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Abstract—In recent years, Wireless Sensor Network (WSN) 

has arisen as a practical option for many sectors needing 

smart technology. Despite its impressive credentials, 

Wireless Sensor Networks’ excessive need for power remains 

a significant limitation. There is a pressing need to create a 

trustworthy Wireless Sensor Network with efficient energy 

and network lifetime due to the proliferation of tiny sensors 

with incomplete resources. One of the actual ways to deal 

with these matters is to divide the nodes into clusters. So, it 

is crucial to use existing energy efficiently to prevent energy 

waste. In this study, we suggest an Energy-Efficient Hybrid 

Clustering Algorithm to reduce the high-energy ingesting 

and increase the network lifetime of Wireless Sensor 

Networks. The position and speed of a gas molecule, among 

other Kinetic Gas Molecule Optimization particle 

characteristics, are initially determined by calculating their 

kinetic energy. Hybridization of Kinetic Gas Molecule 

Optimization arises from Kinetic Gas Molecule 

Optimization’s faster convergence in space. Pelican 

Optimization Algorithm is used to fix the problems with 

Kinetic Gas Molecule Optimization by changing its inertia 

weight. Throughput the number of live/dead nodes are all 

validated against other prominent meta-heuristic 

methodologies in a MATLAB environment simulation of 

the proposed Kinetic Gas Molecule Optimization—
Pelican Optimization Algorithm.  

Keywords—Wireless Sensor Network (WSN), kinetic gas 

molecules optimization, pelican optimization algorithm, 

network lifetime, energy-efficient hybrid clustering 

algorithm 

I. INTRODUCTION

Based on the net life cycle of Wireless Sensor Networks 

(WSNs), the excellence of network architecture is reliably 

quantifiable. This network cycle is typically affected by 

the period at which a sizeable fraction of the network’s 

sensor nodes dies due to the problem of energy 

exhaustion  [1, 2]. Because of its centrality in maintaining 

network viability and reducing communication 

interference [3]. Clustering mechanisms, which provide 

inspiration for the characteristics of hierarchical topology 

control algorithms, are deemed important and often 

employed in this setting. Topology control algorithms rely 

heavily on the nodes chosen to lead clusters [4, 5]. 

Moreover, the Cluster Head (CH) issue is found to be 

NP-complete. The energy, the sensor node’s 

communication unit uses, is more than that of its detecting 

and processing units [5, 6]. As a result, sensor node 

clustering is a useful strategy to enhance the WSN’s 

energy efficiency. During the clustering technique, the 

outlying nodes merge with a nearby Cluster Head (CH) to 

form a new cluster. The development of clusters like these 

helps a network use less power overall [7]. Clustering in 

WSN not only allows for the aggregation of data, 

scalability, and bandwidth conservation, but it also 

increases the Localization Technique (LT) of the system 

by reducing the energy required for the connection 

between sensor nodes [8]. 

The clustering procedure divides the sensor nodes into 

smaller groups, or clusters, each of which is headed by a 

CH. The Cluster Head (CH) combines data from all of the 

cluster’s sensor nodes and sends it to the Base Station 

(BS)  [9, 10]. The acquired data from the CH is sent to the 

BS either immediately or via intermediary CHs and/or 

sensor nodes; this is known as multi-hop communication. 

The BS sends data to the Cloud, where it can be processed 

and viewed in greater detail. It is well known that the CH 

selection is an NP-hard issue [11]. Genetic Algorithm 

(GA), Ant Colony Optimization (ACO), Particle Swarm 

Optimization (PSO), Differential Evolution (DE), and 

Simulated Annealing (SA) are just a few of the searching-

based heuristics that have been created since [12, 13]. 

Both exploration (diversification) and exploitation 

(intensification) are crucial to the optimization process in 

any potentially fruitful subsets of the search space, 

wherein the global optimum may be located. When it 

comes to exploitation, however, the algorithm actively 

seeks to comb the area around each solution it unearths 

during exploration. That’s why, early in the optimization 

process, it’s crucial to focus more on exploration than 

exploitation; later, when it’s time to find the best possible 

answers, exploitation becomes more critical to enhance 

the likelihood of finding solutions earlier. The procedure’s 

efficiency benefits greatly from a healthy equilibrium 

between exploring and exploiting. 

In KGMO [15, 16], the gas molecules move throughout 

the search space in order to locate its minimum 

temperature. Random vectors are used to set each 
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particle’s initial velocity and position inside their 

respective domains. Here, the inertia mass (think of as 

weight) that represents the resistance exerted by a gas 

molecule to its motion. The KGMO’s meeting behavior is 

strongminded by its inertia weight. The optimization 

converges more slowly when the inertia weight is large, 

and it gets stuck in a local rut when it’s little. Hence, the 

inertia weight needs to be chosen to optimize the search 

time/resources ratio. It is necessary to address this 

shortcoming by boosting the convergence speed of 

KGMO. The suggested section provides a quick 

explanation of how a new tweak to the inertia weight can 

make this a reality. 

Our new ideas and work are detailed here. To start, here 

is how we frame the issue at hand: In order to progress the 

overall LT of a network and decrease the amount of 

energy used on transmissions, researchers have turned to 

an evolutionary algorithm, which takes into account a 

wide range of characteristics in the fitness function to 

perform the necessary clustering of sensor nodes. In this 

research, we introduce the KGMO-POA based Cluster 

Head Selection (KGMO-POA-CHS) meta-heuristic 

combined with the Chaotic based POA method in an effort 

to improve the transmission energy ingesting in WSN. 

