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Abstract—In cyber security, system security must be 

prioritized. Therefore, to improve system security, a system 

device called an Intrusion Detection System (IDS) is needed. 

IDS is a system that can detect suspicious activity on a 

system or network. The constraint of IDS is many types of 

attacks appear now, making it difficult to detect them. 

Therefore, many IDS based on machine learning have been 

applied to overcome this constraint. And machine learning 

has been widely adopted to improve IDS performance. 

However, false detection occurs frequently. The problem 

raised in this study is the large number of false detections 

that still occur. The main objective of this study is to reduce 

the occurrence of false detection in IDS. Then, to achieve 

this objective, this paper proposes a model called the B-DT 

model. The Bagging-DT (B-DT) model combines the 

Bagging technique ensemble-base and Decision Tree (DT) 

classifier. The B-DT model was trained and evaluated on 

NSL-KDD and UNSW-NB15 datasets. The results showed 

that it can reduce false detection from 11,305 data to 243 

data in the NSL-KDD dataset. Besides that, the B-DT model 

can reduce false detection from 2,504 data to 871 in the 

UNSW-NB15 dataset. In addition, model performance has 

increased in accuracy, precision, recall, f1-score, and kappa-

score. Based on the results, the B-DT model’s performance 

can achieve an accuracy of 99.45% on the NSL-KDD 

dataset and 79.67% on the UNSW-NB15 dataset. This 

model can work well not only on binary-class data but also 

on multi-class labeled data. The statistical evaluation shows 

this model has increased significantly compared to other 

models. These results suggest that the proposed B-DT model 

can effectively enhance the performance of IDS and be a 

promising solution for practical applications. 
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I. INTRODUCTION 

Intrusion Detection System (IDS) is a technology that 

detects unauthorized access or malicious activity within a 

computer system or network [1]. The primary goal of an 

IDS is to identify and alert administrators of potential 

security threats. IDS can be either host-based, installed on 

individual computers, or network-based, deployed to 

monitor network traffic. The two main types of IDS are 

signature-based and anomaly-based [2]. Signature-based 

IDS detects known threats by matching the incoming 

traffic against a database of known attack signatures. On 

the other hand, anomaly-based IDS detects suspicious 

activity by analyzing the behavior of the system or 

network and comparing it to a baseline of normal 

behavior. An IDS is essential to a comprehensive security 

solution and can significantly enhance an organization’s 

security posture. 

Nowadays, most of the development of IDS has been 

integrated with Machine Learning (ML) or Deep 

Learning (DL). ML and DL have developed rapidly and 

have been widely adopted in several domains such as 

cyber security [3, 4], computer vision [5], sentiment 

analysis [6], healthcare systems [7, 8] image 

processing  [9, 10], Internet of Things (IoT) [11], electric 

vehicles [12], and others. One of the current research 

topics in the cybersecurity field is the Intrusion Detection 

System (IDS), and intrusion detection is a critical topic in 

cybersecurity [13]. 

Machine learning has been increasingly applied to 

Intrusion Detection Systems (IDSs) to improve their 

accuracy and efficiency [14]. An IDS is a security 

mechanism that monitors and detects unauthorized access 

or malicious activities on a network or computer system. 

Machine learning algorithms can analyze large amounts 

of data and identify patterns that may indicate a security 

threat. The algorithms can learn from the data, identify 

deviations from normal behaviour, and generate alerts 

when it detects any unusual or malicious activity. It 

makes IDSs more effective in detecting zero-day exploits 

and sophisticated attacks. Additionally, machine learning 

algorithms can be updated with new data in real-time, 

allowing the system to adapt to changing threats and 

improve accuracy. 

However, using the machine learning approach 

commonly encounters three primary obstacles [15], i.e., 

massive attack variants, imbalanced data distribution, and 

the need for suitable data segmentation strategies. Based 

on these obstacles it has an impact new problem on the 

application of machine learning, i.e., (1) Lack of 
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interpretability: One of the biggest challenges with 

machine learning models is they can be difficult to 

interpret and understand, making it difficult to determine 

why the system made a particular decision. It can pose 

problems when trying to assess the accuracy of the IDS 

or respond to false alarms. (2) Data bias: Machine 

learning models are only as good as the training data. If 

the data used to train the model is biased or 

unrepresentative, then the model will also be limited, 

which can lead to poor results in intrusion detection. (3) 

Overfitting: Overfitting is a common problem in machine 

learning models where the model becomes too closely fit 

to the training data, and as a result, it is not generalizable 

to new, unseen data. It can be a problem in intrusion 

detection, where the model might flag regular activity as 

suspicious. Based on these three problems, false positives 

and false negatives can occur in IDS. According to 

research by Lin et al. [16], out of 2,821 detected alert 

data, 1,138 were false positives. 

A false positive is data traffic normal on the network 

but is detected as an intrusion. Whereas a false negative is 

an intrusion on the system, it is seen by IDS as a normal 

condition. And if this happens, this is the most 

challenging case in system security. Therefore, to 

overcome the problem of false positives and negatives in 

IDS, it is necessary to develop better machine learning 

techniques to increase IDS performance.  

