

Improved Encryption Algorithm for Public

Wireless Network

Christopher Khosa *, Topside Mathonsi, Deon du Plessis, and Tshimangadzo Tshilongamulenzhe

Department of Information Technology, Faculty of Information and Communication Technology, Tshwane University

of Technology, Pretoria, South Africa

Email: khosachristopher@gmail.com (C.K.); mathonsite@tut.ac.za (T.M.); duplessisdp@tut.ac.za (D.D);

tshilongamulenzhetm@tut.ac.za (T.T).

*Corresponding author

Abstract—Wireless networks afford numerous benefits for

productivity, due to the ease of access to information

resources. A network can now be set up and changed more

quickly, with less effort, and for less money. However,

wireless technology also creates new threats; and alerts the

existing risk profile for information security. In Wireless

Fidelity (Wi-Fi), security mechanisms such as encryption

algorithms play a vital role. A large amount of memory and

power is consumed by those algorithms. This research study

therefore proposed a Computation Efficient Secure

Algorithm (CESA) that reduces the high consumption of

power and memory to efficiently secure public Wi-Fi

networks. The proposed CESA was based on a hash-based

message authentication algorithm. A Digital Signature

Algorithm (DSA) was accomplished to produce and verify

signatures using the Secure Hash Algorithm (SHA). The

Network Simulation-2 (NS-2) tool was used to evaluate the

various settings of each algorithm, including key generation

time, encryption time, and decryption time. Through the

simulation, it was demonstrated that the proposed algorithm

CESA outperformed both the Enhanced Diffie-Hellman

(EDH) and Advanced Encryption Standard (AES)

algorithms in terms of key generation time, encryption time,

and decryption time. To generate the key, the proposed

CESA algorithm took up to 59 s, while the EDH and AES

algorithms took almost 90 s. To encrypt the data, the

proposed CESA algorithm took about 98 seconds, while EDH

and AES algorithms took almost 167 seconds. To decrypt the

data, the proposed CESA algorithm took about 80 s, while

EDH and AES algorithms took almost 160 s. Thus, the EDH

and AES make CESA more robust against attacks and very

rapid in handling encryption and decryption processes.

Keywords—wireless networks, wireless fidelity, encryption

algorithms, computation efficient secure algorithm, hash-

based message authentication algorithm, digital signature

algorithm

I. INTRODUCTION

Wi-Fi (public wireless fidelity) networks are important

to many businesses and customers. This is so that

consumers can access the internet from a variety of

locations, including airports, shopping centers, and

academic institutions, to name a few. Due to the wide

variety of wireless networks, it is necessary to secure

transmitted data to guarantee data availability, integrity,

and secrecy [1].

The Advanced Encryption Standard (AES), Triple Data

Encryption Standard (3DES), and Data Encryption

Standard (DES) are only a few of the cryptographic

algorithms that have been presented today for Wi-Fi

networks. These algorithms are appropriate for private Wi-

Fi networks since they make use of public key

exchange [1]. The most widely used encryption

algorithms are DES, 3DES, and AES [2]. One key with 64

bits is used by DES. AES uses a variety of (128, 192, 256)

bit keys, while 3DES uses three 64-bit keys. In Blowfish,

several (32–448) bit keys are employed. The National

Institute of Standards and Technology uses DES as its first

encryption standard. Both the key and block sizes for DES

are 64 bits.

The negatives of DES, however, are that it is vulnerable

to brute-force attacks and uses a lot of memory, making it

a risky block cipher [1, 2]. The improved version of DES

is called 3DES. 3DES employs a 64-bit block size and a

192-bit key, compared to DES’s 56-bit key and 64-bit

block size. To increase the level of encryption and

lengthen the typical period during which the encryption

remains secure, the encryption mechanism employed in

3DES is applied three times consecutively. Moreover,

numerous investigations have demonstrated that 3DES is

less effective than other block encryption methods in terms

of speed [1]. AES is a block cipher (sometimes referred to

as Rijndael). It offers changeable key lengths of 128, 192,

or 256 bits. Variable key lengths of 128, 192, or 256 bits

are supported by AES. Depending on the length of the key

used, it uses 10, 12, or 14 rounds of encryption and

operates on 128-bit data blocks. AES seems to be quick

and reliable, therefore it can be used on a variety of

platforms, especially small ones. The high power and

memory consumption of this method is a drawback.

An important foundational component of information

security in public Wi-Fi is the use of cryptographic

methods. However, a survey of the literature revealed that

these algorithms frequently use a lot of power, memory,

and CPU time [1, 2]. They are not appropriate for public

Wi-Fi because they add resource overheads and processing

Manuscript received June 9, 2023; revised August 10, 2023; accepted

September 1, 2023; published February 15, 2024.

233

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

doi: 10.12720/jait.15.2.233-244

mailto:khosachristopher@gmail.com
mailto:mathonsite@tut.ac.za
mailto:duplessisdp@tut.ac.za
mailto:tshilongamulenzhetm@tut.ac.za

complexity. As a result, a Computational Efficient Secure

Algorithm (CESA) was created as part of this research

study to protect data transmitted over a public Wi-Fi

network. The CESA was developed by combining the

Diffie-Hellman and hashing algorithms to prevent man-in-

the-middle attacks. Diffie-Hellman computation is

believed to be vulnerable to man-in-the-middle attacks.

The suggested approach improves network performance,

protects transmitted data, and uses less memory and power

to secure zones over Wi-Fi networks. The suggested

algorithm used asymmetric encryption as its method. This

is so because asymmetric encryption employs two keys.

While the public key is used to encrypt data, the private

key is used to decrypt it. The asymmetric cryptography

method is significantly more trustworthy than the

symmetric method since it requires two keys.

II. LITERATURE REVIEW

Different cryptographic techniques are frequently used

by public Wi-Fi networks to safeguard data sent for

keeping sensitive information secure, encryption is a vital

tool. The confidentiality of the information being

communicated or stored is helped by encryption, which

transforms plaintext into an unintelligible format

(ciphertext). Encryption can offer additional security

advantages in addition to confidentiality, including digital

signatures, authentication, and secret key management [3].

To guarantee the information’s confidentiality, integrity,

and availability, encryption techniques are used.

Additionally, this stops information from being duplicated

and tampered with.

Over the network. The 3DES, DES, and AES algorithms

are a few of the often-used ones. These public key

exchange-based algorithms offer a high level of protection

for confidential data sent over the network. Since a public

exchange relies on a temporary, mathematical key

developed to encrypt data delivered over unprotected

internet channels, the public key uses a lot of memory and

power [1−3].

A. Overview of Cryptographic Encryption Algorithms

The practice and study of information concealing, and

verification is known as cryptography. When information

is transferred through the internet or another medium, it is

commonly referred to as the study of secrets. It is the

technique of concealing data in ciphertext, a non-readable

format, to prevent unauthorized access [3]. The message

can only be translated into plaintext by those who have

access to a secret key. According to the research of

Taha et al. [3], cryptography is the use of protocols,

algorithms, and other techniques to systematically prohibit

or deny illegal access to sensitive data. Due to the intensive

computational process involved in encrypting data,

encryption operations use a lot of memory and power,

which negatively affects network speed. “Plaintext” refers

to the message that is sent directly from the sender to the

recipient, whereas “ciphertext” refers to the message that

is delivered through the channel. Encryption and

decryption are the two steps of cryptography. Encryption

is the conversion of plaintext into ciphertext. Decryption is

the process of going backwards to turn ciphertext into

plaintext. A secret key and an algorithm make up the

encryption process.

