
Efficient Random Forest Acceleration for Edge

Computing Platforms with FPGA Technology

Abstract—As one of the most successful instances of ensemble

learning algorithms, Random Forest offers many advantages

compared to other approaches. However, it is unsuitable for

edge computing platforms due to its high computational

power. In this paper, we present our proposed efficient

architecture to perform random forest effectively for edge

computing platforms based on Field Programmable Gate

Array (FPGA) technology. The heart of the system is our

Decision Tree Unit (DTU) architecture, which is mainly

responsible for processing decision trees in the pipeline to

achieve better performance. One of the biggest obstacles to

decision tree implementation on hardware is the memory size.

In this paper, we also propose a sufficient structure for

storing decision trees’ information for the execution of DTUs.

Since we target edge computing platforms with limited

resources and energy, the architecture supports the

scalability of the number of DTUs in the system. Based on the

available resources of the target platform, the system can be

reconfigured accordingly. We implement our prototype

version with the PYNQ Z2 FPGA edge computing board. We

test the proposed system with the number of DTUs changed

from 1 to 15. We conduct experiments and analysis with a

certified dataset and compare with Intel core i7 and core i9

processors to show our efficiency and scalability. The

experimental results show that we can achieve speed-ups by

up to 19.96 compared to the Intel Core i7 desktop version

and 12 compared to the Intel Core i9 high-performance

computing version. Regarding energy consumption, we save

up to 33.24 and 146.24 compared to the two processors.

Keywords—Field Programmable Gate Array (FPGA)

technology, decision tree, random forest acceleration, edge

computing platforms

I. INTRODUCTION

Random Forest (RF) is a successful example of

supervised learning that has many applications in various

fields, including finance and banking, e-commerce, and

healthcare. It is particularly useful when dealing with

datasets that have a large number of features but fewer

samples [1], outperforming other machine learning models

in classification tasks involving mixed data types [2].

However, RF’s computation and resource requirements,

especially for large datasets, make it challenging to

implement on edge computing platforms where computing

power, storage, and energy capacity are limited [3].

Field Programmable Gate Arrays (FPGAs) are a

promising technology for edge computing, providing

ample hardware resources for parallel processing [4]. They

are also low-cost platforms that are well-suited for

machine learning inference in IoT/edge computing

applications [5]. To address the challenges of

implementing RF on FPGA-based edge computing

platforms, this paper proposes a scalable and efficient

architecture. The proposed architecture includes multiple

Decision Tree Units (DTUs) that can process decision

trees in parallel, allowing for efficient processing of RF.

The DTUs have a pipeline architecture to improve

performance, and decision trees are divided into subsets

for pipeline processing. To address storage requirements,

an efficient memory structure that uses 4 bytes per node is

proposed. The architecture is also configurable to meet

specific requirements, such as maximizing performance,

minimizing hardware resources, or reducing energy

consumption.

The Xilinx PYNQ-Z2 edge computing platform with a

Xilinx MPSoC Zynq FPGA device [6] is used to build a

testing system based on the hardware accelerator

paradigm [7]. The proposed architecture is implemented

on the FPGA fabrics, while the ARM-hardwired processor

is responsible for preprocessing data and determining the

final results based on random forest computation. To

assess scalability, the system’s hardware resources, and

power consumption are evaluated with various numbers of

DTPs, ranging from 1 to 15. To test the efficiency of the

proposed architecture and design, a certified dataset is used

to evaluate the random forest system’s performance with

the number of DTUs ranging from 1 to 15 DTUs.

The experimental results demonstrate that with 15

DTUs, the system requires approximately 29K LUTs and

Manuscript received on June 25, 2023, revised July 11, 2023; accepted

August 17, 2023; published February 5, 2024.

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

195doi: 10.12720/jait.15.2.195-201

Cuong Pham-Quoc 1,2,*, Trung Pham-Dinh 1,2, Binh Kieu-Do-Nguyen 3

1 Department of Computer Engineering, Faculty of Computer Science and Engineering, Ho Chi Minh City University

of Technology (HCMUT), Ho Chi Minh City, Vietnam
2 Department of Computer Engineering, Vietnam National University-Ho Chi Minh City (VNU-HCM), Thu Duc, Ho

Chi Minh City, Vietnam
3 Very Large-Scale Integration (VLSI) Lab, University of Electro-Communications (UEC), Tokyo, Japan

Email: cuongpham@hcmut.edu.vn (C.P.-Q.); trung.pham.ktmt@hcmut.edu.vn (T.P.-D.);

binh@vlsilab.ee.uec.ac.jp (B.K.-D.-N.)