To better understand the paper’s structure, we will look 

at: The secondary sources that informed the research are 

presented in Section II. The proposed approach to increase 

the network’s lifetime is presented together with the 

system model in Section III. Section IV presents the 

validation analysis with current models in terms of various 

metrics, and Section V wraps up the work. 

II. LITERATURE REVIEW 

Least-Square Policy Iteration is proposed by  

Obi et al. [17] as an effective model-free Reinforcement 

Learning-based technique for optimization in WSNs. The 

subsequent protocol architecture is a centralized routing 

procedure for Lifetime Energy Optimization (LEOP) with 

a GA and Least-Square Policy Iteration (LSPI) for 

generation and energy optimization (CRPLEOGALSPI). 

The CRPLEOGALSPI outperforms a current centralized 

routing protocol for lifespan optimization using genetic 

algorithms and q-learning, according to simulation data 

(CRPLOGARL). For this reason, the CRPLEOGALSPI is 

insensitive to the learning rate, as it selects a routing path 

in a given state after taking into account all alternative 

routing paths. Additionally, whereas the CRPLOGARL 

determines the best course of action based on the Q-values, 

the adjusts the Q-values according on the most recent 

knowledge about the network’s subtleties using biased 

purposes. 

Energy-efficient routing protocol proposed by 

Abdulzahra et al. [18] is based on Bacterial Foraging 

Optimization Routing Protocol (BFORP). BFORP is an 

effort to learn more about the WSN lifespan investigation 

challenge. By reusing data that frequently travels from the 

source node to the sink, it can reduce the routing of 

superfluous messages that can cause significant energy 

waste. In the suggested method, the node with the lowest 

traffic load, the maximum residual energy, and the 

shortest path to the sink can be selected as the preferred 

node in the sending routes. The simulation findings show 

that the projected protocol is effective in minimizing 

energy employment and cutting down on end-to-end delay 

when associated to the established routing methods 

already in use. 

With the benefits of using both global variety and an 

accelerated convergence rate that the Improved Bat 

optimization algorithm and Enhanced Artificial Bee 

Colony-based Cluster Routing strategy presented for 

optimal Cluster Head (CH) selection by Janakiraman [19] 

stands out. For optimal CH selection, it is advised to strike 

a balance among the two phases of exploration and 

exploitation. The study aimed to reduce energy 

consumption by developing a superior CH selection 

method with the use of an enhanced Bat Optimization 

Algorithm (IBOA). To improve packet delivery from CH 

to sink node, the paper also focuses on the design of a sink 

node mobility strategy based on an EABC. By taking into 

account node centrality, node degree, distance between 

CH and BS, this CH selection and sink node mobility 

strategies contributes to extending the network lifetime 

via the fitness function. Using MATLAB 2018, modelling 

experiments demonstrated that placing the BS at the centre 

of the network increases the number of functional nodes 

in the network by 39.21%. (100, 100). By shifting where 

BSs are placed, we may increase the network’s lifetime by 

23.84 percent, or the number of rounds. When compared 

to the investigation’s baseline CH schemes, the packets 

conventional at the BS are found to be improved by an 

average of 26.32%. 

To extend the useful life of WSN-based requests and 

create reliable clusters, Vellaichamy et al. [20] present a 

bio-inspired routing algorithmic strategy to enhance 

network lifetime. Information retention can be improved 

by the establishment of groups, and one effective 

approach for doing so is clustering. Selecting the most 

qualified cluster leader is achieved through the use of 

multi-criteria clustering (CH). Following careful 

identification of the CH, we combine the optimization 

techniques to determine the best path for data transmission 

from the CH to the sink, therefore increasing network 

stability. Many metrics and packet delivery rates are used 

to compare the proposed method to others. Saving up to 

18.6% on energy costs and extending the life of your 

network by as much as 6% compared to other routing 

protocols is possible with ours. 

Soft C-means have been presented by  

Viswanathan et al. [21]. The Swarming Concurrent Multi-

Objective Metaheuristic Dragonfly Optimization 

(SCMMDO) Approach was developed. The primary 

objective of the SCMMDO Method is to locate the optimal 

cluster head for efficient data broadcast in WSN. 

SCMMDO Technique was used to achieve clustering and 

optimization in WSN. For starters, the sensor nodes are 

spread out at random. The sensor nodes are clustered by 

the soft C-Means technique using three criteria. The 

availability of bandwidth, the strength of the received 

signal, and the amount of residual energy. The multi-

objective optimization is then applied to select the cluster 
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head. The source node uses the chosen cluster head to send 

the data packet to the target node. Energy use, clustering 

precision, processing time, throughput, and latency are 

some of the measures used in simulation. The results show 

that the SCMMDO Method reduces processing time and 

energy usage while simultaneously improving clustering 

precision. The proposed approach has a 96% success rate 

in its clustering endeavors. 

With the goal of decreasing node energy consumption 

and raising data throughput, Chaurasia et al. [22] 

suggested a Meta-heuristic Optimal Routing approach for 

WSNs (MOCRAW). By employing the Dragonfly 

Algorithm (DA) and basing its decisions on Local Search 

Optimization (LSO) and Global Search Optimization 

(GSO), MOCRAW is able to solve the issues of loop-free 

routing and the elimination of isolated nodes or hot spots 

(GSO). This protocol makes use of the most effective 

implementations of both the Cluster Head Selection 

Algorithm (CHSA) and the Routing Search Algorithm 

(RSA). The Energy Level Matrix is used in CHSA. 

