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Abstract—Recently, factory automation has been 

implemented using sensor networks. In general, the 

equipment deployed in automated factories is expensive. Due 

to the huge maintenance expenses associated with 

manufacturing plant equipment, there is a growing need for 

technology that can predict the lifespan of equipment 

consumables. Real-time fault prediction technology is 

essential because downtime in a process can led to substantial 

financial losses for a factory. Predictive Maintenance (PdM), 

which predicts replacement cycles instead of relying on 

Preventive Maintenance (PM) following equipment failure, 

can enhance productivity. Hence, this paper developed a 

predictive maintenance technology based on Industrial 

Internet of Things (IIoT). The developed platform can 

predict and verify the state of equipment in real time. To 

predict faults, we generated virtual voltage and frequency 

data for the inspection equipment of the Shift-by-wire 

Control Unit (SCU). We then applied this data to three 

models: the Recurrent Neural Network (RNN), the Long 

Short-Term Memory (LSTM), and the Gated Recurrent Unit 

(GRU), and compared their performance. Among them, the 

GRU model achieved the highest prediction speed and 

accuracy, with an R2-score of 0.992. We utilized this platform 

to develop a real-time AI prediction management system with 

the goal of improving productivity. 

 

Keywords—Predictive Maintenance (PdM), Artificial 
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I. INTRODUCTION 

Recently, the aging of core equipment within 

manufacturing companies worldwide has become a serious 

issue [1]. Among this equipment, 38.6% have been in 

operation for more than 10 years, while a total of 80% have 

been in operation for more than 5 years, indicating a 

significant proportion. Continuing production with aging 

equipment can result in a decline in productivity due to 

manufacturing equipment problems and even workplace 

accidents [2]. 

In addition, recent maintenance trends indicate that 

Predictive Maintenance (PdM) [3, 4], which utilizes 

Artificial Intelligence (AI) [5], big data, augmented reality, 

and other technologies, has become a crucial factor in 

reducing maintenance costs in the manufacturing 

industry  [6]. Recent research has introduced new methods 

for predicting equipment maintenance, such as general 

Recurrent Neural Networks (RNN), which can uncover 

relationships within specific time series data using big 

data  [7]. Furthermore, there has been an approach to 

predictive maintenance using an augmented reality smart 

glasses system [8]. These developments demonstrate the 

continuous advancements in predictive maintenance 

systems based on RNN. 

Following the above developments, the PdM system is 

being applied to various fields, such as Smart IoT 

platform  [9], nuclear power plant [10], Motor [11], 

Boilers [12], and Electrical Power Systems [13].  

In Ref. [14], a study was conducted on an AI-based 

Internet of Things (IoT) prediction system aimed at 

improving network latency by developing AI-assisted 

distributed systems. This is achieved by deploying 

separate AI models on various edge nodes, allowing for 

data processing near the sensor and enhancing network 

latency. The authors validated their proposed system using 

the Tennessee Eastman dataset and demonstrated its 

superiority over existing techniques. 

Liu et al. [15] proposed an IoT-based PdM method to 

optimize the manufacturing process using machine 

learning algorithms. The method analyzes correlations 

between datasets and detects outlier data patterns. It then 

utilizes a classification approach to identify issues 

according to the specific type of manufacturing process. 

The variables that contribute the most to manufacturing 

defects are identified and analyzed in order to optimize the 

manufacturing process. 

Rahhal and Abualnadi [16] collected data from sensors 

connected to the central processing unit through IoT and 

applied two types of neural networks: vanilla-RNN and 

Long Short-Term Memory (LSTM)-RNN for prediction. 

Based on the prediction results, LSTM-RNN is 

recommended for important devices, while vanilla-RNN is 

suitable for devices that prioritize simplicity. 