Data that is encrypted is secured using this key. The

algorithm will result in a specific output depending on the

secret key utilized. The algorithm’s output will change if

the secret key is altered. Symmetric key algorithms and

asymmetric key algorithms are the two subcategories of

cryptography. In symmetric key cryptography, the same

key is used for both encryption and decryption; in

asymmetric key cryptography, however, two separate keys

are used, one for encryption and the other for

decryption [4].

1) Types of encryptions

Since asymmetric encryption is the subject of this

research project, only asymmetric encryption will be

covered in this section. The speed of asymmetric

encryption is typically 1,000 times slower than that of

symmetric encryption. Accordingly, processing

asymmetric encryption or decryption may require a

thousand times more CPU power than processing

symmetric encryption or decryption [5]. The asymmetric

key approach requires additional processing power and

memory due to its high computational complexity [6].

Therefore, the goal of this project was to create

asymmetric encryption that required less computational

complexity to use less memory and power. The major

encryption techniques’ classification is shown in Fig. 1.

Fig. 1. Classification of encryption algorithms [6].

2) Asymmetric encryption algorithms

Of recent times, the internet has been providing

essential communication between tens of millions of

people. As the internet is increasingly being used as a tool

for commerce, security becomes a tremendously important

issue to deal with. More public Wi-Fi is thus deployed to

allow multiple users to access the internet. However,

public Wi-Fi is more vulnerable to attack than private Wi-

Fi networks: this is because of the shortage of encryption

on public Wi-Fi.

Wireless data transmission is made possible by the

manipulation of radio waves. By pulses of electricity, these

waves are produced naturally. These radio waves can be

changed to transmit sound or data through their amplitude

or frequency [7]. Public Wi-Fi networks have inherited the

most common attacks from wireless networks, such as

man-in-the-middle attacks. The imposed restrictions on

234

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

energy and power, as well as the exposure of the devices,

make the public Wi-Fi networks more vulnerable to new

threats, such as energy drain and Hello flood attacks.

There are many aspects to security and many

applications, ranging from secure commerce and payments

to private communications and protecting passwords. One

essential aspect of secure communications is cryptography,

which is the focus area of this chapter. Cryptography is

used to protect the information in public Wi-Fi networks.

However, it is faced with many challenges such as higher

power and memory consumption; hence it must be further

improved. A brief review follows of various asymmetric

encryption algorithms which make a great contribution to

the field of cryptography.

B. Rivest-Shamir-Adleman (RSA)

The Rivest-Shamir-Adleman (RSA) algorithm uses

both the public key and a private key. The RSA is a block

cipher for digital signature algorithms or key exchange

algorithms [8]. The RSA uses the variable-length key and

the variable length encryption block. The message is

encrypted by the sender; the receiver decrypts it. The

message is encrypted with a public key and decrypted with

the appropriate private key owned by the receiver. The

RSA algorithm consists of three steps: generation of keys,

encryption, and decryption. The RSA encryption

technique cannot cope with the memory and power

consumption for calculation, as it uses a tremendously

large key [9]. This has led to many potential attacks such

as brute-force attacks, man-in-the-middle attacks, timing

attacks, and selected ciphertext attacks [8, 9].

C. Diffie-Hellman Algorithm

The Diffie-Hellman is one of the first public key

processes: it is a way of safely exchanging cryptographic

keys [8, 9]. In the Diffie-Hellman algorithm, the sender

and receiver make a common secret key; then they begin

to communicate with one another through the public

channel known to all. Diffie-Hellman secures a range of

internet facilities. The sender must trust the public key

cryptosystem when obtaining the recipient’s public key

and vice versa. This leads to significant consumption of

computing resources such as CPU time, memory, and

battery power. Therefore, it may also lead to the man-in-

the-middle attack and Denial-of-Service (DoS) attack [10].

Digital Signature Algorithm (DSA) is used to authenticate

and verify the integrity of digital signatures. DSA was

accomplished to produce and verify signatures using the

Secure Hash Algorithm (SHA). If the sender desires to

send a message to the receiver, the sender’s signature

generation uses its private key to generate a signature.

Once the receiver receives a message, the signature

verification uses the public key of the sender [11]. Memory

space, bandwidth, and power consumption are a constraint

to the DSA process. Such can therefore lead to a session

hijacking attack [12].

D. Digital Signature Algorithm (DSA)

In 1991, the Digital Signature Algorithm (DSA) was

developed by the National Institute of Standards and

Technology (NIST) United States, for use in its Digital

Signature Standard (DSS). The DSA is based on the

exertion of computing discrete algorithm difficulties [13].

DSA is used to authenticate and verify the integrity of

digital signatures. DSA was accomplished to produce and

verify signatures using the Secure Hash Algorithm (SHA).

If the sender desires to send a message to the receiver, the

sender’s signature generation uses its private key to

generate a signature. Once the receiver receives a message,

the signature verification uses the public key of the sender.

Memory space, bandwidth, and power consumption are a

constraint to the DSA process. Such can therefore lead to

a session hijacking attack [11−13].

E. Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) is based on the

elliptic curve theory and was developed by Koblitz and

Miller in 1985. The ECC uses complex algebraic and

geometric equations to generate a public key. The ECC

uses a private key to decrypt and generate signatures while

using the public key to encrypt and verify signatures. The

ECC consumes high energy and memory [14] (See

Table I).

TABLE I. ENCRYPTIONS PARAMETERS

Parameters RSA

Diffie-

Hellmann

algorithm

DSA ECC

Computation

Time
Slow Moderate Moderate Moderate

Memory

Utilization

Requires

more
space

Requires
moderate

memory

space

More
memory

space is

required

Requires
moderate

memory

space

Security

Level

Poor

security

Moderately

secure

Moderately

secure

Least

secure

1) The contributions of the study

The proposed CESA algorithm was designed always to

ensure secure data and reliability to all authorized

individuals over free public wireless networks.

The proposed CESA algorithm allowed mobile devices

on Wi-Fi to generate a shared hidden session key.

The design of the proposed CESA algorithm was

achieved by integrating various asymmetrical

cryptographic techniques; thus, the proposed algorithm

reduces the high consumption of power and memory.

2) Related works

Numerous studies have been conducted over the past

few years on authentication methods for safeguarding

wireless network users’ personal information:

Yu and Kim [9] proposed a new model for data

encryption and decryption using ECC and

Deoxyribonucleic Acid (DNA). DNA is cast off to allocate

genes, which are used for encryption of the data. The

experiment is secured towards timing and Power Supply

Analysis (PSA) attacks. The CESA algorithm, as proposed,

serves to thwart or minimize the efficacy of man-in-the-

middle attacks. Additionally, it guarantees the swift and

secure generation of authentication keys, mitigating

potential vulnerabilities throughout the entire process. The

algorithm’s accelerated encryption time plays a crucial

role in preventing attackers from swiftly accessing

235

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

unencrypted shared data. Furthermore, the proposed

algorithm enhances decryption time, encompassing the

conversion of encrypted data back to its original format.