*Corresponding author

35K FF. The FPGA-based accelerator system with 15

DTUs achieves speed-ups of up to 19.96× and 12× when

compared to Intel core i7 and Intel core i9 processors,

respectively. In addition, the system also saves up to

33.24× and 146.24× energy consumption compared to the

two processors.

The key contributions of the paper can be summarized

as follows.

1) We propose an architecture for efficiently

accelerate random forest on FPGA-based edge

computing platforms. The proposed architecture is

scalable when the number of DTUs can be

reconfigured to quickly adapt to available

resources of the target platforms.

2) We present our pipeline processing DTU’s

architecture with sufficient memory structure to

store and perform decision tree’s parameters with

high-throughput and low resources required.

3) We test the system with a real FPGA-based edge

computing platform and a certified dataset to

report experimental results for future research

reference.

The rest of the paper is organized as follows. Section II

presents the background of our work and related work in

the literature. We present our proposed architecture in

Section III. The FPGA-based implementation of our

prototype system is introduced in Section IV. We discuss

our experiments with two different datasets in Section V.

Finally, Section VI concludes our paper.

II. BACKGROUND AND RELATED WORK

In this section, we present the background of random

forests for designing the proposed architecture. We also

introduce related work on accelerating random forest on

FPGA.

A. Random Forest

The ensemble learning algorithm called Random Forest

is utilized to address classification and regression

problems. Initially introduced by Ho [8], it involves a

collection of decision trees that contribute to the final

prediction outcome. A decision tree is a binary tree

comprising of internal and leaf nodes. Each internal node

possesses two child nodes and executes a test on a

sample’s attribute to determine the subsequent branch to

follow. This test compares a feature with a decision rule

referred to as a threshold value. During the training process

of a decision tree, appropriate thresholds are determined

for each internal node.

In contrast, a leaf node lacks child nodes and instead

holds a prediction value, which may be a class label for

classification or a numeric value for regression. To make

predictions using a decision tree, a sample is introduced at

the root node and traverses through the tree until it reaches

a leaf node. Decision trees are trained using the bootstrap

aggregating (bagging) algorithm [9]. Ultimately, the

prediction result of a random forest is obtained by

calculating the mean or average (for regression) or

majority (for classification) of the outcomes derived from

the individual trees.

B. Related Work

To implement random forest, similar to other machine

learning approaches, both training and inference phases

are required, with the training phase typically performed

offline. Consequently, significant research efforts have

been dedicated to accelerating the inference phase to

enhance processing performance. In Ref. [10], three

architectures, namely memory-centric, comparator-centric,

and synthesis-centric, were introduced. Zhao et al. [11]

eliminated floating- point execution by pre-computing and

storing floating-point values in local memory. Damiani

and Sozzo et al. [12] employed a novel partial

reconfiguration technique to update large random forest

models. Jinguji et al. [13] and Ikeda et al. [14] optimized

comparisons to accelerate random forest on FPGA. For

decision trees, a 2-dimensional pipeline architecture was

proposed by Qu and Prasanna [15], while a RISC-like

architecture was introduced by Alcolea and Resano [16] to

achieve higher performance in random forests.

Furthermore, Oberg and Eguro et al. [17] aimed at

enhancing random forests for computer vision applications.

These proposals specifically target modern and high-

end FPGA platforms equipped with abundant hardware

resources and nearly unlimited energy. In contrast, this

work concentrates on edge computing platforms

characterized by limited resources and energy constraints.

Hence, a scalable architecture has been designed, allowing

for the quick scaling up or down of the number of DTUs

(Decision Tree Units) based on the available resources.

III. PROPOSED ARCHITECTURE

In this section, we present our proposed architecture de-

signed to accelerate random forest specifically for edge

computing platforms. We begin by introducing our

architecture, which aims to enhance the processing speed

of random forest. Subsequently, we outline our Decision

Tree Unit (DTU) architecture, which incorporates the

pipeline technique to further optimize performance. Lastly,

we describe the memory structure utilized for storing

decision trees.