Extreme Learning Machine (ELM) is affected by the 

distance from the Cluster Head (CH) to the Base Station 

(BS), the amount of energy left over after each cluster 

forms, and the number of clusters that form. Using RSA, 

the inter-cluster levy distribution establishes the best route 

from source to destination. MOCRAW’s efficiency is 

measured against other clustering and routing protocols 

using metrics like latency, packet delivery rate, and 

average energy utilization. The suggested method 

outperforms its contemporaries in terms of energy 

efficiency, according to the simulation results. 

GWO (EECHIGWO) approach is provided by  

Reddy et al. [23], who aim to remedy the uneven 

exploitation and exploration, lack of population diversity, 

and early of the original GWO algorithm. The primary 

goal of this study is to augment energy efficiency, average 

throughput, network stability, and durability by 

optimizing the selection of cluster heads in WSNs with the 

EECHIGWO technique. The metrics that are used to 

identify the cluster’s frontrunner are the average intra-

cluster distance, the sink distance, the residual energy, the 

cluster head balancing factor, and the cluster head 

balancing factor. The proposed EECHIGWO-based 

clustering protocol has been evaluated on a variety of 

different parameters, including average throughput, 

number of rounds of operation, energy ingesting, and 

number of failed nodes. The results of the simulations 

verify the effectiveness of minimizing energy 

consumption, avoiding early convergence, and extending 

the lifetime of WSN networks. The proposed approach 

improves network stability by 169.29%, 19.03%, 

253.73%, 307.89%, and 333.51%, respectively. 

The current schemes in the literature suffer from the 

following major drawbacks: Due to its significance in 

maintaining a consistent level of network performance 

and minimizing energy costs, the cluster head selection 

problem has been identified as a critical issue. Because the 

selection of CH frequently results in energy imbalance and 

reduced network longevity, it is also an issue that requires 

close attention. The bulk of current methods for electing 

cluster heads cannot maintain a healthy equilibrium 

between exploitative and exploratory activities. At this 

juncture, it is thought that combining a local search with a 

global search algorithm would help keep the ratio of 

exploitation to exploration stable. 

• Hybridizing existing bio-inspired algorithms to 

find a prospective solution does not maximise the 

capability of preserving the trade-off between 

misuse and exploration. 

• Current bio-inspired algorithms do not provide 

enough energy balance to significantly increase or 

sustain network lifetime. 

• The suggested KGMO-POA cluster head selection 

method was developed in response to the 

aforementioned constraints. 

Despite improvements in energy-efficient protocols for 

Wireless Sensor Networks (WSNs), there is still a 

significant research gap in the optimization of energy use 

while concurrently exploiting Network Lifetime Time 

(NLT). Existing methods frequently isolate either energy 

reduction or NLT extension, failing to provide a 

comprehensive method that successfully unifies both 

goals. This gap is intended to be filled by the research 

reported in this work, which suggests the Energy-Efficient 

Hybrid Clustering Algorithm (E2HCA) paradigm. 

III. PROPOSED SYSTEM 

A. System Model 

WSN’s system model includes the following 

components: energy model, mobility model, Long-

Lasting Terminal (LLT) model, and free space model. 

They are used to describe the energy loss that occurs when 

sending data between nodes. Suppose there are n nodes in 

the WSN and only one of them is the sink node or the Base 

Station (BS). Within the range of the wireless links 

connecting the nodes, only direct communication is 

possible. As a result, the network topology is composed of 

evenly-spaced nodes. Clusters are collections of nodes, 

and each node has a unique identifier. Almost ideally, the 

sink node should be located where all of the networked 

sensor nodes can send and receive data packets to it. CH 

is used for all data transmissions between cluster nodes 

and the BS. The total sum of accessible network nodes is 

denoted by the notation,  

 𝑥 = {𝐿1, 𝐿2, . . , 𝐿𝑎, … , 𝐿𝑛}  (1) 

Here, 𝐿𝑛 signifies a total sum of sensor nodes. 

B. Energy Model 

Each network node starts with an unrenewable amount 

of energy, denoted by the value G0. Packets lose power 

when they travel from a normal node to a CH in 

accordance with multipath fading and the free space 

mechanism, which depends on the physical separation of 

the two nodes. In contrast to the receiver, which simply 

has the radio circuitry for dissipating the energy, the 

transmitter also has a power amplifier. Node energy 

dissipation is denoted by when a node transmits q bytes of 

data: 
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 𝐺𝑑𝑖𝑠𝑖(𝐿𝑎) = 𝐺𝑒𝑙𝑒𝑐   𝑞 + 𝐺𝑎𝑚𝑝 𝑞  ‖𝐿𝑎 − 𝑉𝑏‖
4;  

𝑖𝑓‖𝐿𝑎 − 𝑉𝑏‖
4 ≥ 𝑐0  (2) 

 𝐺𝑑𝑖𝑠𝑖(𝐿𝑎) = 𝐺𝑒𝑙𝑒𝑐 𝑞 + 𝐺𝑓𝑠  𝑞 ‖𝐿𝑎 − 𝑉𝑏‖
2; 

   𝑖𝑓 ‖𝐿𝑎 − 𝑉𝑏‖
2 < 𝑐0   (3) 

where 𝐺𝑒𝑙𝑒𝑐  signifies electronic power which is subject to 

change due to variables like modulation, dispersion, 

filtering, amplification, and digital coding. 

