easier to

calculate metrics like accuracy, precision, recall, and the

F1-score. The confusion matrix is a valuable tool for

understanding the distribution of predictions across

different classes and evaluating the model’s strengths and

weaknesses. These metrics and concepts collectively

provide a comprehensive view of a model’s performance,

enabling practitioners to assess its accuracy, ability to

make precise predictions, capacity to capture all relevant

instances, balance between precision and recall, and the

distribution of predictions across different classes [7].

IV. RESULT AND DISCUSSION

The Keras library using TensorFlow was used to define

and train the networks. The hardware used was a laptop

with an Intel i7-7820HQ CPU and 16 GB of RAM. The

classification models were trained following the

methodology described earlier. The performance of the

CNN + LSTM model is compared with different deep

learning techniques. Fig. 4 shows the training and

validation accuracy of the model, where the final accuracy

of training and validation were 99.66% and 98.64%,

respectively for the DualMyo dataset and 98.94 % and

97.24% for the EMG36 dataset respectively. In Fig. 5, the

test split accuracy, precision, recall, and F1-score is

displayed. We display them for both datasets. In terms of

accuracy, accuracy for DualMyo and EMG36 is 0.989 and

0.972 respectively. And the precision is 0.9896 and 0.9772

for two datasets respectively. And for the recall is 0.989

and 0.9719 for two datasets respectively. Finally, the F1-

score is 0.9893 and 0.9720 for two datasets, respectively.

The performances matrices are similar for both datasets.

(a)

(b)

Fig. 4. The training and validation accuracy of the model (a) for
DualMyo dataset (b) EMG36 dataset.

Fig. 5. The performance matrices for the two datasets.

TABLE I. CONFUSION MATRIX FOR DUALMYO DATASET

Output Class
Target Class

G0 G1 G2 G3 G4 G5 G6 G7 G8

G0
1123 0 3 1 0 1 1 1 99.38%

64.99% 0.00% 0.17% 0.06% 0.00% 0.06% 0.06% 0.06% 0.62%

G1
1 79 0 0 0 0 1 0 97.53%

0.06% 4.57% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 2.47%

G2
2 0 92 0 1 0 0 0 96.84%

0.12% 0.00% 5.32% 0.00% 0.06% 0.00% 0.00% 0.00% 3.16%

G3
1 0 0 89 0 0 0 0 98.89%

0.06% 0.00% 0.00% 5.15% 0.00% 0.00% 0.00% 0.00% 1.11%

G4
0 0 0 0 80 0 0 0 100.00%

0.00% 0.00% 0.00% 0.00% 4.63% 0.00% 0.00% 0.00% 0.00%

G5
1 0 0 0 0 85 0 1 97.70%

0.06% 0.00% 0.00% 0.00% 0.00% 4.92% 0.00% 0.06% 2.30%

G6
2 0 1 0 0 0 72 0 96.00%

0.12% 0.00% 0.06% 0.00% 0.00% 0.00% 4.17% 0.00% 4.00%

G7
1 0 0 0 0 0 0 89 98.89%

0.06% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 5.15% 1.11%

G8
99.29% 100.00% 95.83% 98.89% 98.77% 98.84% 97.30% 97.80% 98.90%
0.71% 0.00% 4.17% 1.11% 1.23% 1.16% 2.70% 2.20% 1.10%

260

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

The confusion matrices were analyzed to gain deeper

insights into the model’s performance. In Table I, which

presents the confusion matrix for the DualMyo dataset, we

observe that the accuracy of most gestures exceeded 97%.

Notably, the gesture labeled as G2 exhibited the lowest

accuracy at 95.83%. Similarly, in Table II, which displays

the confusion matrix for the EMG36 dataset, most gestures

achieved accuracies greater than 96%. Nevertheless, the

“hand at rest” gesture (labeled as 2) displayed the lowest

accuracy, standing at 93.23%.