A. The Generic System Architecture

Fig. 1 depicts the FPGA-based generic architecture of

our proposed random forest acceleration system, designed

to be scalable and efficient for edge computing platforms.

In this architecture, the responsibility of the software

aspect of the random forest-based application, including

data pre/post- processing, I/O management, and network

communication, lies with a host processor. This host

processor can be an embedded hardwired processor for

MPSoC FPGA devices or a soft- processor for standard

FPGA devices.

The host processor is connected to the FPGA fabrics and

a main external memory, which is utilized for storing the

application’s data. Additionally, a Direct Memory Access

(DMA) block is incorporated to facilitate data transfers

between the main memory and the local memory in the

programmable logic. These connections are established

through a communication infrastructure, typically a bus-

based interconnect.

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

196

Fig. 1. The generic architecture of the proposed system.

The primary contribution of this research lies in the

architecture implemented within the programmable logic

(FPGA fabrics), which consists of multiple DTUs

(Decision Tree Units) responsible for processing decision

trees. The details of the DTU architecture are presented in

the subsequent section. To facilitate the processing of

DTUs, a set of exchange registers (xRegs) is employed for

passing arguments and managing the initiation and

completion of DTUs. Furthermore, a local buffer is

constructed to store datasets (samples) processed by the

DTUs, enabling decision-making operations. The

Accumulator module computes the outputs generated by

the DTUs for classification and regression techniques.

Importantly, the number of DTUs can be reconfigured

prior to synthesis, allowing the system to be adaptable to

diverse FPGA-based edge computing platforms

characterized by limited resources and energy constraints.

B. DTU Local Memory Structure

To process decision trees within random forests, the

structures and parameters of the trees are stored in the local

memory of the DTUs. Before delving into the proposed

architecture of a DTU, this section outlines the structure of

the DTU’s local memory, which serves as the foundation

for tree collection and processing. The memory structure

of our DTU is illustrated in Fig. 2.

Given that our DTU follows a 5-stage pipeline model

(re- quiring five cycles to process a node), decision trees

assigned to a DTU are partitioned into five subsets. This

allows five trees (one from each subset) to be processed

concurrently within the pipeline. Thus, the initial five

memory words of a DTU’s memory store the addresses of

each subset in memory (as shown in the subset addresses

section of Fig. 2), with the last bit indicating whether it

represents the final subset or not. As depicted in the figure,

the trees are stored contiguously within each subset. Since

the sizes of the trees (i.e., the number of nodes in a tree)

may vary, instead of allocating fixed space for each tree,

we store the relative address of the next tree in the leaf

nodes. Each tree consists of two types of nodes, internal

and leaf nodes, with each node requiring a 32-bit word, as

indicated in the figure.

Fig. 2. The Block RAM-based memory structure of the proposed DTU.

Suppose the current node is an internal or root node

(identified by the least significant bit, denoted as isLeaf

= 0). In this case, the 10 most significant bits represent the

relative address of the right node, while the subsequent

memory word stores the leaf node. The following 5 bits in

this word indicate the types of features stored by the node,

allowing our decision trees to accommodate up to 32

features. The next 16 bits hold the value of the

corresponding parameter in this node, referred to as

threshold. To cater to different applications, floating-

point values are used for threshold values. Depending on

the sample being processed, the next node can either be the

left (following node) or the right node. If the right node is

the subsequent node, the 10-bit right relative address is

Host processor Main memory DMA

communication infrastructure

Programmable Logic (PL)

xRegs

DTU

DTU

DTU

DTU

Dataset

sample

control

p
a

ra
m

e
te

rs

A
c
c
u

m
u

la
to

r

results

Subset addresses

Subset 1

Subset 2

Subset 3

Subset 4

Subset 5

Subset 1 address 0

Subset 2 address 0

32 bits address

Subset 3 address

Subset 4 address

Subset 5 address

0

0

1

Tree 1 in Subset 2

Tree 2 in Subset 2

Tree n in Subset 2

right f threshold 0

right

next tree

right 0

next tree 1

Root

Leaf

next tree

next tree 1

1

1
Tree 3 in Subset 2

f threshold 0

f threshold

result 0

result 0

result 0

result 0

32 bits width

14 bit offset 16 bit FP result

isLastTree

isLeaf

10 bit offset

5 bit feature

16 bit FP

isLeaf

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

197

added to the current address to access the right node.