Many machine learning techniques are applied to build 

an IDS. Some old methods that researchers often use are 

applying the single classifier technique, e.g., Decision 

Tree, Support Vector Machine (SVM) [17], Naïve [18], 

Random Forest [19], etc. However, the model’s 

performance does not work well when applied to large 

datasets and detecting attacks that appear, so false 

positives and negatives are often found [20]. An 

ensemble technique can potentially provide a solution 

when a single classifier technique falls short in resolving 

a case. To adjust this case, we can apply many other 

machine-learning techniques to build an IDS. 

Several recent studies have implemented an ensemble 

classifier as a new technique in building IDS [21, 22]. 

However, the performance of this technique is not 

optimal and can still be developed further with other 

methods. Our motivation in this study was to identify the 

most effective approach and demonstrate the performance 

of ensemble classifiers. The main contributions of this 

research can be summarized as follows: 

• Enhance the performance of single classifiers 

when applied to intrusion detection systems. 

• Introduce a derivative ensemble approach called 

Bagging-DT (B-DT), which utilizes the bagging 

technique.  

• Introduce a Recursive Feature Elimination (RFE) 

technique to overcome data bias and overfit 

problems. 

• The proposed method can reduce false detection 

on IDS. 

• Introduce and show that the proposed method (B-

DT model) demonstrates superior performance 

compared to basic single-classifier methods in 

accuracy, recall, precision, kappa-score, and f1-

score. 

The article is organized into six sections. Section I 

provides an introduction, Section II presents the literature 

review, Section III outlines the materials and methods 

used, Section IV describes the proposed method, 

Section V presents the results and discusses them, and 

Section VI concludes the article and suggests future 

studies. 

II. LITERATURE REVIEW 

Many techniques can be used to develop an IDS. Some 

of the research applies machine learning to build it. Wang 

et al. [23] developed an Intrusion Detection System (IDS) 

using a single classifier approach to machine learning-

based, specifically SVM and Extreme Learning Machines 

(ELMs). The performance of these classifiers was 

assessed on the NSL-KDD and UNSW-NB15 datasets. 

The study emphasized the importance of fast learning 

speed in NIDS for ensuring prompt and effective defense 

reactions. 

Wang et al. [23] proposed a modified version of ELM 

called the equality Constrained-optimization-based ELM 

(C-ELM), which incorporates features from least squares 

support vector machines. That paper focuses on the 

application of C-ELM in network intrusion detection. 

They propose an adaptively incremental learning strategy 

to determine the optimal number of hidden neurons. The 

article also presents the optimization criteria and a 

method for dynamically increasing hidden neurons using 

binary search. However, this study did not use an 

ensemble technique. Therefore, for further research, there 

is still an opportunity to improve model performance by 

combining ensemble classifier techniques and feature 

selection techniques. 

Yang et al. [24] conducted a research study that 

focused on applying a single classifier. However, they 

used the KDD CUP 99 dataset, which is considered 

outdated. Their studies relied on a single classifier 

technique, specifically the LM-BP Neural Network. Even 

though they achieved a relatively high accuracy of 

93.31%, there is still room for improvement by 

combining ensemble classifier techniques and other 

feature selection techniques. Similarly, Jupriyadi [25] 

utilized the NSL-KDD dataset but still used a single 

classifier technique. 

Kurniabudi et al. [26] utilized a feature selection 

technique combining Information Gain (IG), Ranking, 

and Grouping methods. They researched using the 

CICIDS-2017 dataset and applied Information Gain (IG) 

as a feature selection technique. However, they do not 

include ensemble techniques as classifiers, which results 

in independent functionality of each classifier with no 

increase in performance across classifiers. Therefore, 

improving overall model performance by leveraging 

ensemble classifiers is still possible. 

The research conducted by Almasoudy et al. [27] has 

developed a machine learning-based IDS with feature 

selection and classification techniques. The research used 

feature selection using the Differential Evolution (DE) 
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and Extreme Learning Machine (ELM) classification 

techniques. Then the model is tested on the NSL-KDD 

dataset. The test results show an increase in IDS 

performance when DE reduces features. The 

classification accuracy results for nine features and five 

classes are 80.15%. Whereas without feature selection 

(41 features five classes), the accuracy is only 76.44%. 

However, this research has not yet applied the ensemble 

classifier technique, so there are still opportunities to 

develop further research. 

Wisanwanichthan and Thammawichai [28] introduced 

a novel technique called the Double-Layered Hybrid 

Approach (DLHA). This approach combines two 

classifiers, namely Naïve Bayes (NB) and SVM, in a two-

layer architecture. The first layer utilizes Naïve Bayes 

(NB) to detect Denial-of-Service (DoS) and Probes, while 

the second layer employs SVM to identify R2L and U2R 

attacks. However, it should be noted that if a new type of 

attack emerges beyond the general categories of DoS, 

Probe, R2L, and U2R, the IDS may fail to detect it. 