TABLE II. CONFUSION MATRIX FOR EMG36 DATASET

Output Class
Target Class

0 1 2 3 4 5 6 7 8

0
535572 3279 1292 1190 1120 1132 1284 50 98.28%

63.19% 0.39% 0.15% 0.14% 0.13% 0.13% 0.15% 0.01% 1.72%

1
4512 45630 7 5 6 12 9 0 90.93%

0.53% 5.38% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 9.07%

2
1327 1 46693 129 65 82 131 9 96.40%

0.16% 0.00% 5.51% 0.02% 0.01% 0.01% 0.02% 0.00% 3.60%

3
1456 8 119 48059 15 72 233 9 96.17%

0.17% 0.00% 0.01% 5.67% 0.00% 0.01% 0.03% 0.00% 3.83%

4
1652 8 117 13 48277 203 99 13 95.82%

0.19% 0.00% 0.01% 0.00% 5.70% 0.02% 0.01% 0.00% 4.18%

5
1731 6 82 75 169 48239 43 5 95.81%

0.20% 0.00% 0.01% 0.01% 0.02% 5.69% 0.01% 0.00% 4.19%

6
1285 9 125 209 106 37 48754 19 96.46%

0.15% 0.00% 0.01% 0.02% 0.01% 0.00% 5.75% 0.00% 3.54%

7
73 2 8 10 4 7 34 2660 95.07%

0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.31% 4.93%

8
97.80% 93.23% 96.39% 96.72% 97.02% 96.90% 96.38% 96.20% 97.20%

2.20% 6.77% 3.61% 3.28% 2.98% 3.10% 3.62% 3.80% 2.80%

We noticed that the model takes a significant amount of

time during testing, to optimize testing time, we added

cascading CNN and max pooling layers to the model. By

incorporation of additional CNN layers and the utilization

of max pooling, the data entering the LSTM network has

been significantly reduced. Consequently, this reduction in

data size has contributed to a notable decrease in testing

time. CNN has the capability to effectively process

substantial quantities of raw data with minimal pre-

processing requirements. Additionally, adding more CNN

layers to a model can enhance its ability to learn intricate

features from data hierarchically. Deeper networks can

capture increasingly abstract patterns, making them well-

suited for larger datasets. The architecture of the second

model is composed of a stack of five CNN layers, each

accompanied by max-pooling layers directly afterward.

After these CNN layers, an LSTM layer is introduced,

followed by a dense layer. The model is finalized with the

inclusion of a SoftMax layer. We trained the model on

DualMyo, and we found that the testing time for the second

model decreased by 1/20 compared to the first model.

Fig. 6 shows the training and validation accuracy of the

second model, where the final accuracy of training and

validation were 99.78% and 97.68%, respectively. In Fig.

7, we compared the performance matrices for the two

models. In terms of accuracy, accuracy for Model 1 and

Model 2 is 0.989 and 0.9769 respectively. And for the

precision is 0.9896 and 0.978 for two models respectively.

And for the recall is 0.989 and 0.9763 for two models

respectively. Finally, the F1-score is 0.9893 and 0.9771 for

the two models respectively. Where the accuracy,

precision, recall and F1-score of the Model 2 slightly

decreased compared to the Model 1. Table III displays the

confusion matrix for Model 2.

Fig. 6. The training and validation accuracy of the second model for
DualMyo dataset.

Fig. 7. Comparison of performance matrices for the two models.

We compared our work with other deep learning

techniques. Table IV presents the results of this

comparison, which includes details such as the technique

type, test accuracy, and testing time achieved by each

technique.

261

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

TABLE III. CONFUSION MATRIX OF MODEL 2 FOR DUALMYO DATASET

Output Class
Target Class

G0 G1 G2 G3 G4 G5 G6 G7 G8

G0
1123 1 1 2 1 0 2 0 99.38%

64.99% 0.06% 0.06% 0.12% 0.06% 0.00% 0.12% 0.00% 0.62%

G1
1 79 0 0 0 0 1 0 97.53%

0.06% 4.57% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 2.47%

G2
2 0 89 0 2 0 2 0 93.68%

0.12% 0.00% 5.15% 0.00% 0.12% 0.00% 0.12% 0.00% 6.32%

G3
2 1 0 87 0 0 0 0 96.67%

0.12% 0.06% 0.00% 5.03% 0.00% 0.00% 0.00% 0.00% 3.33%

G4
0 0 2 0 78 0 0 0 97.50%

0.00% 0.00% 0.12% 0.00% 4.51% 0.00% 0.00% 0.00% 2.50%

G5
2 0 0 2 0 83 0 0 95.40%

0.12% 0.00% 0.00% 0.12% 0.00% 4.80% 0.00% 0.00% 4.60%

G6
1 0 6 0 0 0 68 0 90.67%

0.06% 0.00% 0.35% 0.00% 0.00% 0.00% 3.94% 0.00% 9.33%

G7
2 0 1 0 0 6 0 81 90.00%

0.12% 0.00% 0.06% 0.00% 0.00% 0.35% 0.00% 4.69% 10.00%

G8
99.12% 97.53% 89.90% 95.60% 96.30% 93.26% 93.15% 100.00% 97.69%
0.88% 2.47% 10.10% 4.40% 3.70% 6.74% 6.85% 0.00% 2.31%

TABLE IV. COMPARISON OF OUR WORK WITH OTHER DEEP LEARNING

TECHNIQUES

Work Technique
Testing

accuracy

Testing

time

Alejandro et al.