Otherwise, the next memory word is selected.

If the current node is a leaf node (indicated by the least

significant bit, isLeaf = 1), the result of this tree is

obtained from the 14-bit floating-point result field. The

second least significant bit denotes whether this tree is the

last tree in the subset (isLast value). If it is not the last

tree (isLast = 0), the most significant 14 bits represent

the relative address of the next tree within the same subset.

Conversely, if this is the last tree of the subset, the DTU

completes the processing for that subset.

C. Decision Tree Unit (DTU)

The proposed FPGA-based pipeline DTU (Decision

Tree Unit) architecture for processing a decision tree is

illustrated in Fig. 3. Our DTU operates within a five-stage

pipeline model, as shown in the figure. It completes the

calculations required for each node in five cycles, with two

cycles allocated for reading Block-RAM and three cycles

dedicated to comparisons. This division of pipeline

processing into five stages facilitates the efficient

processing of decision trees.

The DTU architecture incorporates a two-cycle pipeline

for the Block-RAMs, which serve as the storage for

parameters and the structure of the decision tree. The first

ports of the Block-RAMs are connected to the

communication infrastructure, allowing data to be

received from the DMA (Direct Memory Access), while

the second ports are utilized by the DTU. Despite each read

operation requiring two cycles, the Block-RAMs support

pipeline reading and writing, enabling the DTU to request

and retrieve data every cycle.

Fig. 3. The architecture of our proposed Decision Tree Unit (DTU).

For comparing values between samples and node

parameters, a three-cycle pipeline comparator is employed.

The comparator accepts data inputs and produces results

every cycle, similar to the Block-RAM storage. During the

first two stages of the pipeline, the DTU reads a node’s

parameter from the storage to fetch it to the comparator if

the node is internal or sends it to the Accumulator if the

node is a leaf node (activated when the isLeaf signal is

active).

In the first stage, the Controller block determines the

addresses required to access the Block-RAM storage. As

mentioned previously, the DTU’s processing is divided

into five stages, and decision trees are assigned to each

DTU, partitioned into subsets containing either n or n+1

trees per subset. These subsets are stored in the Block-

RAM storage based on the memory structure of the DTU

and are processed within the pipeline. During the initial

five cycles, the Controller selects subset addresses to

initiate the processing of the first tree in each subset.

Subsequently, the address of the next node is determined

by the comparator, which can be either the left node or the

right node, depending on the comparison result. If a leaf

node is reached, the next tree within the same subset is

selected when the current tree is not the last tree (as

indicated by the inactive state of the isLast signal).

Processing of a subset is considered complete when either

the last tree is reached or the isLast signal is active. The

DTU’s processing is considered finished when all subsets’

isLast values are active.

IV. FPGA-BASED EDGE COMPUTING PLATFORM

IMPLEMENTATION

To validate the proposed architecture of the generic

system, DTU, and memory structure, we implemented the

system using the Xilinx PYNQ-Z2 edge computing

platform [18]. This platform features a Xilinx MPSoC

FPGA Zynq 7000 xc7z020 device, which offers 53.2K

LUTs (Lookup Tables), 106.4K FF (Registers), and 140

Block-RAMs (4.9 Mbit). The device also incorporates a 2-

core ARM Cortex-A9 Application Unit Processor that

serves as the host processor in our implementation.

port A address

port B address

port A write data

port B write data

port B read data

port A read data

to DMA

a
d

d
r

re
g

is
te

r

4

controller

3 cycle pipeline comparator

from

samples

current address

start

s
h

if
t

2 cycle pipeline Block-RAM

s
u

b
s
e
t

a
d

d
re

s
s
e

s

d
a

ta
[3

1
-0

]

right

next tree

left

c
o

m
p
_
re

s
u
lt

left

right

next tree

next node

is
L
e

a
f

result_vldresult

re
s
u
lt

to Accumulator

isLeaf isLeaf isLeaf

is
L
a
s
t

done

to xRegs

p
ip

e
lin

e
 r

e
g
is

te
r

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

198

The proposed architecture for the system and DTU is

implemented using parameterized SystemVerilog,

allowing for easy configuration of the number of DTUs.