Additionally, using the NSL-KDD dataset in the research 

is considered outdated. Therefore, future studies have the 

potential to explore new datasets to develop and evaluate 

models beyond the limitations of NSL-KDD. 

Vishwakarma and Kesswani [18] implemented 

machine learning in making a single classifier-based IDS. 

This research works well even though the data 

distribution is not balanced and reaches an accuracy value 

of 97%. However, the model’s performance only works 

well on binary-class data and doesn’t work well when 

applied to multi-class data. For this reason, the 

classification problem in multi-class data still needs 

further research.  

Based on several previous studies, many studies in the 

IDS field still use a single classifier. Although some 

studies have implemented the feature selection technique, 

they still do not use the ensemble classifier technique. In 

comparison, this study focuses on developing an 

ensemble classifier-based IDS with a Bagging technique 

called the B-DT model combined with RFE. Table I 

presents the summary of related studies. 

TABLE I. SUMMARY OF RELATED STUDIES 

Ref.# (Year) Dataset FS Algorithm Proposed Method Classification Technique 

Wang et al. [23] (2018) NSL-KDD, UNSW-NB15 - C-ELM Single Classifier 

Yang et al. [24] (2019) KDD CUP 99 - LM-BP Single Classifier 

Almasoudy et al. [27] (2020) NSL-KDD DE ELM Single Classifier 

Wisanwanichthan and 

Thammawichai [28] (2021) 
NSL-KDD ICFS and PCA DLHA Single Classifier 

Pranto et al. [3] (2022) NSL-KDD Basic FS 
k-NN, DT, NB, LR, 

RF, Voting 
Single Classifier 

Vishwakarma and Kesswani [18] 

(2023) 

NSL-KDD, UNSW-NB15, and 

CIC-IDS2017 
- Naïve Bayes Single Classifier 

This Study (2023) NSL-KDD, UNSW-NB15 RFE B-DT Ensemble Classifier 

 

III. MATERIALS AND METHODS 

This section discusses the method used in building the 

B-DT model. This model is made from two techniques. 

Namely, bagging techniques ensemble-based and 

classification techniques using Decision Tree (DT). Then, 

this model is tested using a public dataset (NSL-KDD, 

UNSW-NB15). In addition, the performance of this 

model is compared with the other models to find out 

which model is the best. 

This study has six process stages, from dataset 

collection to evaluation of the B-DT model. Stage 1 

Dataset preparation. Stage 2 Data pre-processing. Stage 3 

Feature Selection using Recursive Feature Elimination 

(RFE). Stage 4 Constructing a machine learning model 

using a combination of bagging ensemble and decision 

tree classifier. Stage 5 Implement the proposed method 

by conducting a training and testing model using the B-

DT Model. And Stage 6 evaluates the model to get the 

best performance. Fig. 1 presents an overview of the 

research process. 

The study utilized a computer system with the 

following specifications: an Intel Core i7-6600U CPU @ 

2.60 GHz, 2.81 GHz, SSD=1 TB, and RAM=16 GB. The 

machine learning model was implemented using Python 

3.9.7 and executed on the Microsoft Windows 10 

operating system. The Python libraries employed in the 

study included Numpy 1.22.2, Pandas 1.3.4, Matplotlib 

3.4.3, and Scikit-learn 1.1.1. 

 

 

Fig. 1. Overview of the research process. 
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A. Dataset Preparation 

The IDS validation depends mainly on the datasets 

used in the evaluation. Simulating intrusive behavior 

allows us to evaluate the IDS’s capability. However, 

obtaining real traffic for commercial products is difficult 

due to privacy reasons. Many public datasets have been 

developed that can be used to build IDS, including 

KDDCup99, NSL-KDD, UNSW-NB15, CIC-IDS-2017, 

ISCX, etc. Many researchers use them for benchmarking. 

We used the most commonly used IDS dataset [29]: 

NSL-KDD and UNSW-NB15. 

 

 

Fig. 2. List of features on NSL-KDD. 

1) NSL-KDD dataset description 

The NSL-KDD dataset is a new type of dataset which 

is the development of the KDDCup’99 dataset. The NSL-

KDD dataset can be downloaded from 

https://www.unb.ca/cic/datasets/nsl.html. Even though 

the NSL-KDD dataset is old, researchers still use it today 

because the data is clean. The original NSL-KDD dataset 

comprises 148,515 records, 43 features, and 40 class 

labels. Fig. 2 presents the feature data description and 

data type of the NSL-KDD. 

2) UNSW-NB15 dataset description 

The UNSW-NB15 dataset is a new type of dataset 

compared to the NSL-KDD. It is a public dataset. We can 

download this dataset from the official UNSW Sydney 

website at https://research.unsw.edu.au/projects/unsw-

nb15-dataset. This original dataset comprises 700,001 

records, 49 features, and ten classes. Fig. 3 presents the 

feature data description and data type of the UNSW-

NB15. 

 

 

Fig. 3. List of features on UNSW-NB15. 

B. Data Pre-processing 

Various actions are undertaken during pre-processing, 

including data transformation, filtering, and 

normalization. This pre-processing is done to the NSL-

KDD and UNSW-NB15 datasets to increase 

classification performance. The following is the pre-

processing process for the NSL-KDD and UNSW-NB15 

datasets. 