In this paper, we conduct research on a real-time 

monitoring program based on the Gated Recurrent Unit 

(GRU). Our study focuses on evaluating the prediction 

accuracy and processing time of regression neural 

networks. Initially, we set up the dataset and attempted to 

predict data using the simplest model for time series 

prediction, which is the RNN. However, in order to predict 
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random numbers that follow a specific rule, we needed to 

input data into the dataset for a longer period of time. 

Unfortunately, the performance of the general RNN model 

deteriorates as the sequence length increases. Therefore, 

we introduced the LSTM model [17], which can handle 

longer sequence lengths without any problems, to enhance 

the accuracy of the predictions. Additionally, we 

introduced the GRU model, which has a similar simple 

structure to LSTM and aims to reduce training time. In 

addition to model selection and adjustment, we have 

developed a Graphical User Interface (GUI) platform for 

visualizing real-time data. 

The main contributions of this paper are as follows. First, 

by comparing the performance of RNN, LSTM and GRU, 

which are famous prediction models, analyze each scheme 

and studied how to decide the optimal model for PdM in 

real environment. Next, the monitoring program shows the 

condition of the equipment in real time and also predict the 

expected lifetime by AI model to prevent the suspension 

of whole manufacturing due to the failure of some part 

process in IIoT based sensor network for commercial SCU 

productivity. 

The structure of this paper is as follows. In Section II, 

the system configuration used in this study. Section III 

presents the proposed Predictive Maintenance (PdM) 

platform. In Section IV, the experiments and evaluations 

of the developed system are presented. In Section V, the 

final version of the developed platform is summarized, and 

in Section VI, the conclusion of this paper is presented. 

II. SYSTEM CONFIGURATION

In this section, we present system model 

comprehensively. The conceptual diagram of the proposed 

system model is shown in Fig. 1. 

Fig. 1. Overall system configuration. 

The proposed system model consists of three main 

components as depicted in Fig. 1. The first component is 

the inspection equipment hardware, which is responsible 

for conducting inspections on the Shift-by-wire Control 

Unit (SCU) product and storing the corresponding log data. 

The second component is the AI engine, which trains the 

model using the log data generated by the inspection 

equipment. It then performs diagnoses and predictions on 

the state of the equipment using real equipment data. 

Lastly, the third component is a monitoring program that 

runs on a Personal Computer (PC). This program receives 

diagnostic and predictive data from the AI engine and 

visualizes the equipment status. The monitoring program 

is designed to manage the status of multiple pieces of 

equipment, thereby enhancing the efficiency of equipment 

management in the production automation factory. 

Fig. 2. Electric vehicle SCU controller. 

The SCU and SCU test equipment will be described. 

Recently, most vehicles adopt automotive transmission, 

which can change park (P), reverse (R), neutral (N) and 

drive (D) by pressing the buttons or operating of rotary. 

The SCU is a device that enables automatic shifting. It 

automatically shifts gears based on the speed and load of 

the vehicle. Fig. 2 shows an automatic transmission SCU 

mounted on an electric vehicle. SCU inspection equipment 

is connected to the SCU through a functional test jig and 

performs inspections by measuring voltage and current, etc. 

However, if jig is used iteratively, it wears out gradually. 

As it last long, the contact resistance increases, which leads 

to a error in the signal transmitted to SCU from the 

equipment. It may results in mistake such that the operator 

decides it is defective while it is not actual fact due to 

malfunction of the jig pin and test equipment.  

In this study, we aim to address malfunctions caused by 

aging equipment. Data generated from the test equipment 

hardware and function board is collected for this purpose. 

The collected data is transmitted to the server using a 

wireless network and is used for AI model learning. The 

AI model is described in detail in the following section. 

III. PROPOSED PDM SYSTEM

To implement the system proposed in this study, an AI 

model and monitoring program were developed based on 

Python. The proposed system consists of three phases: data 

training, testing, and visualization. In the data training 

phase, the model is trained using accumulated data. The 

dataset is provided in Comma Separated Value (CSV) 

format, and specific parameters are selected for training 

the model. The information of the trained model is saved, 

and early stopping is implemented to prevent overfitting 

and reduce training time. 

