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Abstract—As one of the most successful instances of ensemble 

learning algorithms, Random Forest offers many advantages 

compared to other approaches. However, it is unsuitable for 

edge computing platforms due to its high computational 

power. In this paper, we present our proposed efficient 

architecture to perform random forest effectively for edge 

computing platforms based on Field Programmable Gate 

Array (FPGA) technology. The heart of the system is our 

Decision Tree Unit (DTU) architecture, which is mainly 

responsible for processing decision trees in the pipeline to 

achieve better performance. One of the biggest obstacles to 

decision tree implementation on hardware is the memory size. 

In this paper, we also propose a sufficient structure for 

storing decision trees’ information for the execution of DTUs. 

Since we target edge computing platforms with limited 

resources and energy, the architecture supports the 

scalability of the number of DTUs in the system. Based on the 

available resources of the target platform, the system can be 

reconfigured accordingly. We implement our prototype 

version with the PYNQ Z2 FPGA edge computing board. We 

test the proposed system with the number of DTUs changed 

from 1 to 15. We conduct experiments and analysis with a 

certified dataset and compare with Intel core i7 and core i9 

processors to show our efficiency and scalability. The 

experimental results show that we can achieve speed-ups by 

up to 19.96 compared to the Intel Core i7 desktop version 

and 12 compared to the Intel Core i9 high-performance 

computing version. Regarding energy consumption, we save 

up to 33.24 and 146.24 compared to the two processors. 

 

Keywords—Field Programmable Gate Array (FPGA) 

technology, decision tree, random forest acceleration, edge 

computing platforms 

 

I. INTRODUCTION 

Random Forest (RF) is a successful example of 

supervised learning that has many applications in various 

fields, including finance and banking, e-commerce, and 

healthcare. It is particularly useful when dealing with 

datasets that have a large number of features but fewer 

samples [1], outperforming other machine learning models 

in classification tasks involving mixed data types [2]. 

However, RF’s computation and resource requirements, 

especially for large datasets, make it challenging to 

implement on edge computing platforms where computing 

power, storage, and energy capacity are limited [3]. 

Field Programmable Gate Arrays (FPGAs) are a 

promising technology for edge computing, providing 

ample hardware resources for parallel processing [4]. They 

are also low-cost platforms that are well-suited for 

machine learning inference in IoT/edge computing 

applications [5]. To address the challenges of 

implementing RF on FPGA-based edge computing 

platforms, this paper proposes a scalable and efficient 

architecture. The proposed architecture includes multiple 

Decision Tree Units (DTUs) that can process decision 

trees in parallel, allowing for efficient processing of RF. 

The DTUs have a pipeline architecture to improve 

performance, and decision trees are divided into subsets 

for pipeline processing. To address storage requirements, 

an efficient memory structure that uses 4 bytes per node is 

proposed. The architecture is also configurable to meet 

specific requirements, such as maximizing performance, 

minimizing hardware resources, or reducing energy 

consumption. 

The Xilinx PYNQ-Z2 edge computing platform with a 

Xilinx MPSoC Zynq FPGA device [6] is used to build a 

testing system based on the hardware accelerator 

paradigm [7]. The proposed architecture is implemented 

on the FPGA fabrics, while the ARM-hardwired processor 

is responsible for preprocessing data and determining the 

final results based on random forest computation. To 

assess scalability, the system’s hardware resources, and 

power consumption are evaluated with various numbers of 

DTPs, ranging from 1 to 15. To test the efficiency of the 

proposed architecture and design, a certified dataset is used 

to evaluate the random forest system’s performance with 

the number of DTUs ranging from 1 to 15 DTUs. 

The experimental results demonstrate that with 15 

DTUs, the system requires approximately 29K LUTs and 
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35K FF. The FPGA-based accelerator system with 15 

DTUs achieves speed-ups of up to 19.96× and 12× when 

compared to Intel core i7 and Intel core i9 processors, 

respectively. In addition, the system also saves up to 

33.24× and 146.24× energy consumption compared to the 

two processors. 