 𝐺𝑒𝑙𝑒𝑐 = 𝐺𝑡𝑟𝑎𝑛𝑠 + 𝐺𝑎𝑔𝑔  (4) 

where 𝐺𝑡𝑟𝑎𝑛𝑠 indicates transmitter energy, 𝐺𝑎𝑔𝑔 stipulates 

energy of data aggregation, Gamp indicates the energy of 

power amplifier, and ‖𝐿𝑎 − 𝑉𝑏‖ specifies how far apart 

the given node and CH are from one another. On the other 

hand, the receiver’s energy loss when receiving q bytes of 

data via CH is shown as, 

 𝐺𝑑𝑖𝑠𝑖(𝑉𝑏) = 𝐺𝑒𝑙𝑒𝑐   𝑞  (5) 

Each node’s energy value is recalculated when a data 

transfer of q bytes has been made. 

 𝐺𝑑+1(𝐿𝑎) = 𝐺𝑑(𝐿𝑎) − 𝐺𝑑𝑖𝑠𝑖(𝐿𝑎)  (6) 

 𝐺𝑑+1(𝑉𝑏) = 𝐺𝑑(𝑉𝑏) − 𝐺𝑑𝑖𝑠𝑖(𝑉𝑏) (7) 

Repeating the steps in the previous paragraph until all 

of the nodes have died is the end goal of this data 

transmission mechanism. Node death occurs when its 

energy level drops below zero. 

C. Mobility Model 

For the purpose of defining and specifying the 

acceleration, location, and velocity changes of sensor 

nodes across time, the mobility model is employed. If you 

want to know how well a network will work, look at the 

mobility pattern. Let’s say a and k started out at 

coordinates (u1, v1) and (u2, v2), correspondingly. The 

vertices a and k, on the other hand, move with the same 

variable velocity, but in opposite directions as indicated 

by the angles _1 and 2. In terms of the Euclidean distance, 

the pair of nodes a and k are separated by, 

 𝐷(𝑎𝑘,0) = √|𝑢1 − 𝑢2|
2 + |𝑣1 − 𝑣2|

2 (8) 

Here, 𝐷  denotes the Euclidean distance among the 

nodes. 

D. LLT Model 

Due to the ever-changing nature of a network’s 

underlying architecture, it’s essential that route reliability 

be determined on the fly. Let’s say a and k are two sensor 

nodes within range of the transmitter and receiver. Over 

the course of a route request packet’s journey, the LLT is 

calculated at each intermediate hop. However, each node 

is responsible for determining how long the connection 

between the current hop and the prior hop will last. Take 

(Ma, Na) to be the coordinates of node a; (Mk, Nk) to be the 

coordinates of node k. Both node a and node k have a 

mobility speed, denoted by the symbols Sa and Sk. 

Nevertheless, _a and _k is provided to indicate the 

distance travelled by sensor node a and node k, 

respectively. In order to determine the LLT, we use the 

formula: 

 𝐿𝐿𝑇 =
−(𝜔𝜆+𝜎𝜌)+√(𝜔2+𝜎2)𝜏2−(𝜔𝜌−𝜆𝜎)2

(𝜔2+𝜎2)
  (9) 

where, 𝜔 = 𝑆𝑎𝑐𝑜𝑠𝜃𝑎 − 𝑆𝑘𝑐𝑜𝑠𝜃𝑘 , 𝜆 = 𝑀𝑎 −𝑀𝑘 , 𝜎 =
𝑆𝑎𝑠𝑖𝑛𝜃𝑎 − 𝑆𝑘𝑠𝑖𝑛𝜃𝑘 and 𝜌 = 𝑁𝑎 − 𝑁𝑘. 

E. Proposed Model Using KGMO-POA 

Normalization and other forms of data preprocessing 

are taken into account. After being normalised, the data is 

given to KGMO, which then makes an estimate of the 

users’ starting velocities and Kinetic Energy (KE). Users’ 

beginning velocities are used to generate a random particle, 

whose fitness function is then used to evaluate the method 

in question. Following the determination of the fitness 

function, the best fitness is chosen to alter the KE and 

velocity, producing a fresh random particle. This 

procedure is carried out repeatedly until the highest 

possible fitness is attained. For this purpose, the KGMO 

algorithm is used. After the optimal fitness has been 

determined, the resulting information is sent to the 

network’s data collection unit. Throughput, BER, and 

latency measures are used to evaluate network 

performance in relation to user location and mobility 

management. 

This paper presents the POA method for adjusting the 

inertia weight in an effort to address the fast convergence 

problems of KGMO. First, the equatorial rationale for 

KGMO is presented as follows. 

1) KGMO—The projected algorithm 

The gas are the agents in the proposed KGMO 

algorithm, and kinetic is the performance metric. The 

molecules of the gas diffuse across the ampule until they 

all converge in the region with the lowest energy. To 

attract one another, gas molecules use very weak electrical 

intermolecular Van Der Waal forces. It is the presence of 

both positive and negative charges within the molecules 

that gives rise to the electrical pressure. Each gas molecule 

(agent) in the KGMO is described by four parameters: 

location, kinetic energy, speed, and mass. Each gas 

molecule’s velocity and location are established by its 

kinetic energy. In order to find the lowest possible 

temperature, the gas molecules in the algorithm go 

throughout the whole search space. 