1) Data transformation 

The NSL-KDD and UNSW-NB15 datasets contain 

numerous features and data in different formats, 

including alphabets, numbers, symbols, etc. Analyzing 

these features can be time-consuming and resource 

intensive. Therefore, to overcome these challenges, a 
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transformation process was applied to convert symbolic 

features into numeric features, aiming to mitigate 

processing time and hardware resource usage. Fig. 4 is an 

example of the data transformation process in NSL-KDD. 

 

 

Fig. 4. Example of data transformation process on NSL-KDD. 

In addition to the transformations performed on the 

NSL-KDD dataset, we also performed on the UNSW-

NB15 dataset. The symbolic features in the NSL-KDD 

dataset that were changed to numeric include: “scrcip”, 

“sport”, “dstip”, “dsport”, “proto”, “state”, “service”, and 

“attack_cat”. 

2) Data filtering 

We filtered the data on the NSL-KDD dataset by 

grouping the class types from 40 into five groups: DoS, 

Probing, R2L, U2R, and Normal. Whereas in the UNSW-

NB15 dataset, there is no class grouping. The UNSW-

NB15 dataset consists of 10 classes: DoS, Generic, 

Exploit, Fuzzers, Reconnaissance, Backdoors, Analysis, 

Shellcode, Worms, and Normal. In addition, irrelevant 

data was also deleted. For example, on the NSL-KDD 

dataset, too little data was deleted: “xsnoop”, “spy”, 

“worm”, “sqlattack”, and “udpstorm”. In the UNSW-

NB15 dataset, there was no class deletion, but duplicate 

data was removed. For example, the “normal” class on 

UNSW-NB15 was also separated from the dataset. 

3) Data normalization 

This process adjusts the feature value range to a 

balanced and proportional range. In this study, each value 

within a featured record is scaled using Eq. (1), where X' 

represents the normalized value, X is the current value in 

the feature’s record, and Xmaximum denotes the 

maximum values within the feature record. As a result, 

the range of record values is transformed to lie between 

zero and one. 

maximum

'
X

X
X

=  (1) 

Based on the pre-processing that has been done, the 

final dataset is obtained, ready to be used for the 

classification process. The NSL-KDD dataset comprises 

148,503 records, 42 features, and five classes. Table II 

presents the distribution of class data for training and 

testing the NSL-KDD dataset. The visualization of the 

class distribution of training and testing data is shown in 

Fig. 5. The X-axis shows the class name (type of 

intrusion), and the Y-axis shows the training and testing 

data amount. 

TABLE II. DISTRIBUTION OF CLASS ON NSL-KDD 

No Class Name Data Train Data Test 

1 Normal 53,937 23,116 

2 DoS 37,354 16,009 

3 Probing 9,848 4,221 

4 R2L 2,750 1,179 

5 U2R 63 26 

Total 103,952 44,551 

Total Train and Test 148,503 

 

 

Fig. 5. NSL-KDD class distribution (training vs testing). 

TABLE III. DISTRIBUTION OF CLASS ON UNSW-NB15 

No Class Name Data Train Data Test 

1 Exploits 2,825 1,251 

2 Fuzzers 2,791 1,166 

3 Generic 1,989 844 

4 Reconnaissance 1,219 521 

5 DoS 570 255 

6 Analysis 225 91 

7 Backdoors 211 75 

8 Shellcode 151 72 

9 Worms 15 9 

Total 9,996 4,284 

Total Train and Test 14,280 

 

The pre-processing results on the UNSW-NB15 

dataset did not change much feature and class data. As a 

result, the final dataset in this research consisted of 

14,280 records, 48 features, and nine classes. Table III 

shows the distribution of classes in the UNSW-NB15 

dataset after pre-processing. While Fig. 6 illustrates the 

visualization of class distribution for the training and 

testing data. The X-axis shows the class name (type of 

intrusion), and the Y-axis shows the training and testing 

data amount. 

 

 

Fig. 6. UNSW-NB15 class distribution (training vs testing). 
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C. Feature Selection 

Feature selection is one of the most essential 

techniques and is often used in pre-processing [30]. The 

main aim of feature selection is to identify and retain the 

features that are most important in influencing the target 

variable or improving the performance of a machine-

learning model. By reducing the dimensions of irrelevant 

or redundant features, feature selection helps avoid 

overfitting, increases computational speed, and improves 

the interpretation of model results.  

In this study, the feature selection technique employed 

is the Wrapper technique. The Wrapper technique 

assesses each feature using an additional algorithm 

(classification algorithm) that is integrated into the 

feature selection process [31]. This feature selection 

technique uses the RFE (Recursive Feature Elimination). 

Although many algorithms can serve as estimators in 

RFE, the one utilized in this study employs a Decision 

Tree (DT). Based on the argument that DT is highly 

effective for classification scenarios. 