The key contributions of the paper can be summarized 

as follows. 

1) We propose an architecture for efficiently 

accelerate random forest on FPGA-based edge 

computing platforms. The proposed architecture is 

scalable when the number of DTUs can be 

reconfigured to quickly adapt to available 

resources of the target platforms. 

2) We present our pipeline processing DTU’s 

architecture with sufficient memory structure to 

store and perform decision tree’s parameters with 

high-throughput and low resources required. 

3) We test the system with a real FPGA-based edge 

computing platform and a certified dataset to 

report experimental results for future research 

reference. 

The rest of the paper is organized as follows. Section II 

presents the background of our work and related work in 

the literature. We present our proposed architecture in 

Section III. The FPGA-based implementation of our 

prototype system is introduced in Section IV. We discuss 

our experiments with two different datasets in Section V. 

Finally, Section VI concludes our paper. 

II. BACKGROUND AND RELATED WORK 

In this section, we present the background of random 

forests for designing the proposed architecture. We also 

introduce related work on accelerating random forest on 

FPGA. 

A. Random Forest 

The ensemble learning algorithm called Random Forest 

is utilized to address classification and regression 

problems. Initially introduced by Ho [8], it involves a 

collection of decision trees that contribute to the final 

prediction outcome. A decision tree is a binary tree 

comprising of internal and leaf nodes. Each internal node 

possesses two child nodes and executes a test on a 

sample’s attribute to determine the subsequent branch to 

follow. This test compares a feature with a decision rule 

referred to as a threshold value. During the training process 

of a decision tree, appropriate thresholds are determined 

for each internal node. 

In contrast, a leaf node lacks child nodes and instead 

holds a prediction value, which may be a class label for 

classification or a numeric value for regression. To make 

predictions using a decision tree, a sample is introduced at 

the root node and traverses through the tree until it reaches 

a leaf node. Decision trees are trained using the bootstrap 

aggregating (bagging) algorithm [9]. Ultimately, the 

prediction result of a random forest is obtained by 

calculating the mean or average (for regression) or 

majority (for classification) of the outcomes derived from 

the individual trees. 

B. Related Work 

To implement random forest, similar to other machine 

learning approaches, both training and inference phases 

are required, with the training phase typically performed 

offline. Consequently, significant research efforts have 

been dedicated to accelerating the inference phase to 

enhance processing performance. In Ref. [10], three 

architectures, namely memory-centric, comparator-centric, 

and synthesis-centric, were introduced. Zhao et al. [11] 

eliminated floating- point execution by pre-computing and 

storing floating-point values in local memory. Damiani 

and Sozzo et al. [12] employed a novel partial 

reconfiguration technique to update large random forest 

models. Jinguji et al. [13] and Ikeda et al. [14] optimized 

comparisons to accelerate random forest on FPGA. For 

decision trees, a 2-dimensional pipeline architecture was 

proposed by Qu and Prasanna [15], while a RISC-like 

architecture was introduced by Alcolea and Resano [16] to 

achieve higher performance in random forests. 

Furthermore, Oberg and Eguro et al. [17] aimed at 

enhancing random forests for computer vision applications. 

These proposals specifically target modern and high-

end FPGA platforms equipped with abundant hardware 

resources and nearly unlimited energy. In contrast, this 

work concentrates on edge computing platforms 

characterized by limited resources and energy constraints. 

Hence, a scalable architecture has been designed, allowing 

for the quick scaling up or down of the number of DTUs 

(Decision Tree Units) based on the available resources. 

III. PROPOSED ARCHITECTURE 

In this section, we present our proposed architecture de- 

signed to accelerate random forest specifically for edge 

computing platforms. We begin by introducing our 

architecture, which aims to enhance the processing speed 

of random forest. Subsequently, we outline our Decision 

Tree Unit (DTU) architecture, which incorporates the 

pipeline technique to further optimize performance. Lastly, 

we describe the memory structure utilized for storing 

decision trees. 