Fig. 3. Proposed system flow chart. 
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Moving to the testing phase, the saved model is loaded, 

and real-time input from the equipment’s output values 

(test set) is utilized to predict the output values. The 

predicted values are then written to a CSV file and trans 

mitted to the GUI component for visualization. The system 

flow chart is summarized in Fig. 3. 

A. Time Series Data Prediction Model

This subsection describes the structure of a time series

data prediction model. First, the structures of RNN,

LSTM, and GRU, which are models for predicting time 

series data, are depicted in Fig. 4. 

Fig. 4. Structure of time series data prediction model. 

RNN is a model that processes input and output as 

sequences. A sequence refers to continuous data, making 

RNN a suitable neural network model for time-series data. 

Unlike a Deep Neural Network (DNN), RNN shares all 

parameters. RNN is advantageous in processing short 

sequences; however, its learning ability is diminished 

when there is a long distance between related pieces of 

information. As the data sequence becomes longer, the 

Back Propagation Through Time (BPTT) algorithm of 

RNN’s backpropagation becomes challenging for learning 

long-term dependencies. During the weight updating 

process, a problem arises where the gradient diminishes as 

values less than 1 are continuously multiplied. 

LSTM, unlike RNN, is capable of detecting long-term 

dependencies in data and trains efficiently. LSTM 

introduces a structure called the Cell State to facilitate the 

learning of long-term dependencies. It incorporates three 

gates, namely the Input, Forget, and Output gates, which 

operate during the data calculation step and store state 

values in memory cells. By adjusting the gate components 

that interact with the data, unnecessary operations and 

errors can be minimized, partially addressing the issue of 

long-term dependency. 

On the other hand, the GRU is a modified version of the 

LSTM model that contains fewer parameters. While GRU 

may be slightly inferior to LSTM, it offers faster 

processing speed. GRU represents the latest algorithm that 

improves upon LSTM. However, since there is no 

significant performance difference between the two, it is 

crucial to select the appropriate model based on 

performance testing. 

B. Performance Evaluation Criterion of Predictive

Model (R2-Score)

The R2-score is a metric used to evaluate the 

performance of regression models compared to the Zero-R 

model, which predicts the mean value. Unlike other 

performance metrics such as Root Mean Square Error 

(RMSE) or Mean Absolute Error (MAE), which can be 

influenced by the scale of the data, the R2-score is a relative 

performance metric that provides a more intuitive 

understanding of the model’s performance. The R2-score 

can be calculated using the following equation, denoted as 

Eq. (1). 

R2-score =
𝑆𝑆𝐸

𝑆𝑆𝑇
= 1 −

𝑆𝑆𝑅

𝑆𝑆𝑇
    (1) 

The R2-score is calculated by comparing the variance of 

the residuals to the total variance, which provides a 

measure of similarity between the actual values and the 

predicted values. A high R2-score indicates a greater 

accuracy of the model, where the squared difference 

between the actual and predicted values is minimized. 

When using a model that estimates the mean value, the 

Sum of Squares Error (SSE) will tend to be close to 0. 

Consequently, the R2-score, which evaluates the model’s 

relative performance against the mean value model, will 

also be 0, indicating no improvement over the mean value 

model. Conversely, if an ideal regression model is 

employed, the difference between the estimated and actual 

values (SSR) will be 0, resulting in an R2-score 

approaching 1. 

In cases where the model’s performance is 

exceptionally poor and the Sum of Squared Residuals 

(SSR) significantly exceeds the performance of the mean 

value model, a negative R2-score may occur. This suggests 

that there may be significant issues with the dataset or the 

model. 

C. Data Set Construction

In this subsection, we provide an explanation of the

dataset’s composition. The global trend in manufacturing 

equipment aging indicates that approximately 77% of 

equipment has a lifespan of less than 10 years [6]. Based 
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on this trend, we have established a 10-year replacement 

period for equipment, following the Preventive 

Maintenance (PM) approach. Additionally, we have 

defined the time frame for identifying abnormal equipment 

symptoms as 7 years. Consequently, we constructed the 

dataset to reflect the occurrence of abnormal equipment 

conditions after 7 years. 