D. Building Machine Learning Model 

After completing the pre-processing stage, the next 

step is to build the B-DT model. The development of this 

model involves a single classifier, namely Decision Tree 

(DT), as a base learner in B-DT. The B-DT model is a 

combination of DT and Bagging techniques. Bagging 

stands for Bootstrap Aggregating, an ensemble learning 

technique introduced by Breiman [32] in 1996. This 

method is an ensemble learning designed using a 

Decision Tree-based classification model. The bagging 

process works by resampling the dataset (creating a new 

one) from the original one without considering its 

features. 

1) Decision Tree (DT) 

Decision Tree is one of the popular classification 

methods, and learning algorithms are pretty old. However, 

it is prevalent because of its efficiency, which researchers 

and practitioners use practically in classifying data [33]. 

There are many Decision Tree algorithms. ID3, C4.5, and 

Assistant are well-known decision tree algorithms for 

classification tasks. ID3 operates by dividing the data into 

two groups based on their attributes, employing entropy 

as a measure. Entropy quantifies the randomness present 

within a class. A zero value indicates complete 

homogeneity within the category, while a value of one 

signifies complete randomness or no pattern. Eq. (2) 

provides the mathematical representation of entropy. 

2

1

*log ( )
n

i

Entropy pi pi
=

= −  (2) 

2) Bagging ensemble  

Bagging is an ensemble technique known as bootstrap 

aggregating, which Breiman [32] introduced in 1996. It is 

an ensemble learning method used to improve the 

performance of models. Meanwhile, the classifier used in 

this study is Decision Tree (DT). Then this classifier is 

used as a base-learner ensemble with the Bagging 

technique. Bagging is an ensemble classifier technique 

built from a single classifier, e.g., ANN, SVM, NNR, NB, 

and other unstable models. Bagging is very effective 

when applied to an unstable classifier. For example, a 

dataset with two unbalanced classes causes a lack of 

accuracy in classification. Therefore, appropriate 

algorithms are needed to improve classification accuracy. 

One way to improve the accuracy of this study is by 

using the Bagging method. Section IV (B-DT Model) 

discusses the flow diagram of the Bagging method’s 

operation. 

E. Implementation of Proposed Method 

The implementation phase is done by training and 

testing the B-DT model using the dataset prepared in the 

previous stage. The training data used is 70%, and the 

testing data used is 30%. And then, we conducted the 

implementation in three steps. The first implementation 

stage used the NSL-KDD dataset, and the second used 

the UNSW-NB15 dataset. After the commission, the final 

step evaluates the model’s performance by measuring and 

comparing the performance results with other models in 

previous research. 

F. Evaluation 

Model evaluation in machine learning-based research 

is critical. Model performance evaluation is carried out by 

calculating all forms of prediction error rates in the model 

that has been built. In this study, the model evaluation 

refers to the confusion matrix. The performance metrics 

include accuracy, recall, precision, kappa-coefficient, and 

F1-score. The assessment of this research uses the 

confusion matrix presented in Table IV. 

TABLE IV. CONFUSION METRIC 

Evaluation Predicted Positive Predicted Negative 

Actual Positive TP FP 

Actual Negative FN TN 

 

According to Table IV, the evaluation metrics for 

assessing the model’s performance are determined based 

on four criteria: True Positive (TP), which represents the 

number of correctly identified intrusions; True Negative 

(TN), indicating the number of accurately identified 

normal instances; False Positive (FP), which represents 

the number of incorrect intrusion identifications; and 

False Negative (FN), which indicates the number of 

missed intrusions. These metrics provide insights into the 

model’s performance in accurately identifying intrusions 

and normal instances. 

1) Accuracy 

Accuracy measures the percentage of correctly 

predicted positive and negative instances from the total 

dataset. It answers, “What portion of the dataset was 

accurately classified as intrusion or non-intrusion?” The 

precision formula, as shown in Eq. (3). It is for quantifies 

the precision of the classification model. 

(TP+TN)
Accuracy=

TP+TN+FP+FN)
 (3) 

2) Precision 

Precision is one of the evaluation metrics often used by 

researchers. In contrast to accuracy, precision is the ratio 
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of the correct positive predictions to the overall positive 

prediction results. Precision is the ratio of correctly 

positive predictions to the overall positive predicted 

outcome. Precision answers the question, “What 

percentage of the data is a correct intrusion from the total 

data predicted intrusion?” Eq. (4) provides the formula 

for precision. 

Precision
TP

(TP+FP)
=  (4) 

3) Recall 

Recall, also known as the Detection Rate (DR) in 

Intrusion Detection Systems (IDS), measures the 

proportion of correctly predicted intrusions compared to 

the actual intrusions. It answers, “What percentage of the 

predicted intrusion data matches the actual intrusion data?” 

As presented in Eq. (5) of this research, the recall 

calculation accurately determines the model’s 

performance in detecting intrusions. 

Recall=
TP

(TP+FN)
 (5) 

4) F1-score 

The F1-score is a metric that combines the precision 

and recall of a model, striking a balance between the two. 