A. The Generic System Architecture 

Fig. 1 depicts the FPGA-based generic architecture of 

our proposed random forest acceleration system, designed 

to be scalable and efficient for edge computing platforms. 

In this architecture, the responsibility of the software 

aspect of the random forest-based application, including 

data pre/post- processing, I/O management, and network 

communication, lies with a host processor. This host 

processor can be an embedded hardwired processor for 

MPSoC FPGA devices or a soft- processor for standard 

FPGA devices. 

The host processor is connected to the FPGA fabrics and 

a main external memory, which is utilized for storing the 

application’s data. Additionally, a Direct Memory Access 

(DMA) block is incorporated to facilitate data transfers 

between the main memory and the local memory in the 

programmable logic. These connections are established 

through a communication infrastructure, typically a bus-

based interconnect. 
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Fig. 1. The generic architecture of the proposed system. 

The primary contribution of this research lies in the 

architecture implemented within the programmable logic 

(FPGA fabrics), which consists of multiple DTUs 

(Decision Tree Units) responsible for processing decision 

trees. The details of the DTU architecture are presented in 

the subsequent section. To facilitate the processing of 

DTUs, a set of exchange registers (xRegs) is employed for 

passing arguments and managing the initiation and 

completion of DTUs. Furthermore, a local buffer is 

constructed to store datasets (samples) processed by the 

DTUs, enabling decision-making operations. The 

Accumulator module computes the outputs generated by 

the DTUs for classification and regression techniques. 

Importantly, the number of DTUs can be reconfigured 

prior to synthesis, allowing the system to be adaptable to 

diverse FPGA-based edge computing platforms 

characterized by limited resources and energy constraints. 

B. DTU Local Memory Structure 

To process decision trees within random forests, the 

structures and parameters of the trees are stored in the local 

memory of the DTUs. Before delving into the proposed 

architecture of a DTU, this section outlines the structure of 

the DTU’s local memory, which serves as the foundation 

for tree collection and processing. The memory structure 

of our DTU is illustrated in Fig. 2. 

Given that our DTU follows a 5-stage pipeline model 

(re- quiring five cycles to process a node), decision trees 

assigned to a DTU are partitioned into five subsets. This 

allows five trees (one from each subset) to be processed 

concurrently within the pipeline. Thus, the initial five 

memory words of a DTU’s memory store the addresses of 

each subset in memory (as shown in the subset addresses 

section of Fig. 2), with the last bit indicating whether it 

represents the final subset or not. As depicted in the figure, 

the trees are stored contiguously within each subset. Since 

the sizes of the trees (i.e., the number of nodes in a tree) 

may vary, instead of allocating fixed space for each tree, 

we store the relative address of the next tree in the leaf 

nodes. Each tree consists of two types of nodes, internal 

and leaf nodes, with each node requiring a 32-bit word, as 

indicated in the figure. 

 

 

Fig. 2. The Block RAM-based memory structure of the proposed DTU. 

Suppose the current node is an internal or root node 

(identified by the least significant bit, denoted as isLeaf 

= 0). In this case, the 10 most significant bits represent the 

relative address of the right node, while the subsequent 

memory word stores the leaf node. The following 5 bits in 

this word indicate the types of features stored by the node, 

allowing our decision trees to accommodate up to 32 

features. The next 16 bits hold the value of the 

corresponding parameter in this node, referred to as 

threshold. To cater to different applications, floating-

point values are used for threshold values. Depending on 

the sample being processed, the next node can either be the 

left (following node) or the right node. If the right node is 

the subsequent node, the 10-bit right relative address is 
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added to the current address to access the right node. 

Otherwise, the next memory word is selected. 