[9]
LSTM 95% 3.8 s

Shanmuganathan

et al. [7]
R-CNN 96.48% −

Jiang et al. [19]
Stacked

LSTM
97.1% 2.12 s

Pinzón et al. [8] CNN 99% −

Alejandro et al.
[10]

LSTM 87.29±6.94% −

Wang et al. [20]
CNN+LSTM

+ CBAM
92.159% −

Our

CNN+LSTM 98.9% 6 s

Cascading
CNN+LSTM

97.69% 313 ms

In Ref. [9], both Feedforward Neural Networks (FFNN)

and Recurrent Neural Networks (RNN) were employed in

their study, resulting in comparable accuracies of

approximately 95% for both models. Notably, the RNN

model exhibited a shorter testing time, approximately

3.8 s. However, it is essential to recognize that while this

reduction represents a significant improvement, it may still

not meet the demands of real-time hand gesture

recognition applications, where faster response times are

often imperative. Shanmuganathan et al. [7] achieved a

test accuracy rate of 96.48% through the utilization of R-

CNN in conjunction with WPT feature extraction. They

utilized a 2-channel EMG signal collection approach,

which might not fully capture the intricacies of muscle

activity responsible for both contraction and relaxation

during various hand gestures. Consequently, this limitation

could potentially reduce the overall classification

performance.

Jiang et al. [19] utilized EMG signals and IMUs for

gesture recognition, incorporating various models,

including LSTM, to boost accuracy, achieving 97.1%

accuracy rate. Nonetheless, with a testing time of 2.2

seconds, it may not fully meet the real-time requirements

of practical applications. In Ref. [8], a Convolutional

Neural Network (CNN) was employed for hand gesture

recognition, targeting six specific gestures, and achieving

an impressive 99% accuracy rate. However, it’s important

to acknowledge that the relatively small number of

gestures in the dataset may have contributed to the high

accuracy observed. Notably, the study did not provide

information regarding testing time, which is a critical

parameter, particularly in the context of real-time

applications. While Ossaba et al. [10] work presents

promising results in the reduction of EMG channels and

improved scalability for embedded systems, it’s worth

noting that further efforts may be needed to enhance

accuracy, particularly in real-time testing, where the model

achieved an accuracy of 87%.

Additionally, the absence of information regarding

testing time in the study leaves room for future

investigations to address this critical parameter, which is

vital for evaluating real-time applicability. Le et al. [20]

presented an innovative approach for enhancing gesture

recognition by employing a combination of CNN, LSTM,

and Convolutional Block Attention Module (CBAM).

While their reported accuracy of 92.159% is commendable

and indicative of progress, questions arise regarding its

suitability for specific applications within the field, with

the accuracy not meeting certain application requirements.

The proposed CNN+LSTM model achieved higher

accuracy, while the cascading CNN+LSTM model not

only notably reduced testing time but also demonstrated

good accuracy, making it highly suitable for real-time

applications in gesture-controlled systems.

V. CONCLUSION

In this study, a hand gesture recognition system based

on EMG signals and deep learning techniques using a

CNN+LSTM architecture was proposed. The system was

trained and evaluated on two datasets, and our

experimental results demonstrated that the proposed

system achieved performance, with an average recognition

accuracy of 98.9% for the DualMyo dataset and 97.2 for

the EMG36 dataset.

262

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

To address the challenge of testing time, a second

optimized model is presented. By incorporating cascading

CNN and max pooling layers, we achieve a remarkable

reduction rate of 1/20 in testing time compared to the first

model, while maintaining a high level of recognition

accuracy. Our comparative analysis revealed that the

proposed model outperformed existing methods, including

CNN, LSTM, and R-CNN, by achieving the shortest

testing time while maintaining a high level of accuracy.

This remarkable combination of speed and accuracy makes

the model particularly well-suited for real-time hand

gesture recognition applications. Its ability to process data

quickly allows for near-instantaneous recognition and

response, making it an ideal choice for interactive

applications where low latency is crucial, such as sign

language interpretation or gesture-controlled interfaces.

The experimental results provide strong evidence for

the effectiveness of this approach, rendering it suitable for

real-time applications in gesture-controlled systems. This

paper demonstrates the potential of using EMG signals and

deep learning techniques for developing natural and

intuitive human-computer interfaces, particularly for

individuals with physical disabilities. The proposed

system has potential applications in a variety of domains,

including prosthetic control, virtual reality, and gaming.