Mandal and Dutta [10] compared the two most widely

used symmetric encryption techniques namely DES and

AES based on avalanche effect due to one-bit variation in

plaintext keeping the key constant, avalanche effect due to

one-bit variation in key keeping the plaintext constant,

memory required for implementation and simulation time

required for encryption. The avalanche effect is the

property of any encryption algorithm in which a small

change in either the key or the plaintext should produce a

significant change in the cipher text. The Avalanche effect

is very high for AES as compared to DES whereas memory

requirement and simulation time for DES is greater than

that of AES, which shows AES is better than DES in terms

of power consumption.

Kumar et al. [15] proposed a DES system for data

protection. The DES encryption method is a text data

encryption method that uses a symmetric block cipher and

consists of two steps: encryption and decryption. The valid

length of the key used for DES encryption is 56 bits.

Cryptography The DES encryption process consists of an

8-step process. The problem with this approach is that it is

a complex and time-consuming process due to the length

of the data being processed.

Elminaamn et al. [16] studied the performance of

symmetric encryption algorithms. This white paper

evaluates the six most used cryptographic algorithms

(AES (Rijndael), DES, 3DES, RC2 and Blowfish, and

RC6). Data block sizes, different data types, different

battery consumption, different key sizes, and final

encryption / decryption speed comparisons were

performed with different settings for each algorithm. The

following results were shown in the experimental

simulation. If the results are displayed in either base

hexadecimal or base64 encoding, there is no significant

difference. It turns out that RC6 takes less time than all

algorithms except Blowfish when the packet size is

changed. We found that RC2, RC6, and Blowfish had a

time disadvantage over other algorithms when changing

data types such as images instead of text. By comparison,

3DES is still bad compared to the DES algorithm. Finally,

when changing the key size, it can be shown that the larger

the key size, the greater the change in battery and time

consumption (AES algorithm or RC6 only).

Pu and Zhou [17] proposed a performance evaluation of

common cryptographic algorithms for the throughput and

power consumption of wireless systems and evaluated the

efficiency of the selected symmetric key algorithm. AES,

DES, and BLOWFISH were the algorithms of choice. The

quality and power consumption of wireless devices are

evaluated, and performance evaluations, various text,

audio, and image files are used. The results showed that

BLOWFISH performed better than AES and DES. This

method has some drawbacks, such as weak keys and

insensitivity to plain images. The proposed CESA

algorithm reduced power consumption.

Pronika and Tyagi [18] compared the performance

evaluation of various cryptographic algorithms. Based on

parameters taken as time various cryptographic algorithms

are evaluated on different video files. Different video files

have different processing speeds at which various sizes of

files are processed. Calculation of time for encryption and

decryption in different video file formats such as Blob

and .DAT, having file size from 1MB to 1100MB. Results

showed that the AES algorithm is executed in lesser

processing time and more throughput level as compared to

DES and BLOW FISH.

Arora et al. [19] studied the performance of different

security algorithms on a cloud network and on a single

processor for different input sizes. Their aims are to find

in quantitative terms like Speed-Up Ratio the benefits of

using cloud resources for implementing security

algorithms (RSA, MD5, and AES) which are used by

businesses to encrypt large volumes of data. Three

different kinds of algorithms are used, RSA (an

Asymmetric encryption algorithm), MD5 (a hashing

algorithm), and AES (a symmetric encryption algorithm).

On different video files. Different video files have

different processing speeds on which various sizes of the

file are processed. Calculation of time for encryption and

decryption in a different video file format such as .vob

and .DAT, having file size from 1MB to 1100MB. Results

showed that the AES algorithm is executed in lesser

processing time and more throughput level as compared to

DES and BLOW FISH. The block size is the basic unit of

data that can be encrypted or decrypted in one operation.

A larger Block size means greater security, all other factors

being equal, but reduced encryption/decryption speed for

a given algorithm. The greater security is achieved by

greater diffusion. Generally, a block size of 64 bit has been

considered a reasonable tradeoff and was nearly universal

in block cipher design. Block size used for DES, 3DES,

and Blowfish is the same, 64 bits. The block size of AES

is 128 and thus, it is more secure. However, this method

consumes more memory due to the larger block size.

In Ref. [20], a key management protocol centered

around digital signatures was introduced to ensure secure

data transmission. This process effectively minimizes the

risk of false data injection and node failure, bolstering

security for wireless internet-based data transfers. Through

authentication of users and the safeguarding of transmitted

data, any intercepted portion remains unintelligible due to

encryption. However, this approach comes at the cost of

doubling computational time, leading to significant power

consumption on devices. Notably, this method bears

resemblance to the CESA algorithm’s data encryption

aspect. However, the mentioned algorithm requires more

time for data encryption in comparison. Conversely, the

proposed CESA algorithm distinguishes itself by

substantially expediting the encryption process, a pivotal

deterrent against rapid unauthorized access to unencrypted

shared data. Furthermore, the algorithm’s enhancement of

decryption time ensures seamless conversion of encrypted

data into its original format.

In Ref. [21], a hybrid methodology was introduced. In

this approach, plaintext blocks are encrypted utilizing both

the Advanced Encryption Standard (AES) and Elliptic

Curve Encryption (ECC) algorithms. Subsequently, data

236

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

compression technology is employed to obtain blocks of

ciphertext. The ECC-encrypted MAC address and AES

key are then combined to create a comprehensive

ciphertext message. This hybrid approach demonstrated

benefits such as decreased encryption time and heightened

security, leading to reduced power consumption. However,

it’s worth noting that this technique is susceptible to

Session Hijacking Attacks. Addressing these concerns, the

proposed CESA algorithm places significant emphasis on

countering hijacking attacks.

3) An enhanced encryption algorithm system design

The network architectural design and CESA

implementation are presented in this section. This section

starts off by going over the different system components

as well as the building blocks for configuring these

components. After that, by providing discussions on the

physical connections configured on the network, this

section fulfills the objectives of this study. This covers the

significance of each system component, its configurations,

and the advantages each component brings to the network

to improve the Quality of Service (QoS) in open access

WI-FI networks.

The goal of this study was to create a more advanced

security system for open wi-fi networks that would

enhance network efficiency. To reduce the effectiveness of

man-in-the-middle attacks in these networks, the proposed

approach was created. The proposed CESA design is

mathematically presented in this section using exact

mathematics.

The suggested design for it incorporates the layer 3

switch and Aps that connect to the server. The design also

incorporates a gateway that is configured to serve as a link

between the Aps and the internet, as seen in Fig. 1. The

suggested design for it incorporates the layer 3 switch and

Aps that connect to the server. The design also

incorporates a gateway that is configured to serve as a link

between the Aps and the internet, as seen in Fig. 1. The

switch is configured to allow wireless connections from

Aps because it performs transmission and hence operates

at the distribution layer of the network. The MAC

addresses of the connected devices to the switches serve as

a means of identification. The transmitter helps with

control and setup and supports a centralized network. The

transmitter facilitates contact with the outside world and

facilitates connections between Aps and the server. The

layer 3 switch makes it easier for clients and service

providers to communicate. It is capable of simultaneously

performing bridging and routing duties. Additionally, it is

simpler to configure and contains a lot of ethernet ports. It

typically costs less than other switches and has the capacity

to link more client’s PCs.