If the current node is a leaf node (indicated by the least 

significant bit, isLeaf = 1), the result of this tree is 

obtained from the 14-bit floating-point result field. The 

second least significant bit denotes whether this tree is the 

last tree in the subset (isLast value). If it is not the last 

tree (isLast = 0), the most significant 14 bits represent 

the relative address of the next tree within the same subset. 

Conversely, if this is the last tree of the subset, the DTU 

completes the processing for that subset. 

C. Decision Tree Unit (DTU) 

The proposed FPGA-based pipeline DTU (Decision 

Tree Unit) architecture for processing a decision tree is 

illustrated in Fig. 3. Our DTU operates within a five-stage 

pipeline model, as shown in the figure. It completes the 

calculations required for each node in five cycles, with two 

cycles allocated for reading Block-RAM and three cycles 

dedicated to comparisons. This division of pipeline 

processing into five stages facilitates the efficient 

processing of decision trees. 

The DTU architecture incorporates a two-cycle pipeline 

for the Block-RAMs, which serve as the storage for 

parameters and the structure of the decision tree. The first 

ports of the Block-RAMs are connected to the 

communication infrastructure, allowing data to be 

received from the DMA (Direct Memory Access), while 

the second ports are utilized by the DTU. Despite each read 

operation requiring two cycles, the Block-RAMs support 

pipeline reading and writing, enabling the DTU to request 

and retrieve data every cycle. 
 

 

Fig. 3. The architecture of our proposed Decision Tree Unit (DTU). 

For comparing values between samples and node 

parameters, a three-cycle pipeline comparator is employed. 

The comparator accepts data inputs and produces results 

every cycle, similar to the Block-RAM storage. During the 

first two stages of the pipeline, the DTU reads a node’s 

parameter from the storage to fetch it to the comparator if 

the node is internal or sends it to the Accumulator if the 

node is a leaf node (activated when the isLeaf signal is 

active). 

In the first stage, the Controller block determines the 

addresses required to access the Block-RAM storage. As 

mentioned previously, the DTU’s processing is divided 

into five stages, and decision trees are assigned to each 

DTU, partitioned into subsets containing either n or n+1 

trees per subset. These subsets are stored in the Block-

RAM storage based on the memory structure of the DTU 

and are processed within the pipeline. During the initial 

five cycles, the Controller selects subset addresses to 

initiate the processing of the first tree in each subset. 

Subsequently, the address of the next node is determined 

by the comparator, which can be either the left node or the 

right node, depending on the comparison result. If a leaf 

node is reached, the next tree within the same subset is 

selected when the current tree is not the last tree (as 

indicated by the inactive state of the isLast signal). 

Processing of a subset is considered complete when either 

the last tree is reached or the isLast signal is active. The 

DTU’s processing is considered finished when all subsets’ 

isLast values are active. 

IV. FPGA-BASED EDGE COMPUTING PLATFORM 

IMPLEMENTATION 

To validate the proposed architecture of the generic 

system, DTU, and memory structure, we implemented the 

system using the Xilinx PYNQ-Z2 edge computing 

platform [18]. This platform features a Xilinx MPSoC 

FPGA Zynq 7000 xc7z020 device, which offers 53.2K 

LUTs (Lookup Tables), 106.4K FF (Registers), and 140 

Block-RAMs (4.9 Mbit). The device also incorporates a 2-

core ARM Cortex-A9 Application Unit Processor that 

serves as the host processor in our implementation. 
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The proposed architecture for the system and DTU is 

implemented using parameterized SystemVerilog, 

allowing for easy configuration of the number of DTUs. 

The Xilinx AXI- lite bus is utilized as the communication 

infrastructure to facilitate data transfer between the main 

memory and the local memories of the DTUs. Block-RAM 

IP cores are employed to store the parameters of decision 

trees, as per the structure described earlier. 

In this implementation, we developed the Accumulator 

module, which supports both regression and classification 

techniques. To evaluate the proposed system, we utilized 

the California Housing Price application published by 

Kaggle [19] with the Scikit-learn California housing 

regression dataset [20], which consists of eight features. 