For the Shift-by-wire Control Unit (SCU) equipment, 

abnormal symptoms manifest as voltage drops or a 

decrease in the measured frequency. Hence, we used 

voltage drop and frequency decrease as the criteria for 

determining abnormal equipment conditions. The trend of 

the constructed dataset is illustrated in Fig. 5. 

(a) 

(b) 

Fig. 5. Constructed data set. (a) Volt, (b) Frequency. 

As depicted in the figure, the data were generated 

assuming daily recordings of the output values. A 10-year 

cycle was considered to align with the equipment’s 

lifespan, resulting in 3,600 data points representing one 

cycle. For the training set, two cycles (7,200 data points) 

were utilized. For the test set, it was assumed that real-time 

data would be generated and inputted into the system on a 

daily basis. Fig. 5 illustrates a scenario where the 

equipment was replaced shortly before, and 10 years have 

passed since then. 

IV. EXPERIMENT AND EVALUATION

There are several parameters involved in training an AI 

model, such as batch size, Learning rate (Lr), sequence 

length, and training epochs. As explained in Section III.A, 

there are different models for time series prediction, such 

as RNN, LSTM, and GRU. In order to select the 

appropriate type of time series prediction model and its 

parameters, we adjusted various parameters while taking 

into account the evaluation criterion of the R2-score, as 

outlined in Section III.B. The goal was to assess the 

accuracy of the AI model’s predictions by comparing the 

test set to the predicted data. 

A. Batch Size, Learning Rate

Batch size is a parameter that determines the amount of

data processed at once during training. A larger batch size 

can accelerate training speed but may lead to reduced 

accuracy and an increased risk of overfitting. On the other 

hand, a smaller batch size offers greater resilience to 

sudden changes. The learning rate is a value that 

determines how quickly the model adjusts its parameters 

based on the gradient. A higher learning rate can accelerate 

convergence but increases the risk of overshooting, while 

a lower learning rate increases training time.  

In this paper, our aim was to identify the optimal 

combination of parameters by comparing commonly used 

values, such as a batch size of 64 and a learning rate of 

0.01. Additionally, we set the sequence length to 7 and the 

number of epochs to 10. As shown in Fig. 5, the best match 

to the true values was achieved with a batch size of 128 

and a learning rate of 0.01. The performance of each 

parameter combination shown in Fig. 6 can be further 

examined in Table I. 

TABLE I. PERFORMANCE OF EACH COMBINATION 

Model Batch Size Learning Rate R2-Score 

RNN 64 0.01 0.9723 

RNN 128 0.01 0.9810 

RNN 128 0.1 0.9732 

RNN 128 0.2 0.9771 

Fig. 6. Prediction graph according to batch size and learning rate. 
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B. Train Epoch

During the training of the model, the training loss

typically decreases as the number of iterations increases. 

To prevent overfitting, early stopping was implemented 

when the loss started to increase. After conducting 

multiple tests, it was observed that early stopping occurred 

frequently around epoch 30, despite the initial setting 

being epoch 100, as depicted in Fig. 7. As a result, the 

results are presented in Table II. 

Fig. 7. Repeated test results. 

TABLE Ⅱ. R2-SCORE AND LEARNING TIME ACCORDING TO MODEL 

TYPE AND SEQUENCE LENGTH 

Model Sequence Length R2-Score Learning Time 

RNN 7 0.9810 15 s 

RNN 30 0.9650 45 s 

LSTM 30 0.9930 62 s 

GRU 30 0.9921 47 s 

C. Sequence length & Model

Sequence length refers to the dimension of the input

data set for RNN models. For instance, if the sequence 

length is set to 7, the input data set becomes a matrix with 

a dimensions format. Using a sequence length of 7 as a 

reference, we adjusted the values according to the 

parameters specified in Sections IV.A and IV.B. The test 

epoch value was adjusted to 30 to optimize the model’s 

performance and prevent overfitting. 