The extensive QoS functions it offers further include

packet prioritizing, classification, policing, tagging,

queuing, and scheduling. To ensure a specific degree of

QoS, the layer 3 switch is used in this work to encourage

prioritizing. As a Domain Name System (DNS) address,

the server is set up with a static IP address. To host

databases, security settings, and archives, the server acts as

a local cloud. On the other hand, Aps are set up with

distinctive static IP addresses.

4) Wireless networks architecture design

As shown in Fig. 2 below, the proposed network

architecture is mathematically modeled as a directed graph

of: 𝑌 = (𝑀, 𝐿) with 𝑀 = {𝑀1, … , 𝑀𝑖 , 𝑀𝑖+1 … , 𝑀𝑘}

 calculating and defining the total number of client

machines. Meanwhile, 𝐿 = {𝐿1, … , 𝐿𝑖 , 𝐿𝑖+1 … , 𝐿𝐾}

calculates and defines the number of connection links to

aid in facilitating the communication between client

machines and APs within the network and remote

communications.

Fig. 2. Typical wireless networks architecture.

5) Encryption and decryption procedure

The encryption and decryption methods are shown in

Algorithms 1 and 2. The plaintext is converted to

American Standard Code for Information Interchange

(ASCII) decimal values before being converted to binary

values. In addition, the key that was created in Algorithm

1 is translated to binary. Both plaintext and key are

XNORed after the binary values are obtained. The

XNORed yields the ciphertext complex which becomes

unable to be read because the attacker will never be able to

know the key. Once the XNORed is finished, the obtained

unreadable data is moved to the left. This will result in a

new piece of unreadable text. The received text is then

subjected to 1’s complement. The last phase involves

breaking the temporary ciphertext into two subsets, which

then switch positions with each other. Thereafter, the final

acquired ciphertext is translated back to ASCII values and

sent to the destination.

Algorithm 1. Encryption Phases

Phase 1: Client machine A decides what plaintext to forward

to client machine B.

Phase 2: Each letter is then converted to an ASCII decimal

value (for example, a = ‘‘99”). Thereafter, it is translated to an

8-bit binary value (for example, “99” = 1100011).

Phase 3: The binary value acquired in phase 2 is then

XNORed with a bit key length created in Algorithm 1.

Phase 4: Once the results from phase 3 have been obtained,

those results are then moved to the left side.

237

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

Phase 5: The performance from Phase 4 is multiplied by one’s

complement.

Phase 6: The performance from Phase 5 is split into two parts

(e.g., 1100 = 11 and 00). These two parts then swap positions

as the process progresses (e.g., 0011). This move alters the

binary in general, making it more difficult to decipher the

algorithm.

Phase 7: Once all the encryption phases are completed, the

final obtained value in phase 6 is translated to ASCII decimal

and then to an alphanumeric text.

Since the plaintext is XNORed with the key, it can’t be

broken unless the key is found, and the key can’t be known

unless one of the parties’ hidden variables is known, which

is impossible since it’s never transmitted over the network.

Algorithm 2 shows how the encryption and decryption of

keys are generated in Algorithm 1.

The decryption method of the proposed algorithm is

also covered in Algorithm 2.

Algorithm 2. Decryption Phases

Phase 1: The client machine B receives ciphertext that has no

meaning.

Phase 2: Each letter of the ciphertext is transformed into an

ASCII decimal value after it is received. Once the computing

of the decimal value is done, it is converted to an 8-bit binary

value.

Phase 3: Phase 2 results are then divided into two parts (for

example, 1100 = 11 and 00).

Phase 4: These two parts swap places (for example, 00 and 11

= 0011).

Phase 5: The results of phase 4 are taken as one’s complement.

Phase 6: The results are then moved once to the right.

Phase 7: The client machine A private key is XNORed with

the result generated in phase 6.

Phase 8: Once all the decryption phases are completed, the

final obtained value is translated to ASCII decimal and then to

the character.

F. Proposed Computation Efficient Secured Algorithm

In this study, CESA is proposed to reduce memory and

power consumption and to reduce response time in public

Wi-Fi networks. To obtain the objectives of this work, the

hashing algorithm 3 is integrated with Diffie-Hellman

algorithm to prevent attack by the man-in-the-middle. This

is primarily because Diffie–Hellman algorithm is

vulnerable to man-in-the-middle attacks, and thus, hashing

algorithm aids in reducing and preventing those attacks.

The purpose of the hashing algorithm is to generate

authentication encrypted keys. The algorithm ensures that

the process of encryption and decryption of the keys

generated is carefully considered to prevent man-in-the-

middle attacks.

Algorithm 3. Computation Efficient Secured Algorithm

The process of encryption:

INPUT: key, variable

1. Key generated from ALGORITHM 1.

2. Plaintext (already transformed into binary values)

3. m = dimension of the letter

4. FOR each letter ‘y’ in an assortment

5. IF y is the portion of assortment, THEN

Variable 1= XNORed (plaintext, key)

 Variable 2= left swing respectively bit once in (Variable 1)

Variable 3=yield 1’s compliment of (Variable 2)

Variable 4=split data into two parts in (Variable 3) & save as:

Set 0 =
𝑚

2
 and set 1=

𝑚

2
 to m

Ciphertext= exchange (Set0, Set1)

ELSE

 Create key first, then go to phase 1

END IF

The process of decryption:

INPUT:

Key # Hashing key in Diffie–Hellman algorithm

Ciphertext $ binary values$

m = dimension of the letter

OUTPUT:

Variable 4=Ciphertext

IF key == existing THEN

 Variable 3= split data in two parts in (Variable 4)

 Set 0=
𝑚

2
 and set 1=

2

1
 to m

 Variable 2 = exchange (Set0, Set1)

 Variable 1=yield 1’s compliment of (Variable 2)

 Variable = left shift each bit once in (temp1)

 Plaintext= XNORed (plaintext, key)

ELSE

 Create key first, then go to phase 1

END IF

G. Materials and Methods

Network simulators are valuable because they allow for

the assessment of different solutions prior to actual

implementation in real network infrastructure. In this

research, the proposed algorithm that was developed in

Section III was assessed using NS-2 to determine how well

it performed. The NS-2 is considered as a discrete event

simulator that is object-oriented and available in an open-

source format. Therefore, it can be accessed for free on the

internet.

In this research, the implementation of a CESA

algorithm is presented. The proposed algorithm was

examined against Enhanced Diffie-Hellman (EDH) and

AES. The motivation behind choosing these two

encryption algorithms is that both were proposed to reduce

the success of man-in-the-middle attacks in a computer

network. EDH was proposed to facilitate the securely

exchanging of cryptographic keys over a public channel.

Meanwhile, AES facilitates the encryption of data shared

or communicated over the network and is commonly used

for classified information by the United States (US).

The suggested CESA successfully prevent man-in-the-

middle attacks in Diffie-Hellman algorithm by producing

a key between the devices that are communicating with

one another. Additionally, the proposed CESA encrypts

and decrypts the generated key.