It measures overall performance by considering both the 

accuracy of positive predictions (precision) and the 

ability to detect positive instances (recall). The 

calculation of the F1-score, as presented in Eq. (6) of this 

research, offers a quantitative assessment of the model’s 

effectiveness in achieving a harmonious trade-off 

between precision and recall. 

𝐹1 = 2 
(Precision  Recall)

(Precision + Recall)
 (6) 

5) Kappa-score 

Apart from using the confusion metric, the kappa 

coefficient is another way to assess model performance. 

This method involves measuring the probability values of 

true and false values from the detection results during 

data testing. Eq. (7) describes the formula for calculating 

the kappa score. And the criteria for testing results to be 

declared good or no, namely referring to the kappa-

coefficient parameters presented in Table V. 

KappaScore=
Agree-ChanceAgree

1-ChanceAgree
 (7) 

where: 

Agree = Total True Positive 

ChanceAgree = Probabilitas A × Probabilitas B 

Probability A = Total A / Total Data 

TABLE V. PARAMETER OF KAPPA COEFFICIENT [34] 

Strength of Agreement Kappa Statistic Value 

Almost Perfect 0.8 –1.00 

Substantial 0.61–0.80 

Moderate 0.41–0.60 

Fair 0.21–0.40 

Slight 00–0.20 

Poor <0.00 

6) Statistic test 

Statistical tests are essential to assess the performance 

of the model. McNemar’s non-parametric statistical test 

can measure model performance for its significance 

level  [35]. The McNemar statistical test was developed 

from the chi-square test with the formula presented in 

Eq.  (8). 

2

2

1

( )k

i i

i i

O E
X

E=

−
=  (8) 

where: 

Oi = the number of cases observed for category i. 

Ei = expected number of possibilities for category i. 

The calculation of the McNemar statistical test refers 

to the contingency table presented in pada Fig. 7, with the 

formula shown in Eq. (9). 

2

2(| | 1)
X

A D

A D
=

− −

+
 (9) 

where: 

X2 = McNemar Statistical Value. 

A = The amount of “Correct” detection results in 

Classifier1 and “Incorrect” in Classifier2. 

D = The number of “Incorrect” detection results in 

Classifier1 and “Correct” in Classifier2. 

The test criteria used are: 

H0 = rejected if X2
 >= X2

table  

 where the value of X2
table (chi-square)=3.841. 

or 

H0 = rejected if Pvalue<=α, where value α=0.05. 

 

 

Fig. 7. Contingency table [36]. 

The null hypothesis (H0) assumes “no significant 

increase in the model,” McNemar’s test was then 

performed to compute the statistic values. If the 

McNemar statistic value (X2) is more than or equal to our 

chosen significance level (chi-square = 3.841), we can 

reject H0. Therefore, if H0 is rejected, the model 

performance has increased significantly. But if H0 is 

accepted, the model performance has not increased 

considerably. 

IV. B-DT MODEL (PROPOSED METHOD) 

Based on the type of classifier composing, the 

ensemble classifier is divided into two, i.e., homogeneous 

ensemble and heterogeneous ensemble [37]. A 

homogeneous ensemble is a classification technique that 

uses the same single classifier in each iteration to create 

several classification variations. Examples of a 
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homogeneous ensemble are Bagging and Boosting. 

Bagging is part of ensemble learning [38]. The classifiers 

that can be used as base learners in Bagging are Random 

Forest, SVM, Decision Tree, Naïve Bayes, etc. At the 

same time, the algorithms used in Boosting include 

AdaBoost, Gradient Boosting, and XgBoost. Meanwhile, 

a heterogeneous ensemble is a classification technique 

that uses several different classifiers, which are then 

combined to form a new classifier. An example of a 

heterogeneous ensemble is Stacking. 

This study uses Bagging as an ensemble technique. 

Bagging is part of ensemble learning which has good 

performance for classification. This study proposes a B-

DT model Bagging-based to build IDS. The B-DT model 

uses Decision Tree (DT) as the base learners. The 

workings of the B-DT model are as follows: 

• The first stage in this process divides the dataset into 

70% as a training set and 30% as a testing set. 

• Then the B-DT model resamples the dataset (creating 

a subset) from the training set without considering its 

features. The new dataset formed is termed a 

bootstrap sample (subset sample). It is subset one 

until subset (n). 

• Then the B-DT model creates a model (DT) as much 

as the number of subsets (n), namely DT(1) to DT(n). 

• Furthermore, each bootstrap sample (training set) is 

used to train each model (DT1 to DT(n)). 

• Then each model is tested using a test set (testing set). 

• Training and testing process on Bagging is carried out 

in parallel. 

• And the last step is voting on the test results of each 

model. 

Voting is one of the final stage techniques in Bagging. 

The voting (majority vote) is carried out with the one-

man-one-vote rule to make the final decision from the 

Bagging method. Voting techniques are often used in 

classification cases. On the other hand, the mean method 

can be used in regression cases. However, in this study, 

using voting techniques. Fig. 8 presents an illustration of 

how the B-DT model work. 

 

 

Fig. 8. B-DT model flow (proposed). 