A significant future challenge lies in testing the model

with real-time datasets, which will require adapting the

model to process incoming data swiftly and deliver real-

time recognition and responses. Future work may involve

exploring the use of other deep learning architectures, such

as attention-based models, to further improve the accuracy

and robustness of the proposed system. Additionally, it

may be useful to investigate the generalization

performance of the system across different user

populations, such as individuals with neuromuscular

disorders. Expanding the gesture vocabulary to

encompass a broader range of commands or intricate sign

language gestures holds great potential. Augmenting

datasets with diverse examples and exploring synthetic

data generation techniques can improve model

generalization.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

In the collaborative effort of this research, each author

made significant contributions to the work. Wael was

responsible for presenting the core research idea and

played a pivotal role in the design of the model architecture.

Mai constructed the model’s architecture, while Ayman

meticulously reviewed the model and fine-tuned its

parameters to ensure optimal performance. Furthermore,

Mai wrote the paper, while Wael and Ayman jointly

reviewed and edited the manuscript, all authors had

approved the final version.

REFERENCES

[1] Z. Z. Li et al., “Intelligent classification of multi-gesture EMG

signals based on LSTM,” in Proc. 2020 International Conference

on Artificial Intelligence and Electromechanical Automation, IEEE,
2020.

[2] M. Mansooreh et al., “Transformer-based hand gesture recognition

from instantaneous to fused neural decomposition of high-density
EMG signals,” Scientific Reports, vol. 13, no. 1, 2023.

[3] K. D. Hande et al., “EMG based hand gesture classification using

empirical mode decomposition time-series and deep learning,” in
Proc. 2020 Medical Technologies Congress (TIPTEKNO), 2020.

[4] T. Panagiotis et al., “Deep learning in EMG-based gesture

recognition,” Phycs., pp. 107−114, 2018.

[5] B. Domenico et al., “Deep learning for processing

electromyographic signals: A taxonomy-based survey,”

Neurocomputing, vol. 452, pp. 549−565, 2021.

[6] X. Chen et al., “Hand gesture recognition based on surface

electromyography using convolutional neural network with transfer
learning method,” IEEE Journal of Biomedical and Health

Informatics, vol. 25, no. 4, pp. 1292−1304, 2020.

[7] V. Shanmuganathan et al., “R-CNN and wavelet feature extraction
for hand gesture recognition with EMG signals,” Neural Computing

and Applications, vol. 32, pp. 16723−16736, 2020.

[8] P. A. J. Orlando, R. J. Moreno, and J. E. H. Benavides,
“Convolutional neural network for hand gesture recognition using

8 different EMG signals,” in Proc. 2019 XXII Symposium on Image,

Signal Processing and Artificial Vision (STSIVA), 2019.
[9] S. P. N. Miguel and O. Gibaru, “EMG-based online classification

of gestures with recurrent neural networks,” Pattern Recognition

Letters, vol. 128, 20191.
[10] T. O. Alejandro et al., “LSTM recurrent neural network for hand

gesture recognition using EMG signals,” Applied Sciences, vol. 12,

no. 19, 2022.

[11] O. Tayyip and A. Basturk, “Transfer learning-based convolutional

neural networks with heuristic optimization for hand gesture

recognition,” Neural Computing and Applications, vol. 31, 2019.
[12] D. Yash and D. Nath, “Designing a drone controller using

electromyography signals,” in Proc. 2021 International Conference

on Communication information and Computing Technology
(ICCICT), 2021.

[13] UC2018 dualmyo hand gesture dataset. [Online]. Available:

https://zenodo.org/record/1320922#.YtwUt3ZBzIU
[14] EMG data for gestures. [Online]. Available:

https://archive.ics.uci.edu/ml/datasets/EMG+data+for+gest

ures
[15] L. C. Yann, Y. S. Bengio, and G. Hinton, “Deep learning,” Nature,

vol. 521, 2015.

[16] H. Sepp and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, 1997.

[17] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, MIT

Press, 2016, vol. 19, pp. 305–307.

[18] E. Ahmet and O. Aytug, “Automatic knee osteoarthritis severity

grading using deep neural networks: Comparative analysis of

network architectures and optimization functions,” in Proc.
International Conference on Applied Engineering and Natural

Sciences, 2023, vol. 1. no. 1.

[19] Y. J. Jiang et al., “Multi-category gesture recognition modeling
based on sEMG and IMU signals,” Sensors, vol. 22, no. 15, 5855,

2022.

[20] W. Le et al., “Hand gesture recognition using smooth wavelet
packet transformation and hybrid CNN based on surface EMG and

accelerometer signal,” Biomedical Signal Processing and Control,

vol. 86, 2023.

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-
NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

263

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

https://archive.ics.uci.edu/ml/datasets/EMG+data+for+gestures
https://archive.ics.uci.edu/ml/datasets/EMG+data+for+gestures
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V15N2-255