In the following, we will think about a system with N 

agents. The ith agent’s character is specified by 

 𝑋𝑖 = (𝑋𝑖
1, . . , 𝑋𝑖

𝑑, … 𝑋𝑖
𝑛),   𝑓𝑜𝑟 (𝑖 = 1,2, … , 𝑁) (10) 

where 𝑋𝑖
𝑑  Represents the site of the ith agent in the dth 

dimension. 

The velocity of the ith agent is obtainable by 

 𝑉𝑖 = (𝑣𝑖
1, … 𝑣𝑖

𝑑 , … 𝑣𝑖
𝑛), 𝑓𝑜𝑟  (𝑖 = 1,2, … , 𝑁)  (11) 

where 𝑣𝑖
𝑑 signifies the velocity of the ith agent in the dth 

dimension. 

The Boltzmann distribution governs the motion of the 

gas molecules in the cylinder, thus their speed is 

proportional to the exponential of their kinetic energy. 

What is meant by this kinetic energy is then 

 𝑘𝑖
𝑑(𝑡) =

3

2
𝑁𝑏𝑇𝑖

𝑑(𝑡), 𝐾𝑖 = (𝑘𝑖
1, . . 𝑘𝑖

𝑑 , … , 𝑘𝑖
𝑛), 𝑓𝑜𝑟 (𝑖 =

1,2. . , 𝑁)  (12) 
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Iteratively updating the molecule’s velocity by 

𝑣𝑖
𝑑(𝑡 + 1) = 𝑇𝑖

𝑑(𝑡)𝑤𝑣𝑖
𝑑(𝑡) + 𝐶1𝑟𝑎𝑛𝑑𝑖(𝑡)(𝑔𝑏𝑒𝑠𝑡

𝑑 −

𝑋𝑖
𝑡(𝑡) + 𝐶2𝑟𝑎𝑛𝑑𝑖(𝑡)(𝑝𝑏𝑒𝑠𝑡𝑖

𝑑(𝑡) − 𝑋𝑖
𝑑(𝑡)))  (13) 

where Ti
d decreases exponentially with time for the 

approaching molecules, as determined by 

 𝑇𝑖
𝑑(𝑡) = 0.95 × 𝑇𝑖

𝑑(𝑡 − 1) (14) 

In this case, we may write pbesti=(pbesti
1,pbesti

2,..., 

pbesti
n) and gbest = (gbest1, gbest2, ..., gbestn) is the best 

prior position for all of the gas molecules, and pbesti
n is 

the best previous position for the ith gas molecule. Each 

particle’s initial velocity and location are both determined 

by random vectors inside their respective intervals. The 

velocity range of the gas molecules is defined here as 

[−vmin;vmax]. If |vi | is greater than |vmax |, then |vi |=vmax, 

where w is the gas molecule’s inertia weight. In addition, 

the search method benefits from the randomness provided, 

exist. 

As only one gas is anticipated to be present in the 

container at any one time, the mass m of each gas 

molecule is chosen at random within some range and 

remains fixed during the algorithm’s execution. Variable 

gases are modelled by the random integer in alternating 

iterations of the procedure. The location of the molecule 

is derived from the physics equations of motion.  

 𝑋𝑡+1
𝑖 =

1

2
𝑎𝑖
𝑑(𝑡 + 1)𝑡2 + 𝑣𝑖

𝑑(𝑡 + 1)𝑡 + 𝑋𝑖
𝑑(𝑡) (15) 

where 𝑎𝑖
𝑑 signifies the acceleration of the ith agent in the 

dth dimension. 

From the acceleration equation, we find 

 𝑎𝑖
𝑑 =

(𝑑𝑣𝑖
𝑑)

𝑑𝑡
   (16) 

On the additional hand, from Eq. (15) of the gas particle 

laws, we have 

 𝑑𝑘𝑑
𝑖 =

1

2
𝑚(𝑑𝑣𝑖

𝑑)2 ⇒ 𝑑𝑣𝑖
𝑑 = √

2(𝑑𝑘𝑖
𝑑)

𝑚
  (17) 

Consequently, from Eqs. (16) and (17), the acceleration 

is clear as 

 𝑎𝑑
𝑖 =

√2(𝑑𝑘𝑖
𝑑)

𝑚

𝑑𝑡
  (18) 

In the time intermission Dt, Eq. (18) can be re-written 

as 

 𝑎𝑑
𝑖 =

√2(∆𝑘𝑖
𝑑)

𝑚

∆𝑡
   (19) 

Thus, in a unit time interval, the hastening would be 

 𝑎𝑑
𝑖 = √2(𝑑𝑘𝑖

𝑑)

𝑚
  (20) 

Then, from Eqs. (15)−(20), the position of the molecule 

is intended by 

𝑋𝑡+1
𝑖 =

1

2
𝑎𝑖
𝑑(𝑡 + 1)∆𝑡2 + 𝑣𝑖

𝑑(𝑡 + 1)∆𝑡 + 𝑋𝑖
𝑑(𝑡) ⟹ 

𝑋𝑡+1
𝑖 =

1

2
√2(∆𝑘𝑖

𝑑)

𝑚
(𝑡 + 1)∆𝑡2 + 𝑣𝑖

𝑑(𝑡 + 1)∆𝑡 + 𝑋𝑖
𝑑(𝑡)(21) 

Last but not least, because the molecule mass (m) is 

different each time the algorithm is run yet the same for 

all the molecules in terms of performance, the location is 

updated for the unit time interval by. 