H. Network Simulators

Communication in wireless networks can be simulated

using a variety of network simulators. This section

discusses some of the most important network simulators

and explains why NS-2 was chosen as the simulator for

CESA algorithm. The simulators listed below were chosen

because of their high level of popularity among researchers:

238

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

1) Objective modular network testbed (OMNeT++)

OMNeT++ is an open-source simulation instrument of

discrete C++ language [22]. OMNeT+ + is not only used

for network simulations, but rather modular object-

oriented, in comparison with other simulators. It can also

be used to assess and model the complicated performance

of computers. Modules can have parameters to be used

based on three main reasons, such as customizing the

behaviour of the module, creating flexible topologies

models (where parameters, and link structures may be

defined), and shared variables for the communication

modules. The simulator can be used as a model, according

to the OMNeT++ user guide, a simulator can be used for

modelling purposes such as computing networks and

traffic modelling, multiprocessing construction, and

distributed schemes [12].

OMNeT++ provides smart and extensive GUI

assistance as well. It can run on both UNIX and Microsoft

Windows operating systems. However, additional effort is

needed to create OMNeT++ simulations in comparison

with other simulators and they are therefore not used for

this research study.

2) Network simulation 3 version

NS-3 is written in the C++ programming language.

Unlike in NS-2, modern NS-3 anthology time hardware

capabilities did not cause a challenge. As a result, NS-3

does not rely on Tool command language (OTcl) scripts to

control the simulation; it can now be built entirely in C++.

A modeling script, which is not possible in NS-2, can also

be composed as a C++ program. NS-3 gains from Python’s

constrained scripting and visualization support. The C++

code is still accessible on NS-3 in conjunction with

memory-management features such as delete, new, and

malloc [23].

A packet in NS-3 consists of a single byte buffer

corresponding to the stream of bits sent over the real

network. Furthermore, the packet contains data, which is

added using subclasses and a header that adds input at the

beginning of the buffer and a trailer that adds data at the

end. For simultaneous performance, NS-3 employs PyViz,

a Python-based real-time visualization package. NS-3 was

created to improve on NS-2. NS-3 does not support NS-2

written simulation projects.

3) MATrix laboratory (MATLAB) simulation

MATLAB is defined as a software package designed

specifically for scientific calculations in mathematical

software programming. MATLAB is widely used in a

variety of fields, including applied mathematics, education,

college, and industrial research [24]. MATLAB can be

used to alleviate algebraic expressions and equations of

variations. The simulator can also be used to integrate

numbers such as computational geometry. In addition,

MATLAB has a powerful graphic tool that enables greater

images to be generated in 2D and 3D. MATLAB has some

tool kits in the fields of study for signal handling, stats,

partial differential equation solutions, photo processing,

analysing, and optimisation [25].

MATLAB is a computer language of high performance

that uses C++, C, Java, Python and Fortran. It has a
MuPAD engine that can access the functions of the

computer. The main problem with MATLAB is the fact

that basic MATLAB directives such as Linux, Microsoft

Windows, and Mac systems need to be properly

understood. Furthermore, sophisticated indulgent is also

needed for features like 2D and 3D graphs, algebraic and
differential equations, matrix calculations, and linear

equations. MATLAB is not used in this research study as

MATLAB has been designed mainly to solve complex
numerical challenges [26].

4) Network simulator 2 (NS-2) tool

The NS-2 simulator uses C++ software to model the

operation of nodes and scripts. In university studies, NS-2

is commonly used. This is because, NS-2 allows several

non-benefit groups to help improve the situation in the

future. The simulation interface uses the OTcl and C++ for

network topology and algorithm implementation,

respectively [27].

The added value of NS-2 is the network animator

(NAM), which has the interface to play, pause, speed, and

avoid simulation during the evaluation stage. NS-2 is a

network simulator that was developed for object-oriented

discrete events at the University of Colombia-Berkeley.

This means that at specified times NS-2 starts sending

packets, which end at certain times. The NS-2 system

implements various protocols like TCP and UDP; traffic

sources like CBR Telnet, and FTP; and queue control

mechanisms like Drop-Tail and algorithms for routing [27].

NS-2 is the most widely used open-source network

simulator. It can investigate the behaviour of existing and

new protocols when simulating network services and

protocols for both wired and wireless systems. NS-2 makes

use of the NAM package, which is a Tcl-based animation

scheme for creating a visual representation of a network

for production purposes.

5) Simulating CESA

The primary objective of simulating the CESA

algorithm was to determine whether the proposed

algorithm improves wireless networks.

6) Simulation set-up

The CESA was proposed in this research study to reduce

excessive power and memory consumption to efficiently

secure public Wi-Fi networks. The simulation was carried

out to validate and test the CESA. This section covers the

specifics of configuring the NS-2 program on the Linux

operating system. In addition, the NS-2 simulation setting

is discussed [28−35].

The NS-2 simulator can be installed on a variety of

operating systems, including UNIX/Linux, Mac OS, and

Windows. In this study, the NS-2 simulator was installed

on a Linux operating system. The key reason for adopting

Ubuntu for this study is that it is a free and widely used.

The proposed CESA was simulated in both ordinary and

man-in-the-middle attack scenarios. The simulator

scenarios are designed to show how the CESA performs

when there is no man-in-the-middle attack and when there

is one.

In the second part of the simulation, a model is then

developed to detect and prevent man-in-the-middle attacks,

as well as to reduce excessive power and memory

consumption by employing a variety of mobile nodes,

239

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

speeds, and traffic loads. Three different simulation

scenarios were conducted. A man-in-the-middle attack

was simulated in the second scenario.

The node-type scenario is created at random, which

means that the man-in-the-middle node addresses and the

start time of the malicious behavior are completely random.

For simulation reasons, the start time of malicious node

behavior is set between 0 and 50 s at random, whereas the

start time of data for transmission to a connection is set

between 0 and 40 s independent of the node type.

This research study focuses solely on the results of TCP

traffic. To model node mobility, the random waypoint

method was used. Different node speeds (0 to 30 m/s) were

used in this research study.

7) Simulation parameters

The Wi-Fi network performance is primarily

determined by end-to-end connectivity, and the simulation

scenario is designed to stimulate network security by

increasing network throughput and packet transmission

between nodes inside the scenario utilizing cryptographic

techniques. In this simulation, the CESA was employed to

encrypt data packets sent between nodes.

First, the simulation process and results analysis are

used to determine the architecture and configuration of

nodes, as well as MAC layer properties for various address

types, protocol types, channel types, simulation time,

modulation type, idle, sleep power, and wireless

transmission modes. The parameters of the simulation

scenario are presented in Table II [28−35].

TABLE II. SIMULATION PARAMETERS

Parameters Values

Network Area 500m 500m

Number of nodes 40

Protocol type TCP

Antenna Model Omnidirectional
Max package 50

Type of the MAC 802.11

Node Speed 0−30

Transmission speed 1−3 Mbps

Bandwidth 30MHz

8) Experimental evaluation

The proposed algorithm was simulated to evaluate the

benefits of integrating the Diffie-Hellman and hashing

algorithm. To simulate the algorithm, NAM interface was

used to observe packet losses, the locations of client

machines and servers, and how the packets are transmitted.