For testing purposes, we constructed 100 decision trees 

with a maximum depth of nine, dividing them into five 

subsets. The dataset used contains floating-point numbers 

representing both the features and the results. 

We employed Xilinx Vivado 2022 [21] to perform 

synthesis and build the implemented system on the Xilinx 

PYNQ- Z2 platform. To assess scalability, we synthesized 

the system using various numbers of DTUs, ranging from 

1 to 15 units. Furthermore, in order to evaluate efficiency 

in terms of performance and energy consumption, we 

processed the aforementioned datasets using 1, 5, 10, and 

15 DTUs. 

V. EXPERIMENTS 

This section focuses on the experimental validation and 

assessment of the acceleration capability of the 

aforementioned system. Firstly, we present the results of 

our synthesis process, considering different numbers of 

DTUs ranging from 1 to 15. Subsequently, we conduct 

evaluations to analyze the performance and energy 

consumption of the proposed system, aiming to validate its 

efficiency. 

A. Synthesis Results 

Following the description provided earlier, we 

synthesized the system utilizing a range of DTU quantities, 

specifically from 1 to 15. Table I displays the utilization of 

hardware resources, working frequency, and estimated 

power consumption for each system configuration. The 

synthesis process was conducted automatically without 

any imposed area constraints or manual optimization. 

The table reveals that our system, when deployed with 

15 DTUs, utilizes a maximum of 70% of the available 

Block- RAMs for storing decision trees’ parameters and 

structure, and 56.33% of the computing resources (LUTs 

and FFs) on the chip. This indicates that there is still room 

to scale up the system by incorporating additional DTUs. 

However, it is worth noting that as more DTUs are added, 

the power consumption of the system also increases. 

In terms of the working frequency, the system achieves 

the highest frequency when a moderate number of DTUs, 

such as 9, 7, 6, or 5, are employed. The frequency tends to 

decrease when the number of DTUs is either small or large, 

primarily due to longer physical paths required for routing 

hardware resources. This issue can potentially be mitigated 

by applying area constraints during the placement and 

routing process. However, addressing this matter falls 

beyond the scope of this paper. 

B. Performance Analysis 

In order to evaluate the efficiency of the proposed 

system, we compare it with the Intel Core i7-8565U 1.8 

GHz (desktop version) and Core i9-9820X 3.30 GHz 

(high-performance version) processors. When running on 

CPUs, all cores of the CPUs are utilized to process the 

dataset. 

As previously mentioned, we employ the Scikit-learn 

California housing regression dataset to assess the system 

using the regression technique. Our system processes one 

hundred decision trees using 1 to 15 DTUs. Additionally, 

we conduct the same testing with Intel CPUs to obtain the 

execution time of the Intel Core i7 and Core i9 CPUs when 

utilizing all cores. The execution time of our system as 

well as the CPUs is presented in Table I. 

As indicated in the table, the execution time of our 

system does not exhibit a linear scaling pattern based on 

the number of DTUs employed. This is primarily because 

the system involves the transfer of data from the main 

memory to the local memories of the DTUs, and this data 

movement time is not scalable. 

Fig. 4 illustrates a comparison of the speed-ups achieved 

by our system, utilizing different numbers of DTUs, with 

the Intel Core i7 (desktop version) and Core i9 (high-

performance version) processors. As depicted in the figure, 

we observe speed-ups of up to 19.96× and 12.01× in 

comparison to the two Intel processors, respectively. 

Notably, the speed-up obtained with respect to the Core i9 

processor is comparatively lower than that achieved with 

the Core i7 processor, given that the Core i9 processor 

belongs to the high-performance computing category, 

while the Core i7 processor is a desktop version. 