 𝑋𝑡+1
𝑖 = √2(∆𝑘𝑖

𝑑)

𝑚
(𝑡 + 1) + 𝑣𝑖

𝑑(𝑡 + 1) + 𝑋𝑖
𝑑(𝑡)  (22) 

The smallest fitness function is found by using 

𝑝𝑏𝑒𝑠𝑡𝑖 = 𝑓(𝑋𝑖), 𝑖𝑓 𝑓(𝑋𝑖) < 𝑓(𝑝𝑏𝑒𝑠𝑡𝑖) 

 𝑔𝑏𝑒𝑠𝑡 = 𝑓(𝑋𝑖), 𝑖𝑓 𝑓(𝑋𝑖) < 𝑓(𝑔𝑏𝑒𝑠𝑡)  (23) 

In order to obtain the input for the Eq. (14) for inertia 

weight modification, this research work uses the best 

fitness function of POA algorithm, where the 

mathematical equations of POA is explained as follows: 

2) Pelican Optimization Algorithm (POA) 

In 2022, Dehghani and Trojovsk create an innovative 

algorithm based on principles found in nature [24]. The 

primary interest of POA is in the interactions and 

strategies of pelicans during hunts. Big, bulky birds called 

pelicans have exceptionally long bills. The pelican’s large 

neck pouch aids in capturing and swallowing its meal. 

Pelicans flock together frequently. The populace consists 

of various sized pelicans. Using Eq. (24), we generate a 

random number to be used as the first seed for the 

population: 

 𝑥𝑖,𝑗 = 𝑙𝑗 + 𝑟𝑎𝑛𝑑. (𝑢𝑗 − 𝑙𝑗),     𝑖 = 1,2, … ,𝑁; 𝑗 =

1,2, … ,𝑚  (24) 

When N and m stand for the number of population and 

problem variables, rand is a random number in [0,1], and 

lj and uj stand for the lower and upper limits of problem 

variables, xi,j represents the value of the jth variable by the 

ith solution. 

In Pelican Optimization Algorithm (POA), we use 

equation to generate the population matrix that will be 

used to recognize each associate of the Eq. (25). 

 𝑋 =

[
 
 
 
 
𝑋1
⋮
𝑋𝑖
⋮
𝑋𝑁]
 
 
 
 

𝑁×𝑚

= [

𝑥1,1 ⋯ 𝑥1,𝑗 ⋯ 𝑥1,𝑚

𝑥𝑖,1 ⋯ 𝑥𝑖,𝑗 ⋯ 𝑥𝑖,𝑚

𝑥𝑁,1 ⋯ 𝑥𝑁,𝑗 ⋯ 𝑥𝑁,𝑚
]

𝑁×𝑚

  (25) 

Using the following formula, we can calculate the 

objective Eq. (26). 

 𝐹 =

[
 
 
 
 
𝐹1
⋮
𝐹𝑖
⋮
𝐹𝑁]
 
 
 
 

𝑁×1

=

[
 
 
 
 
𝐹(𝑋1)
⋮

𝐹(𝑋𝑖)
⋮

𝐹(𝑋𝑁)]
 
 
 
 

𝑁×1

  (26) 

F is the vector of the function for the ith possible 

solution. The hunting method for pelicans consists of two 

stages: scouting and ambush. In the former, the hunter 

ventures towards the quarry, while in the latter, the hunted 

soars above the water’s surface on the wings of the 
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predator. First, the pelican gets close to its target after 

discovering its location. The exploratory capability of 

POA is enhanced by the random generation of the prey’s 

location. Eq. (27) is a mathematical representation of the 

initial stage: 

 𝑥𝑃1 𝑖,𝑗 = {
𝑥𝑖,𝑗 + 𝑟𝑎𝑛𝑑. (𝑝𝑗 − 𝐼. 𝑥𝑖,𝑗), 𝐹𝑝 < 𝐹𝑖;

𝑥𝑖,𝑗 + 𝑟𝑎𝑛𝑑. (𝑥𝑖,𝑗 − 𝑝𝑗),           𝑒𝑙𝑠𝑒
 (27) 

where I is a random sum and Fp is the value of the 

objective function for the prey, and xP1
i,j is the ith pelican’s 

new status in the jth dimension after the first phase. In POA, 

a pelican’s new position is considered valid if and only if 

function. This is known as efficient updating, because it 

prevents the algorithm from venturing into suboptimal 

zones. Mathematically, 

 𝑋𝑖 = {
𝑥𝑃1 𝑖 ,   𝐹

𝑃1
𝑖 < 𝐹𝑖;

𝑋𝑖 ,              𝑒𝑙𝑠𝑒,
   (28) 

where xP1
i is the updated FP1

i is the function value for the 

ith pelican from the first stage. In the second stage, the 

pelican brings the fish to the surface of the water, where it 

expands its wings to trap the fish in its neck bag. This 

allows the pelicans to successfully catch more fish. When 

the algorithm improves its solutions in the hunting zone, 

this stage increases POA’s potential for exploitation. See 

below for a logical breakdown of the hunting procedure: 

 𝑥𝑃2 𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝑅  (1 −
𝑡

𝑇
) (2. 𝑟𝑎𝑛𝑑 − 1) 𝑥𝑖,𝑗  (29) 

where xP2
i,j is the updated status after the second phase,  

R = 0.2 is a constant, R  (1 – t/T) is the neighbourhood 

radius of xi,j, and t and T denote an iteration counter and a 

maximum number of iterations. At this point, effective 

updating new pelican position is formulated by Eq. (30): 

 𝑋𝑖 = {
𝑥𝑃2 𝑖 , 𝐹

𝑃2
𝑖 < 𝐹𝑖;

𝑋𝑖 ,            𝑒𝑙𝑠𝑒,
  (30) 

where xP2
i denotes the i-th pelican’s new status and FP2

i is 

the i-th pelican’s objective-function value. Once the full 

execution is finished, the processes based on 

Eqs.  (27)−(30) are repeated until all members of the 

population have been updated. 