The B-DT model is a development of the Bagging 

technique. The Baging pseudocode is as presented in 

Algorithm 1 [38]: 

Algorithm 1. Construct the B-DT Model 

Input:  Dataset Z = {z1, z2, ..., zn}, with zi = (xi, yi), 

where xi  and yi  {-1, +1}. 

B, number of bootstrap samples. 

Output: H:  → {−1, +1}, the final classifier. 
1 for b = 1 to B do 
2  Draw, with replacement, N samples from Z, 

obtaining the bth bootstrap sample Zb
*. 

3  From each bootstrap sample Zb
*, learn classifier Hb. 

4 end for 
5 Produce the final classifier by a majority vote of H1, ..., 

Hb, that is, 

1

( ) ( )
B

b

b

H x sign H x
=

=
 
 
 
  

V. RESULT AND DISCUSSION 

The results of this study are the answer to the research 

objectives mentioned in the introduction. The main aim 

of this research is to reduce the occurrence of false 

detection in IDS. The massive attack variants, imbalanced 

data distribution, and inappropriate data segmentation 

strategy cause false detection in IDS. So, it impacts a lack 

of interpretability, data bias, and overfitting. Therefore, to 

overcome the interpretability problem in this study, we 

use the RFE technique to select and transform dataset 

features. Then, to overcome the data bias and overfitting 

problem in this study, we use the B-DT model, which 

utilizes the Bagging technique. By the application of RFE 

and B-DT models, it can improve model performance in 

reducing the occurrence of false detection in IDS. 

This study conducted a system testing experiment 

using two public datasets: NSL-KDD and UNSW-NB15. 

Before classifying the two datasets, the first step is to 

select features. The feature selection technique used is 

Recursive Feature Elimination (RFE). Then, the results of 

these desired features are used for the B-DT model 

classification process. The feature selection and 

classification results in both datasets (NSL-KDD, 

UNSW-NB15) as follows. 

A. Feature Selection Result 

1) Feature selection on NSL-KDD 

Feature selection in this research needs to be done. 

Therefore, to get the best features, it is necessary to carry 

out feature selection experiments with the RFE technique. 

The RFE experiment was carried out in 25 iterations. 

Based on the feature selection experiment using the RFE 

technique on the NSL-KDD dataset, 20 features were 

selected. Thus, the final data used for the classification 

stage in the NSL-KDD dataset are 148,503 records, 20 

features, and five classes. Fig. 9 presents the results of the 

feature selection experiment on the NSL-KDD dataset. 

The X-axis shows the number of features, and the Y-axis 

shows the accuracy and kappa score. Fig. 10 presents the 

feature data description and data type of the NSL-KDD. 

2) Feature selection on UNSW-NB15 

At this stage, feature selection was performed on the 

UNSW-NB15 dataset using the RFE technique. Based on 

the experiments that have been done, the best features are 

nine features selected. Thus, the final dataset used for 

classification in the UNSw-NB15 dataset is 14,280 
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records, nine features, and nine classes. Fig. 11 presents 

the results of the feature selection experiment on the 

UNSW-NB15 dataset. The X-axis shows the number of 

features, and the Y-axis shows the accuracy and kappa 

score. Fig. 12 presents the feature data description and 

data type of the UNSW-NB15. 

 

 

Fig. 9. Features selection process on NSL-KDD. 

 

Fig. 10. List of selected features on NSL-KDD. 

 

Fig. 11. Features selection process on UNSW-NB15. 

 

Fig. 12. List of selected features on UNSW-NB15. 

B. Results of Classification Using a Single Classifier 

1) Single classification result on NSL-KDD 

Various values were obtained based on the results of 

classification experiments on the NSL-KDD dataset. The 

classifiers used are Decision Tree (DT) and Naïve Bayes 

(NB) single-based classifiers. Table VI presents the 

measurement results. 

Table VI presents the results of single classifiers, DT 

and NB, on the NSL-KDD dataset. Various performance 

metrics are evaluated, including accuracy, recall, 

precision, kappa-score, and F1-score. For the DT 

classifier, it achieves an accuracy of 99.6%, indicating its 

ability to classify instances correctly. The precision is 

99.5%, representing its capability to identify positive 

cases accurately. The recall rate is also 99.6%, indicating 

its ability to capture relevant data. The F1-score, which 

combines precision and recall, is 99.36%. The kappa-

score, measuring the agreement between predicted and 

actual classifications, is 98.2%, indicating an almost 

perfect level of understanding. The true detection count is 

4,466, and the false detection count is 285. 

TABLE VI. SINGLE CLASSIFICATION RESULTS ON NSL-KDD 

No Performance Metrics 
Single Classifier 

DT NB 

1 Accuracy (%) 99.36 74.62 

2 Precision (%) 99.35 84.33 

3 Recall (%) 99.36 74.62 

4 F1-Score (%) 99.36 78.19 

5 Kappa Score (%) 98.92 60.83 

6 Kappa Categoric Almost Perfect Substantial 

7 True Detection 44,266 33,246 

8 False Detection 285 11,305 

9 Total Detection 44,551 44,551 

10 Training Time 1.57 s 105 ms 

11 Testing Time 23.7 ms 91.8 ms 

 

In comparison, the NB classifier shows lower 

performance. It achieves an accuracy of 74.62%, 

precision of 84.33%, recall of 74.62%, and F1-score of 

78.19%. The kappa score is 60.83%, indicating a 

substantial level of agreement. The true detection count is 

33,246, and the false detection count is 11,305. 