The NAM interface was used to evaluate the proposed

algorithm against a modified Diffie-Hellman. The

topology is comprised of 40 mobile nodes to represent

client machines each dynamically configured with a

unique IP address. The networks also include Access

Points (APs) statically configured with IP addresses,

unlike the client machines.

The CESA was implemented at the distribution layer

represented by APs in the network. The role of APs is to

centrally coordinate the network. The simulations were

performed using a propagation model of the

omnidirectional model defined offered in the simulation

environment. The simulator was installed and executed on

Linux Ubuntu 16.04.5 LTS. The OS was installed and run

on an Oracle VM VirtualBox Manager Version 4.3.20

developed by Oracle Corporation in 2014. The network

topology was configured and implemented using C++ and

OTcl code. The simulation was run several times to ensure

quality and reliable results. Unlike other tools, the

advantage of NS-2 is that it automatically records the

results including packet transmissions, loss, and many

more. As discussed previously, R Programming was

employed to graphically display the obtained and analyzed

results. Meanwhile, AWK scripts helped with the

calculation in terms of results analysis.

III. RESULT AND DISCUSSION

The proposed model was examined against Enhanced

Diffie-Hellman (EDH) and AES. The motivation behind

choosing these two encryption algorithms is that both were

proposed to reduce the success of man-in-the-middle

attacks in a computer network. EDH was proposed to

facilitate the secure exchanging of cryptographic keys over

a public channel. Meanwhile, AES facilitates the

encryption of data shared or communicated over the

network and is commonly used for classified information

by the United States (US).

In general, encryption is the process of encoding

information. This process converts the original

representation of the information, known as plaintext, into

an alternative form known as ciphertext. Ideally, only

authorized parties can decipher a ciphertext back to

plaintext and access the original information. Encryption

does not itself prevent interference but denies the

intelligible content to a would-be interceptor.

However, AES uses too simple an algebraic structure

and each block is always encrypted in the same way.

Meanwhile, it is too complex to implement in software

taking both performance and security into consideration.

The biggest weakness of EDH is that it does not establish

the identity of the other party making it vulnerable to man-

in-the-middle attacks. This means that it doesn’t

authenticate any party in the transmission. Nevertheless,

unlike EDH, AES is less open to attacks. Consequently, in

this study, Diffie-Hellman has been integrated with

hashing function which includes the process of encryption

and decryption applied to efficiently curb out or reduce the

success of man-in-the-middle attacks in public Wi-Fi

networks. This improved QoS in public-free wireless

networks.

As mentioned previously, the performance metrics

considered during the evaluation of the proposed CESA

against EDH and AES are as follows:

• Key Generation Time—the measurement of the

amount of time it takes to generate the security key

within a network.

• Encryption Time—the measurement of the

amount of time it takes to change the data to an

unreadable format within a network.

• Decryption Time—the measurement of the

amount of time it takes to change the data from

unreadable to readable format within a network.

240

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

A. Key Generation Time

As mentioned in Section III, the proposed algorithm

modifies the Diffie-Hellman algorithm by applying

hashing to improve its security. This is because Diffie-

Hellman algorithm is vulnerable to man-in-the-middle

attacks, and thus, hashing algorithm aids in reducing and

preventing these attacks by enforcing encryption and

decryption of data between origin and destination. For

calculating the average key generation time, and other

metrics, collected data from trace files was analyzed

through written AWK scripts given in Appendix C. The

proposed algorithm improved the key generation time as

compared to EDH and AES algorithms as shown in Fig. 3.

This was achieved by modifying the Diffie-Hellman

algorithm to quickly define or generate the key and let it

be exchanged so that the communication of data can be

done securely. Meanwhile, hashing prevents or reduces the

success of man-in-the-middle attacks by hashing the data

for authentication and to compare and verify that it is not

modified, tampered with, or corrupted. This further

ensures that those authentication keys are generated

quickly and without being exposed to security

vulnerabilities during the whole process. With CESA, it

took up to 59 s to generate the key, meanwhile, EDH and

AES algorithms took almost 90 seconds, respectively.

Fig. 3. Key generation time.

B. Encryption Time

Herein, this study discusses the importance of the time

it takes to encrypt the data shared on the public network.

We present how the proposed algorithm performed against

EDH and AES algorithms. Looking at Fig. 4, it shows that

the proposed algorithm reduces the time it takes to encrypt

the data compared to other algorithms. This has been

achieved through hashing which is much less complicated

than AES to deal with the process of encryption than

relying on the Diffie-Hellman algorithm which has been

noted that it is more vulnerable to man-in-the-middle

attacks. The reduced encryption time aids in ensuring that

attackers are not able to access the shared data quickly

before it is encrypted. This is because hashing makes it

nearly impossible to guess the length of the hash should

someone try to crack the shared data. Therefore, even if
those attackers can steal the data, they will have to find

ways to decrypt it and that is a very complicated task and

normally it is highly impossible in most cases. With CESA,

it took about 98 s to encrypt the data, meanwhile, EDH and

AES algorithms took almost 167 s, respectively. This is

because of the key generating time that is reduced by the

proposed algorithm compared to the conventional

algorithms.

Fig. 4. Encryption time.

C. Decryption Time

Decryption time, which is normally defined as the

conversion of encrypted data into its original form, was

also improved. Looking at Fig. 5, decryption time has been

well improved by the CESA as compared to EDH and AES

algorithms. The reason behind these promising

improvements is that the proposed CESA uses different

keys 128/192/256 bits to encrypt and decrypt data in

blocks of 128 bits. With CESA, it took about 80 s to

decrypt the data, meanwhile, EDH and AES algorithms

took almost 160 s, respectively. Hence, it makes the

proposed CESA to be more robust against attacks and thus,

it is very quick to deal with the processes of encryption and

decryption promptly.

Fig. 5. Decryption time.

241

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

IV. CONCLUSION

This paper introduces the CESA algorithm to bolster the

security of the susceptible Diffie-Hellman algorithm

against man-in-the-middle attacks. The proposed CESA

addresses this vulnerability by establishing secure key

generation between communicating devices. The study

also delves into encryption and decryption key generation,

highlighting the algorithm’s efficiency in terms of battery,

memory, and CPU usage. While optimizing resources is

commendable, scalability in intricate systems is crucial.

The algorithm’s effectiveness may dwindle with multiple

devices or high-volume data transfers, risking

performance bottlenecks and user experiences with

network expansion. Regarding security, the paper

emphasizes CESA’s aim to counter man-in-the-middle

attacks in Diffie–Hellman. Yet, the algorithm’s security

relies on accurate assumptions about potential threats.

Misalignment with real-world risks could inadvertently

expose vulnerabilities unforeseen during development.

Ensuring security requires exhaustive threat analysis and

rigorous assessment against advanced attacks beyond the

paper’s scope. Ultimately, CESA’s reliability hinges on

validation of its security mechanisms across practical and

diverse scenarios.