3) Chaotic maps 

Non-linear complicated problems with unpredictable 

outcomes are the focus of chaos theory, a branch of 

mathematics. Effectively, FA (Fire On the other hand), 

recent research suggests that chaos has a high amount of 

mixing capability, thus swapping out a few parameters 

with a chaotic map can produce solutions that are more 

adaptable and one-of-a-kind [25]. Major applications of 

chaos theory can be found in many fields, including 

biology, engineering, physics, economics, and philosophy. 

There are a few main characteristics shared by all chaotic 

maps, and these are: sensitivity to beginning conditions, 

randomness, and ergodicity. The optimization challenges 

can be solved using a variety of chaotic maps. Contrarily, 

this investigation makes use of not one but six distinct 

chaotic maps. Shown below are the mathematical 

definitions of these chaotic maps [26, 27]:  

TABLE I. CHAOTIC MAPS 

Map Function 

Chebyshev-map 𝑋𝑛+1 = 𝑐𝑜𝑠(𝑛𝑐𝑜𝑠−1(𝑋𝑛)) 

Circle-Map 

𝑦𝑛+1
= 𝑦𝑛 + 𝑏 − (

𝑎
2𝜋⁄ )sin (2𝜋𝑦)𝑚𝑜𝑑(1) 

𝑎 = 0.5, 𝑏 = 0.2 𝑎𝑛𝑑 𝑦𝑛 ∈ (0,1) 

Gauss/Mouse-map 

𝑋𝑛+1 = {

0                           𝑋𝑛 = 0
1

𝑋𝑛𝑚𝑜𝑑(1)
        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

1

𝑋𝑛𝑚𝑜𝑑(1)
=
1

𝑋𝑛
− [

1

𝑋𝑛
] 

Iterative-Map 
𝑥𝑛+1 = 𝑠𝑖𝑛 (

𝑎𝜋

𝑥𝑛
) 

Where 𝛼 ∈ (0,1) 

Logistic-map 

𝑥𝑛+1 = 𝑎𝑥𝑛(1 − 𝑥𝑛) 
where 𝑎 =  4, 𝑛 represents the iteration 

number and 𝑥𝑥𝑛𝑛 denotes the 𝑛𝑡ℎ 

chaotic number. 

Piecewise-map 

𝑥𝑛+1 =

{
 
 
 

 
 
 
𝑥𝑛
𝑃
                       0 ≤ 𝑥𝑛 < 𝑃

𝑥𝑛 − 𝑃

0.5 − 𝑃
                 𝑃 ≤ 𝑥𝑛 <

1

2
1 − 𝑃 − 𝑥𝑛
0.5 − 𝑃

   
1

2
≤ 𝑥𝑛 < 1− 𝑃

1 − 𝑥𝑛
𝑃

          1 − 𝑃 ≤ 𝑥𝑛 < 1

 

where 𝑃 ∈  [0, 0.5] is a control parameter 

and 𝑥𝑛 ∈ [0,1] 

 

We now discuss the suggested Chaotic Pelican 

Optimization Algorithm (CPOA). Without a doubt, POA 

offers a close to optimum answer to a given optimization 

challenge. The convergence rate of POA, however, may 

be improved by using chaotic maps to get better outcomes 

with greater efficiency. In this case, POA has been 

analyzed using six distinct chaotic maps. Applying chaotic 

maps to POA has had a significant impact on convergence 

time. This is some pseudocode for (CPOA): 

 

Algorithm 1. The pseudo-code for the CPOA procedure. 

𝐈𝐧𝐩𝐮𝐭. 
Calculate the POA population − size (N) and the number

− of − iterations (NoIT). 
Initialize the position of pelicans with chaotic  
vector (comprises six distinct chaotic maps)and 

 find out the objective − function. 
For t =  1:NoIT 
Update Chaotic vector for different chaotic maps 
Randomly design prey position. 
For I =  1:N 
For j =  1:m 
Compute new − status of the jth − dimension. 
𝐄𝐧𝐝. 
Update the ith population member. 
For j =  1:m. 
Evaluate new − status of the jth − dimension. 
𝐄𝐧𝐝. 
Adjust ith population − member. 
𝐄𝐧𝐝. 
Update best − candidate − solution. 
𝐄𝐧𝐝. 
Return best − candidate solution. 
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IV. RESULTS AND DISCUSSION

Fig. 1 represents the proposed network model. A user’s 

x and y coordinates can be used to pinpoint their exact 

location on the map. Each network has its own set of CH, 

all of which are linked to the central hub. Table II shows 

that on average there are 10 users in each of the clusters. 

These users are represented by the little circles that are 

connected to the cluster head. It demonstrates the network 

requirements for modelling the suggested method. An N, 

a CH, a BW, and an SNR in the range of −10 to 10 dB 

stand for the number of users, cluster head, bandwidth, 

and signal-to-noise ratio, respectively. 

Fig. 1. Proposed network implementation model. 