The Xilinx AXI- lite bus is utilized as the communication

infrastructure to facilitate data transfer between the main

memory and the local memories of the DTUs. Block-RAM

IP cores are employed to store the parameters of decision

trees, as per the structure described earlier.

In this implementation, we developed the Accumulator

module, which supports both regression and classification

techniques. To evaluate the proposed system, we utilized

the California Housing Price application published by

Kaggle [19] with the Scikit-learn California housing

regression dataset [20], which consists of eight features.

For testing purposes, we constructed 100 decision trees

with a maximum depth of nine, dividing them into five

subsets. The dataset used contains floating-point numbers

representing both the features and the results.

We employed Xilinx Vivado 2022 [21] to perform

synthesis and build the implemented system on the Xilinx

PYNQ- Z2 platform. To assess scalability, we synthesized

the system using various numbers of DTUs, ranging from

1 to 15 units. Furthermore, in order to evaluate efficiency

in terms of performance and energy consumption, we

processed the aforementioned datasets using 1, 5, 10, and

15 DTUs.

V. EXPERIMENTS

This section focuses on the experimental validation and

assessment of the acceleration capability of the

aforementioned system. Firstly, we present the results of

our synthesis process, considering different numbers of

DTUs ranging from 1 to 15. Subsequently, we conduct

evaluations to analyze the performance and energy

consumption of the proposed system, aiming to validate its

efficiency.

A. Synthesis Results

Following the description provided earlier, we

synthesized the system utilizing a range of DTU quantities,

specifically from 1 to 15. Table I displays the utilization of

hardware resources, working frequency, and estimated

power consumption for each system configuration. The

synthesis process was conducted automatically without

any imposed area constraints or manual optimization.

The table reveals that our system, when deployed with

15 DTUs, utilizes a maximum of 70% of the available

Block- RAMs for storing decision trees’ parameters and

structure, and 56.33% of the computing resources (LUTs

and FFs) on the chip. This indicates that there is still room

to scale up the system by incorporating additional DTUs.

However, it is worth noting that as more DTUs are added,

the power consumption of the system also increases.

In terms of the working frequency, the system achieves

the highest frequency when a moderate number of DTUs,

such as 9, 7, 6, or 5, are employed. The frequency tends to

decrease when the number of DTUs is either small or large,

primarily due to longer physical paths required for routing

hardware resources. This issue can potentially be mitigated

by applying area constraints during the placement and

routing process. However, addressing this matter falls

beyond the scope of this paper.

B. Performance Analysis

In order to evaluate the efficiency of the proposed

system, we compare it with the Intel Core i7-8565U 1.8

GHz (desktop version) and Core i9-9820X 3.30 GHz

(high-performance version) processors. When running on

CPUs, all cores of the CPUs are utilized to process the

dataset.

As previously mentioned, we employ the Scikit-learn

California housing regression dataset to assess the system

using the regression technique. Our system processes one

hundred decision trees using 1 to 15 DTUs. Additionally,

we conduct the same testing with Intel CPUs to obtain the

execution time of the Intel Core i7 and Core i9 CPUs when

utilizing all cores. The execution time of our system as

well as the CPUs is presented in Table I.

As indicated in the table, the execution time of our

system does not exhibit a linear scaling pattern based on

the number of DTUs employed. This is primarily because

the system involves the transfer of data from the main

memory to the local memories of the DTUs, and this data

movement time is not scalable.

Fig. 4 illustrates a comparison of the speed-ups achieved

by our system, utilizing different numbers of DTUs, with

the Intel Core i7 (desktop version) and Core i9 (high-

performance version) processors. As depicted in the figure,

we observe speed-ups of up to 19.96× and 12.01× in

comparison to the two Intel processors, respectively.

Notably, the speed-up obtained with respect to the Core i9

processor is comparatively lower than that achieved with

the Core i7 processor, given that the Core i9 processor

belongs to the high-performance computing category,

while the Core i7 processor is a desktop version.