APPENDIX A. TCL SCRIPT

The code to simulate the proposed algorithm

#initialize the variables

set val(chan) Channel/WirelessChannel ;#Channel Type
set val(prop) Propagation/TwoRayGround ;# radio-

propagation model

set val(netif) Phy/WirelessPhy ;# network
interface type

set val(mac) Mac/802_11 ;# MAC type
set val(ifq) Queue/DropTail/PriQueue ;# interface queue

type

set val(ll) LL ;# link layer type
set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 50 ;# max packet in

ifq
set val(nn) 6 ;# number of mobilenodes

set val(rp) AODV ;# routing protocol

set val(x) 500 ; # in metres
set val(y) 500 ; # in metres

#creation of Simulator
set ns [new Simulator]

#creation of Trace and namfile
set tracefile [open wireless.tr w]

$ns trace-all $tracefile

#Creation of Network Animation file

set namfile [open wireless.nam w]

$ns namtrace-all-wireless $namfile $val(x) $val(y)

#create topography

set topo [new Topography]
$topo load_flatgrid $val(x) $val(y)

#GOD Creation - General Operations Director
create-god $val(nn)

set channel1 [new $val(chan)]
set channel2 [new $val(chan)]

set channel3 [new $val(chan)]

#configure the node
$ns node-config -adhocRouting $val(rp) \

 -llType $val(ll) \

 -macType $val(mac) \
 -ifqType $val(ifq) \

 -ifqLen $val(ifqlen) \

 -antType $val(ant) \
 -propType $val(prop) \

 -phyType $val(netif) \

 -topoInstance $topo \
 -agentTrace ON \

 -macTrace ON \
 -routerTrace ON \

 -movementTrace ON \

 -channel $channel1

set n0 [$ns node]

set n1 [$ns node]
set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]
set n5 [$ns node]

$n0 random-motion 0
$n1 random-motion 0

$n2 random-motion 0

$n3 random-motion 0
$n4 random-motion 0

$n5 random-motion 0

$ns initial_node_pos $n0 20

$ns initial_node_pos $n1 20

$ns initial_node_pos $n2 20
$ns initial_node_pos $n3 20

$ns initial_node_pos $n4 20

$ns initial_node_pos $n5 50

#initial coordinates of the nodes

$n0 set X_ 10.0
$n0 set Y_ 20.0

$n0 set Z_ 0.0

$n1 set X_ 210.0

$n1 set Y_ 230.0

$n1 set Z_ 0.0

$n2 set X_ 100.0

$n2 set Y_ 200.0
$n2 set Z_ 0.0

$n3 set X_ 150.0
$n3 set Y_ 230.0

$n3 set Z_ 0.0

$n4 set X_ 430.0

$n4 set Y_ 320.0

$n4 set Z_ 0.0

$n5 set X_ 270.0

$n5 set Y_ 120.0
$n5 set Z_ 0.0

#Dont mention any values above than 500 because in this example,

we use X and Y as 500,500

#mobility of the nodes
#At what Time? Which node? Where to? at What Speed?

$ns at 1.0 "$n1 setdest 490.0 340.0 25.0"

$ns at 1.0 "$n4 setdest 300.0 130.0 5.0"
$ns at 1.0 "$n5 setdest 190.0 440.0 15.0"

#the nodes can move any number of times at any location during the

simulation (runtime)
$ns at 20.0 "$n5 setdest 100.0 200.0 30.0"

#creation of agents
set tcp [new Agent/TCP]

242

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

set sink [new Agent/TCPSink]
$ns attach-agent $n0 $tcp

$ns attach-agent $n5 $sink

$ns connect $tcp $sink
set ftp [new Application/FTP]

$ftp attach-agent $tcp

$ns at 1.0 "$ftp start"

set udp [new Agent/UDP]

set null [new Agent/Null]
$ns attach-agent $n2 $udp

$ns attach-agent $n3 $null
$ns connect $udp $null

set cbr [new Application/Traffic/CBR]

$cbr attach-agent $udp
$ns at 1.0 "$cbr start"

$ns at 30.0 "finish"

proc finish {} {

 global ns tracefile namfile
 $ns flush-trace

 close $tracefile

 close $namfile
 exit 0

}

puts "Starting Simulation"

$ns run

APPENDIX B. AWK SCRIPT

The code to calculate the key generation time

BEGIN {

 recvdSize = 0

 startTime = 400

 stopTime = 0
}

{
 event = $1

 time = $2
 node_id = $3

 pkt_size = $8

 level = $4

Store start time

if (level == "AGT" && event == "s" && pkt_size >= 512) {
if (time < startTime) {

 startTime = time

 }

 }

Update total packets generated per time
if (level == "AGT" && event == "r" && pkt_size >= 512) {

 if (time > stopTime) {

 stopTime = time
 }

 # Rip off the header

 #hdr_size = pkt_size % 512
 #pkt_size -= hdr_size

 # Store received packet’s size

 recvdSize += pkt_size
 }

}

END {

 printf("Key Generation Time[kbps] = %.2f\t\t

StartTime=%.2f\tStopTime=%.2f\n",(recvdSize/(stopTime-

startTime))*(8/1000),startTime,stopTime)

}

APPENDIX C. R PROGRAMMING SCRIPT

The code to display the key generation time
str_data <- read.table("./KGT.dat", header=T, sep="\t")

max_y <- max(str_data)

#define colours to be used for CESA, EDH, and AES lines
plot_colors <- c("black", "blue", "red")

#draw the graph using y axis that ranges from 0 to max_y.

plot(str_data$CESA, type="o", pch=22, lwd=4, col=plot_colors[1],
ylim=c(0, max_y), las = 3, axes=FALSE, ann=FALSE)

#make x axis using 4 - 64 bits labels

axis(1, at=1:5, lab=c(4, 8, 16, 32, 64))
axis(2, at=10000*0:max_y)

#create box around plot

box()
graph EDH with blue line

lines(str_data$EDH, type="o", pch=23, lwd=4, col=plot_colors[2])

graph AES with red line
lines(str_data$AES, type="o", pch=24, lwd=4, col=plot_colors[3])

#label the x and y axes with black text

title(xlab= "Block Size (Mbs)", col.lab=rgb(0,0.0,0))
title(ylab= "Key Generation Time (ns)", col.lab=rgb(0,0.0,0))

create a legend in the bottomright corner of the box

legend("bottomright", names(str_data), cex=0.8, col=plot_colors,
lwd=4, pch=22, bty="n");

turn on device driver to flush output to PDF

dev.on()

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Christopher Khosa conducted the research and used a

network simulator to implement the proposed solution.

Christopher Khosa, Topside Mathonsi, Deon du Plessis,

and Tshimangadzo Tshilongamulenzhe analyzed the data

and wrote the paper. All authors had approved the final

version.

FUNDING

This research study was funded by the Tshwane

University of Technology.

ACKNOWLEDGMENT

I would like to express my sincere gratitude and

appreciation for the generosity of my supervisors who

contributed to the success of this study, DP du Plessis, TE

Mathonsi and TM Tshilongamulenzhe: for their

continuous professional guidance in keeping me focused

on the research topic, for their ongoing support,

constructive feedback, and motivation throughout the

study. I have learned many lessons from them throughout

my research study. It has been a great honour to work with

them. Finally, I would like to thank my whole family, and

all my friends, and colleagues for their invaluable support

and motivation during this entire period.

REFERENCES

[1] H. B. E. H. Hassan, “Comparative study of different cryptographic
algorithms,” Journal of Information Security, vol. 11, no. 11, 2020.