TABLE I. EXPERIMENT RESULTS (SYNTHESIS, EXECUTION TIME) WITH VARIOUS NUMBER OF DTUS USED FOR THE PROPOSED SYSTEM AND THE 

EXECUTION TIME OF REFERENCE INTEL PROCESSORS 

HW 
Number of Decision Tree Units (DTUs) 

15 10 9 8 7 6 5 4 3 2 1 

LUTs 29,968 20,885 19,775 18,436 16,784 15,543 13,429 12,243 10,887 9,396 7,932 

FFs 35,651 25,308 24,155 22,133 20,716 19,194 17,204 15,644 14,017 12,426 10,779 

BRAMs 98.0 83.0 93.5 92.0 85.0 86.0 84.0 85.5 86.5 84.5 82.5 

Freq. (MHz) 125 167 143 167 143 125 

Power (W) 2.204 1.877 2.089 1.946 1.978 1.855 1.824 1.696 1.663 1.66 1.588 

Exec. time (ms) 1.340 1.716 1.652 1.832 1.648 1.975 2.040 2.572 3.265 4.330 8.841 

Core i7 (ms) 26.750 

Core i9 (ms) 16.086 
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C. Energy Consumption Analysis 

The energy consumption is calculated by considering 

the execution time and power consumption of the Intel 

Core i7 and Core i9 processors, which are measured at 

3.67  W and 26.849 W, respectively, during the dataset 

processing. With respect to energy consumption, the 

reconfigurable technology employed in our system enables 

significant energy savings. Specifically, our system can 

achieve energy savings of up to 146.24× and 33.24× 

compared to the Intel Core i9 and Core i7 processors, 

respectively. This outcome highlights the efficiency of our 

system, particularly for edge computing platforms. 

Although the speed-ups achieved with the Core i9 

processor are comparatively lower than those with the 

Core i7 processor, our system still manages to save more 

energy compared to the Core i9. This discrepancy arises 

because the Core i9 processor is primarily designed for 

high-performance computing, which demands a 

considerable amount of power consumption. Fig. 5 

presents the comparisons for energy consumption of our 

system and of Intel processors. As depicted in the figure, 

we manage to save up to 146.24× and 33.24× when 

compared to Intel Core i7 and Core i9, respectively. 

In summary, with all the experiments and analysis 

presented above, we proved that our system is suitable for 

edge computing platforms where the computational ability 

is low with the energy limitation. However, our proposed 

system offers better system performance compared to Intel 

processors. In other words, our system is much more 

energy-efficient than traditional processors. 

 

 

Fig. 4. Speed-ups of our system with respected to the Intel Core i7 and Intel Core i9 when processing the dataset. 

 

Fig. 5. Energy reduction of our system with respected to the Intel Core i7 and Intel Core i9 when processing the dataset. 

VI. CONCLUSIONS 

This paper presents a scalable and efficient architecture 

designed to accelerate random forest on FPGA-based edge 

computing platforms. The proposed architecture includes 

the Decision Tree Units (DTUs), where the pipeline 

technique is applied to enhance performance. To 

accommodate the decision tree’s parameters effectively, 

we introduce the memory structure of the DTUs, which 

comprises five subsets for efficient pipeline processing. 

The architecture is implemented using SystemVerilog, 

enabling the scalability of the system by adjusting the 

number of DTUs. A prototype system is developed on a 

Xilinx Zynq device as an edge computing platform. 

In the conducted experiments, the proposed system is 

com- pared with Intel Core i7 (desktop version) and Core 

i9 (high- performance computing version) processors. The 

experimental results demonstrate significant 

improvements achieved by our system. With a certified 

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

200



dataset, our system outperforms the Core i7 and Core i9 

processors by 19.96× and 12.01× in terms of execution 

time, respectively. Furthermore, our system exhibits 

energy savings of 146.24× and 33.24× compared to the 

Core i7 and Core i9 processors, respectively. These results 

validate the scalability and efficiency of our system, 

confirming its suitability for edge computing applications. 
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