TABLE II. REQUIREMENT OF NETWORK 

Sum of users (N) 300–600 

Sum of CH (NC) 30–60 

Coverage Area 50 m  50 m 

Bandwidth (BW) 20MHz 

Cost Purpose Least Distance 

Optimization KGMO 
Inertia weight CPOA 

SNR Variety −10 to 10 dB 

In this section, the validation analysis of projected 

model with existing techniques such as standard KGMO 

and Bacterial Foraging Optimization (BFO) are described 

in terms of various analysis. The system model is tested 

with small number of nodes (300) and large number of 

nodes (600), where Figs. 2−6 presents the validation 

investigation of projected model for 300 nodes. 

Fig. 2. Analysis of projected model in terms of energy consumption. 

Fig. 3. Analysis based on total packet sent. 

Fig. 4. Performance of proposed model for dead nodes. 

Fig. 5. Comparative analysis of proposed model for alive nodes. 

Fig. 6. Analysis of CPOA-KGMO in terms of Throughput. 
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Since an ineffective cluster head selection procedure 

drastically decreases the sum of live nodes and the lifetime 

of the network while simultaneously increasing the 

number of dead nodes and energy consumption, these 

factors have been examined in a computer simulation. The 

first section of the study compared the suggested scheme’s 

dominance across a range of rounds (0−300) based on the 

proportion of alive nodes to total nodes. Since the 

suggested technique quickly converges to an estimated 

optimal solution, the network’s living nodes are robustly 

protected from death. Furthermore, the suggested method 

safeguards the network’s longevity by avoiding the 

election of ineffective sensor nodes as cluster leaders. As 

compared to the reference systems, the proposed method 

is able to keep 15% to 19% of its nodes alive. In order to 

achieve load balance in the network and ensure that the 

sensor nodes with the lowest amount of energy do not 

expire prematurely, it is necessary to pick sensor nodes 

with energy potential to play the role of cluster head. 

When compared to popular reference implementations 

like KGMO and BFO, the suggested strategy significantly 

reduces the occurrence of newly-emerging dead nodes to 

between 18% and 23%. Since the suggested method uses 

the CPOA algorithm to maximise exploration and 

exploitation without deviating from the optimal path, it is 

expected to significantly increase throughput on average. 

Figs. 7–11 compare and contrast the proposed model with 

already-existing methodologies for various analyses 

employing 0–600 nodes.  

 

 

Fig. 7. Analysis of proposed model for energy consumption. 

 

Fig. 8. Comparative analysis in terms of total packet sent. 

 

Fig. 9. Analysis of CPOA-KGMO in terms of dead nodes. 

 

Fig. 10. Validation analysis of proposed model for alive nodes. 

 

Fig. 11. Throughput comparison for proposed model. 

Since the suggested method utilizes the CPOA 

parameter for adaptive exploitation, which solves the 

traditional issue of the KGMO algorithm by forcing it to 

converge, it significantly extends the lifetime of the 

underlying network. The suggested method facilitates a 

6% and 8% improvement in network lifetime, 

respectively, compared to the reference methods. Since 

the amount of packet drop is avoided due to significant 

cluster head selection process, longer average throughput 

and network lifetime under a variety of sensor node 

counts. The suggested scheme’s temporal complexity is 

compared to that of the benchmarked systems, both in the 

best and worst possible scenarios. The suggested model 
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outperformed KGMO and BFO schemes by 44.76 

percentage points and 22.86 percentage points, 

respectively, in the best-case scenario. The suggested 

model outperformed the state-of-the-art methods by 

55.86% and 51.32%; in the worst-case scenario 

computation, respectively, the performance of the network 

is significantly improved. Based on current network 

conditions, E2HCA uses adaptive techniques to 

dynamically modify clustering settings. This flexibility 

makes sure that the model can react to changes in node 

energy levels and communication patterns in a way that 

maximizes energy efficiency and minimizes NLT. It helps 

it be able to produce better results than other existing 

techniques. 

V. CONCLUSION 

When developing clustering algorithms for massive 

WSNs, minimizing transmission energy usage is a top 

priority. Current population-based meta-heuristics are 

intricate, requiring fine-tuning of a variety of parameters 

in order to maximize energy efficiency. The residual 

energy of the nodes, the various distance parameters, and 

the workload on the Cluster Heads (CHs) are not taken 

into account by state-of-the-art clustering techniques, 

which limits the network’s Capability. The authors of this 

study propose a better-quality version of the KGMO 

algorithm to address the energy efficiency concerns 

associated with CH selection. To address the quick 

convergence rate of the KGMO algorithm, CPOA is used 

to adjust the inertia weight of the algorithm. In this 

manuscript, we develop an original chaotic POA to 

address the issue of KGMO. Six distinct chaotic maps 

have been created to enhance POA’s functionality. In 

addition, the six chaotic variants’ performance was 

compared to that of the original POA. Throughput, end-

to-end delay, energy usage, etc. are all measured in a series 

of MATLAB simulations that confirm KGMO-CPOA in 

comparison to other heuristic algorithms like KGMO and 

BFO. The outcomes show that the suggested KGMO-

CPOA outdid the alternatives in terms of latency, energy 

consumption, and network longevity. Further study should 

involve evaluating the suggested model the suggested 

method safeguards the network’s longevity by avoiding 

the election of ineffective sensor nodes as cluster leaders. 

As compared to the reference systems, the proposed 

method is able to keep 15% to 19% of its nodes alive. In 

order to achieve load balance in the network and ensure 

that the sensor nodes with the lowest amount of energy do 

not expire prematurely and in a real-time setting with a 

larger number of nodes to ensure optimal performance.  
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