TABLE I. EXPERIMENT RESULTS (SYNTHESIS, EXECUTION TIME) WITH VARIOUS NUMBER OF DTUS USED FOR THE PROPOSED SYSTEM AND THE

EXECUTION TIME OF REFERENCE INTEL PROCESSORS

HW
Number of Decision Tree Units (DTUs)

15 10 9 8 7 6 5 4 3 2 1

LUTs 29,968 20,885 19,775 18,436 16,784 15,543 13,429 12,243 10,887 9,396 7,932

FFs 35,651 25,308 24,155 22,133 20,716 19,194 17,204 15,644 14,017 12,426 10,779

BRAMs 98.0 83.0 93.5 92.0 85.0 86.0 84.0 85.5 86.5 84.5 82.5

Freq. (MHz) 125 167 143 167 143 125

Power (W) 2.204 1.877 2.089 1.946 1.978 1.855 1.824 1.696 1.663 1.66 1.588

Exec. time (ms) 1.340 1.716 1.652 1.832 1.648 1.975 2.040 2.572 3.265 4.330 8.841

Core i7 (ms) 26.750

Core i9 (ms) 16.086

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

199

C. Energy Consumption Analysis

The energy consumption is calculated by considering

the execution time and power consumption of the Intel

Core i7 and Core i9 processors, which are measured at

3.67 W and 26.849 W, respectively, during the dataset

processing. With respect to energy consumption, the

reconfigurable technology employed in our system enables

significant energy savings. Specifically, our system can

achieve energy savings of up to 146.24× and 33.24×

compared to the Intel Core i9 and Core i7 processors,

respectively. This outcome highlights the efficiency of our

system, particularly for edge computing platforms.

Although the speed-ups achieved with the Core i9

processor are comparatively lower than those with the

Core i7 processor, our system still manages to save more

energy compared to the Core i9. This discrepancy arises

because the Core i9 processor is primarily designed for

high-performance computing, which demands a

considerable amount of power consumption. Fig. 5

presents the comparisons for energy consumption of our

system and of Intel processors. As depicted in the figure,

we manage to save up to 146.24× and 33.24× when

compared to Intel Core i7 and Core i9, respectively.

In summary, with all the experiments and analysis

presented above, we proved that our system is suitable for

edge computing platforms where the computational ability

is low with the energy limitation. However, our proposed

system offers better system performance compared to Intel

processors. In other words, our system is much more

energy-efficient than traditional processors.

Fig. 4. Speed-ups of our system with respected to the Intel Core i7 and Intel Core i9 when processing the dataset.

Fig. 5. Energy reduction of our system with respected to the Intel Core i7 and Intel Core i9 when processing the dataset.

VI. CONCLUSIONS

This paper presents a scalable and efficient architecture

designed to accelerate random forest on FPGA-based edge

computing platforms. The proposed architecture includes

the Decision Tree Units (DTUs), where the pipeline

technique is applied to enhance performance. To

accommodate the decision tree’s parameters effectively,

we introduce the memory structure of the DTUs, which

comprises five subsets for efficient pipeline processing.

The architecture is implemented using SystemVerilog,

enabling the scalability of the system by adjusting the

number of DTUs. A prototype system is developed on a

Xilinx Zynq device as an edge computing platform.

In the conducted experiments, the proposed system is

com- pared with Intel Core i7 (desktop version) and Core

i9 (high- performance computing version) processors. The

experimental results demonstrate significant

improvements achieved by our system. With a certified

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

200

dataset, our system outperforms the Core i7 and Core i9

processors by 19.96× and 12.01× in terms of execution

time, respectively. Furthermore, our system exhibits

energy savings of 146.24× and 33.24× compared to the

Core i7 and Core i9 processors, respectively. These results

validate the scalability and efficiency of our system,

confirming its suitability for edge computing applications.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

C.P.-Q. proposed the idea and wrote the paper; T.P.-D.

implemented and evaluated the system; B.K.-D.-N. tested

the system and proofread the paper. All authors had

approved the final version.

ACKNOWLEDGMENT

We acknowledge Ho Chi Minh City University of

Technology (HCMUT), VNU-HCM for supporting this

study.

REFERENCES

[1] P. Yang, Y. H. Yang, B. B. Zhou, and A. Y. Zomaya, “A review of

ensemble methods in bioinformatics,” Current Bioinformatics, vol.
5, no. 4, pp. 296–308, 2010.

[2] A. M. Prasad, L. R. Iverson, and A. Liaw, “Newer classification and

regression tree techniques: Bagging and random forests for
ecological prediction,” Ecosystems, vol. 9, no. 2, pp. 181–199,

2006.