Upon examining the table, it is evident that increasing 

the sequence length of the RNN model in an attempt to 

achieve a higher R2-score resulted in the problem of 

vanishing gradients. This issue ultimately led to a decrease 

in the R2-score. To address the issue of vanishing gradients 

in the RNN model, we used an LSTM model, which 

exhibited enhanced performance in comparison to the 

RNN model under identical circumstances. Furthermore, 

the GRU model with a reduced tanh layer exhibited similar 

performance but with a 24% shorter training time 

compared to LSTM. Hence, after evaluating all the 

combinations, we selected the final prediction model, as 

shown in Table III. 

TABLE Ⅲ. FINAL SELECTED PARAMETER OF GRU MODEL 

Model Sequence Length Epoch Batch Size Learning Rate 

GRU 30 30 128 0.01 

V. PREDICTION RESULT AND MONITORING GUI

This section explains the prediction results of the GRU 

model and the GUI of the monitoring program. First, the 

main screen of the GUI will be explained.  

Fig. 8 shows the main screen of the developed GUI. On 

the main screen, you can access three types of information. 

Among them, the red rectangular area consists of two 

buttons. When the button is selected, the screen converts 

to display the status prediction graph of the selected 

equipment for easy reference. The blue square area 

provides information about the current equipment status. 

The status of the equipment is indicated through guidance 

messages and colors, with normal (green), caution 

(yellow), and warning (red). 

Fig. 9 illustrates the predicted results obtained from the 

proposed model. Utilizing the selected GRU model and 

parameters established based on the rationale described in 

the main text, we simulated 3,600 (10 years) test data. We 

observed that the “pred” graph gradually descends with a 

slope similar to the true value. Furthermore, the R2-score, 

which represents the similarity between the two graphs, is 

calculated to be 0.992, indicating a close resemblance to 

the ideal value of 1. 

Fig. 8. Main screen of GUI. 

Fig. 9. Prediction result of GRU model. 

Fig. 10 showcases the GUI of the monitoring program, 

which displays the prediction results in real-time. The 

program continuously updates the test set on the right and 

predicts the “pred” set one day in advance. As new data is 

added to the right, the previous data shifts towards the left 

of the graph. 
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Fig. 10. Real-time visualizes the prediction results in GUI. 

The x-axis (number of data) ranges from 3,600 to 7,200 

and proceeds in real-time, displaying the predicted results 

on the right. After processing 7,230 data points, taking into 

account the train set and sequence length, the graph 

displays the predicted values based on the real-time output 

values of the device (test set). The transition from the left 

to the right graph represents approximately 3,000 data 

points, which can be interpreted as roughly 7 years. When 

the output value falls below the threshold, the system 

detects that the device has reached its end-of-life and 

triggers an alert or notification on the platform. 

VI. CONCLUSION

This paper aims to reduce cost losses caused by 

equipment aging and traditional maintenance methods by 

implementing an AI-based equipment failure management 

platform using the emerging approach of predictive 

maintenance. In order to enhance the current factory 

maintenance data, which followed a 10-year cycle, the 

target for predictive maintenance was established at 

around 7 years. The selected GRU model, with parameters 

set at epoch = 30, sequence length = 30, batch size = 128, 

and learning rate = 0.01, demonstrated high prediction 

accuracy with a fast learning time of 47 s (R2-score = 

0.9921). Additionally, the platform presents the predicted 

values in real-time graph format, enabling the assessment 

of the current state of the equipment. Data processing 

techniques will be employed to optimize the prediction 

performance of the GRU model and improve the stability 

of manufacturing equipment. The plan involves 

implementing a real-time AI prediction platform and 

transforming it into a universal PdM platform by selecting 

and predicting various equipment features. 
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