[2] M. Shahin, H. Vahid, and K. Mohammad, “EECA—Energy

efficient congestion avoidance in wireless multimedia sensor
network,” in Proc. 6th IEEE International Symposium on

Telecommunications, 2022, vol. 2.

243

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

[3] S. J. Mohammed and D. B. Taha, “From cloud computing security

towards homomorphic encryption: A comprehensive review,”

Telkomnika (Telecommunication Comput. Electron. Control., vol.
9, no. 4, 2021

[4] H. Hayouni and M. Hamdi, “A novel energy-efficient encryption

algorithm for secure data in WSNs,” The Journal of

Supercomputing, pp. 1−24, 2022.

[5] K. B. Logunleko, O. D. Adeniji, and A. M. Logunleko, “A

comparative study of symmetric cryptography mechanism on DES,
AES and EB64 for information security,” International Journal of

Scientific Research in Computer Science and Engineering, vol. 8,

pp. 45−51, 2020.

[6] N. Bisht and S. Singh, “A comparative study of some symmetric

and asymmetric key cryptography algorithms,” International

Journal of Innovative Research in Science, Engineering and

Technology, vol. 4, no. 3, pp. 1028−1031, 2022.

[7] S. Yi and Y. Zhou, “Binary-block embedding for reversible data

hiding in encrypted images,” Signal Process., vol. 133, pp. 40−51,

2012.

[8] W. Stallings, “Digital signature algorithms,” Cryptologia, vol. 37,

pp. 311−327, 2013.

[9] H. Yu and Y. Kim, “New RSA encryption mechanism using one-

time encryption keys and unpredictable bio-signal for wireless

communication devices,” Electronics, vol. 9, no. 2, 2020.
[10] M. Mandal and R. Dutta, “Efficient adaptively secure public-key

trace and revoke from subset cover using framework,” Inscrypt, vol.

11449, pp. 468–489, 2018.
[11] R. Kuang, M. Barbeau, and M. Perepechaenko, “Anew quantum

safe multivariate polynomial public key cryptosystem over large

prime galois fields,” Submitted to Scientific Reports Nature, vol .3,
2021.

[12] M. E. Haii, M. Chamoun, A. Fadlallah, and A. Serhrouchni,

“Analysis of cryptographic algorithms on IoT hardware platforms,”
in Proc. the 2018 2nd Cyber Security in Networking Conference

(CSNet), 2018, pp. 1–5.

[13] Q. Yu, X. Wang, and L. Nie, “Optical recording of brain functions
based on voltage-sensitive dyes,” Chin Chem Lett., vol. 32, pp.

1879–1887, 2021.

[14] M. M. Islam et al., “FPGA implementation of high-speed area-
efficient processor for elliptic curve point multiplication over prime

field,” IEEE Access, vol. 7, pp. 178811–178826, 2019.

[15] A. Kumar, S. Jakhar, and S. Makkar, “Comparative analysis
between DES and RSA algorithm’s,” International Journal of

Advanced Research in Computer Science and Software Engineering,

vol. 2, no. 7, pp. 386–391, 2021.
[16] D. S. A. Elminaam, H. M. A. Kader, and M. M. M. Hadhoud,

“Performance evaluation of symmetric encryption algorithms,”

IJCSNS International Journal of Computer Science and Network
Security, vol. 8, no. 12, pp. 280–286, 2004.

[17] C. Pu and X. Zhou, “Suppression attack against multicast protocol
in low power and lossy Networks: Analysis and defenses,” Sensors,

vol. 18, 3236, 2018.

[18] S. Pronika and S. Tyagi, “Performance analysis of encryption and
decryption algorithm,” Indonesian Journal of Electrical

Engineering and Computer Science, pp. 1030–1038, 2021.

[19] P. Arora, A. Singh, and H. Tiyagi, “Evaluation and comparison of
security issues on cloud computing environment,” World of

Computer Science and Information Technology Journal (WCSIT),

vol. 2, no. 5, pp. 179–183, 2012.

[20] U. Somani, K. Lakhani, and M. Mundra, “Implementing digital
signatures with RSA encryption algorithm to enhance the data

security of cloud in cloud computing,” in Proc. 1st International

Conference on Parallel, Distributed and Grid Computing (PDGC),
2021, pp. 211–216.

[21] L. Yu, Q. Wu, Y. Xu, G. Ding, and L. Jia, “Power control games

for multi-user anti-jamming communications,” Wireless Networks,
vol. 25, 2018.

[22] A. Varga. (1997). OMNeT++ Home Page. [Online]. Available:

http://www.hit.bme.hu/phd/vargaa/omnetpp.htm
[23] L. S. Brakmo and L. L. Peterson, “TCP vegas: End to end

congestion avoidance on a global internet,” IEEE Journal on

Selected Areas in Communications, vol. 13, no. 8, pp. 1465–1480,
2019.

[24] C. Ozgur, M. Kleckner, and Y. Li, “Selection of software for

university courses and for Firms that use business analytics,” Sage
Open Journal, pp. 1–12, 2017.

[25] Y. Tian, R. Cheng, X. Y. Zhang, and Y. C. Jin, “PlatEMO: A matlab

platform for evolutionary multi-objective optimization,” IEEE
Computational Intelligence Magazine, vol. 12, no. 4, pp. 73–87,

2017.

[26] K. Abdelwahab and G. Ronald, An Introduction to Numerical
Methods: A MATLAB Approach, Chapman & Hall, 2017.

[27] S. A. Mohammed, and S. B. Sadkhan, “Design of wireless network

based on NS2,” Journal of Global Research in Computer Science,
vol. 3, no. 12, pp. 1–8, 2012.

[28] B. Çeliku, R. Prodani, and K. Qafzezi, “Symmetric versus

asymmetric cryptographic techniques and security issues under
various applications,” Global Journal of Computers and

Technology, vol, 6, no. 1, 2017.

[29] B. Bhagyavati, “Wireless security techniques: An overview,”
Wireless Security Technique, vol. 87, 2015.

[30] S. Swati. “Wireless network security protocols a comparative study,”

International Journal of Emerging Technology and Advanced
Engineering, 2012.

[31] Y. Y. Jiang, A. Hu, and J. Huang, “A lightweight physical-layer
based security strategy for internet of things,” Cluster Computing,

vol. 22, pp. 12971–12983, 2018.

[32] K. Kumar, N. A. Sharma, and R. Prasad, “A survey on quantum
computing with Main focus on the methods of implementation and

commercialization gap,” in Proc. 2022 2nd Asia-Pacific World

Congress on Computer Science and Engineering, 2015, pp. 1–7.
[33] M. Mandal and R. Dutta, “Cost-effective private linear key

agreement with adaptive CCA security from prime order

multilinear maps and tracing traitors,” in Proc. International
Conference on Security and Cryptography, 2018, pp. 356–363.

[34] A. Abdullah, A. Mahalanobis, and V. M. Mallick, “A new method

for solving the elliptic curve discrete logarithm problem,” J. Groups
Complexity Cryptol., vol. 12, no. 2, 2021.

Copyright © 2024 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-
commercial and no modifications or adaptations are made.

244

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

http://www.hit.bme.hu/phd/vargaa/omnetpp.htm
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V15N2-233