[3] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog
et al.: A survey and analysis of security threats and challenges,”

Future Generation Computer Systems, vol. 78, pp. 680–698, 2018.

[4] S. Biookaghazadeh, M. Zhao, and F. Ren, “Are FPGAs suitable for
edge computing?” in Proc. USENIX Workshop on Hot Topics in

Edge Computing (HotEdge 18), Boston, MA: USENIX

Association, Jul. 2018.
[5] R. Chen, T. Wu, Y. Zheng, and M. Ling, “MLOF: Machine learning

accelerators for the low-cost FPGA platforms,” Applied

Sciences, vol. 12, no. 1, 2022.
[6] L. Crockett, D. Northcote, and C. Ramsay, Exploring Zynq MPSoC:

with PYNQ and Machine Learning Applications, Strathclyde

Academic Media, 2019.
[7] C. Pham-Quoc, J. Heisswolf, S. Werner, Z. Al-Ars, J. Becker,

and K. Bertels, “Hybrid interconnect design for heterogeneous

hardware accelerators,” in Proc. 2013 Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2013, pp. 843–846.

[8] T. K. Ho, “Random decision forests,” in Proc. the 3rd International

Conference on Document Analysis and Recognition, 1995, vol. 1,

pp. 278–282.
[9] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,

pp. 5–32, 2001.

[10] X. Lin, R. S. Blanton, and D. E. Thomas, “Random forest
architectures on FPGA for multiple applications,” in Proc. the

Symposium on VLSI 2017, ser. GLSVLSI ’17, New York, NY, USA:

Association for Computing Machinery, 2017, pp. 415–418.
[11] S. Zhao, Y. Sun, and S. Chen, “A discretization method for floating-

point number in FPGA-based decision tree accelerator,” in Proc.

the 2018 IEEE 4th International Conference on Computer and
Communications (ICCC), 2018, pp. 2698–2703.

[12] A. Damiani, E. D. Sozzo, and M. D. Santambrogio, “Large forests

and where to ‘partially’ fit them,” in Proc. the 2022 27th Asia and
South Pacific Design Automation Conference (ASP-DAC), 2022,

pp. 550–555.

[13] A. Jinguji, S. Sato, and H. Nakahara, “An FPGA realization of a
random forest with k-means clustering using a high-level synthesis

design,” IEICE Transactions on Information and Systems, vol.

E101.D, pp. 354–362, 2018.
[14] T. Ikeda, K. Sakurada, A. Nakamura, M. Motomura, and S.

Takamaeda-Yamazaki, “Hardware/algorithm co-optimization for

fully-parallelized compact decision tree ensembles on FPGAs,” in
Proc. the International Symposium on Applied Reconfigurable

Computing, ARC 2020, 2020, pp. 345–357.

[15] Y. R. Qu and V. K. Prasanna, “Scalable and dynamically updatable
lookup engine for decision-trees on FPGA,” in Proc. the 2014 IEEE

High Performance Extreme Computing Conference (HPEC), 2014,

pp. 1–6.
[16] A. Alcolea and J. Resano, “FPGA accelerator for gradient boosting

decision trees,” Electronics, vol. 10, no. 3, 2021.

[17] J. Oberg, K. Eguro, R. Bittner, and A. Forin, “Random decision tree
body part recognition using FPGAs,” in Proc. the 22nd

International Conference on Field Programmable Logic and

Applications (FPL), 2012, pp. 330–337.
[18] PYNQ: Python productivity. [Online]. Available:

http://www.pynq.io/
[19] Kaggle. California housing prices-median house prices for

California districts derived from the 1990 census. [Online].

Available: https://www.kaggle.com/datasets/camnugent/california-
housing-prices

[20] Scikit learn. Scikit-learn California housing dataset. [Online].

Available: https://scikit-
learn.org/stable/modules/generated/sklearn.datasets.fetchcaliforniah

ousing.html

[21] AMD Xilinx. Vivado overview. [Online]. Available:
https://www.xilinx.com/products/design-tools/vivado.html

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 15, No. 2, 2024

201

http://www.kaggle.com/datasets/camnugent/california-housing-prices
http://www.kaggle.com/datasets/camnugent/california-housing-prices
http://www.xilinx.com/products/design-tools/vivado.html
http://www.xilinx.com/products/design-tools/vivado.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V15N2-195