The Table VI also includes information on the total 

detection count, which is the same for both classifiers at 

44,551. The training time for the DT classifier is 1.57 

seconds, while the NB classifier takes 105 ms to train. 

The testing time for the DT classifier is 23.7 ms, and for 

the NB classifier, it is 91.8 ms. 
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The DT classifier performs exceptionally well on the 

NSL-KDD dataset, achieving high accuracy, precision, 

and kappa score. On the other hand, the NB classifier has 

relatively lower accuracy and kappa-score, despite higher 

precision. The DT classifier demonstrates more efficient 

training and testing times than the NB classifier. 

2) Single classification result on UNSW-NB15 

Various values were obtained based on the results of 

classification experiments on the UNSW-NB15 dataset. 

The classifiers used are Decision Tree (DT) and Naïve 

Bayes (NB) single-based. Table VII presents the results 

of the measurement. 

TABLE VII. SINGLE CLASSIFICATION RESULTS ON UNSW-NB15 

No Performance Metrics 
Single Classifier 

DT NB 

1 Accuracy (%) 77.01 41.55 

2 Precision (%) 79.19 64.24 

3 Recall (%) 77.01 41.55 

4 F1-Score (%) 78.01 46.44 

5 Kappa Score (%) 70.93 33.11 

6 Kappa Categoric Substantial Fair 

7 True Detection 3,299 1,780 

8 False Detection 985 2,504 

9 Total Detection 4,284 4,284 

10 Training Time 74 ms 28 ms 

11 Testing Time 999 µs 9 ms 
 

Table VII presents the results of single classifiers, DT 

and NB, on the UNSW-NB15 dataset. It includes various 

performance metrics to evaluate the classifiers. The DT 

classifier achieves an accuracy of 77.01%, indicating its 

ability to classify instances correctly. The precision is 

79.19%, representing its capability to identify positive 

cases accurately. The recall rate is also 77.01%, 

indicating its ability to capture relevant data. The F1-

score, which combines precision and recall, is 78.01%. 

The kappa-score, measuring the agreement between 

predicted and actual classifications, is 70.93%, indicating 

a substantial level of understanding. The true detection 

count is 3,299, and the false detection count is 985. 

In comparison, the NB classifier shows lower 

performance on the UNSW-NB15 dataset. It achieves an 

accuracy of 41.55%, precision of 64.24%, recall of 

41.55%, and f1-score of 46.44%. The kappa score is 

33.11%, indicating a fair level of agreement. The true 

detection count is 1,780, and the false detection count is 

2,504. 

Table VII also includes information on the total 

detection count, which is the same for both classifiers at 

4,284. The training time for the DT classifier is 74 ms, 

while the NB classifier takes 28 ms to train. The testing 

time for the DT classifier is 999 µs, and for the NB 

classifier, it is nine ms. 

Overall, the DT classifier performs better than the NB 

classifier on the UNSW-NB15 dataset, achieving higher 

accuracy, precision, recall, and kappa-score. The NB 

classifier shows lower performance across these metrics. 

The true detection count is higher for the DT classifier, 

indicating its ability to capture more relevant instances. 

The DT classifier also demonstrates a slightly longer 

training time than the NB classifier, but both classifiers 

have relatively fast testing times. 

C. Results of Classification Using a Bagging (Ensemble) 

1) Ensemble classification result on NSL-KDD 

The classification approach is bagging at this stage, 

based on ensemble techniques. The classifier used as base 

learners is DT. Then this technique is called Bagging-DT 

(B-DT). Before classifying, the first step is to find the 

best estimator value. Based on the experiment on the 

NSL-KDD dataset, the best estimator value is 15 

estimators. Fig. 13 presents the visualization of the results 

of Bagging-DT performance values based on the number 

of estimators on NSL-KDD. The X-axis shows the 

number of estimators, and the Y-axis shows the accuracy, 

precision, recall, F-score, and kappa score. 

Based on Fig. 13, if we use DT as base-learner 

Bagging on the NSL-KDD dataset, the number of 

estimators used is 15. Furthermore, we can search for the 

performance value of the B-DT model using the 

confusion metric presented in Fig. 14. 

 

 

Fig. 13. Bagging-DT performance value results based on the number of estimators on NSL-KDD. 
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Fig. 14. B-DT confusion matrix on NSL-KDD. 

We can determine the model’s performance score 

based on the confusion matrix presented in Fig. 14. Based 

on the experimental results in the NSL-KDD dataset, the 

accuracy value = 99.45%. Table VIII shows the 

performance results of bagging-based classification 

(ensemble) on the NSL-KDD dataset. 

Table VIII presents the ensemble classification results 

on the NSL-KDD dataset. The performance metrics 

indicate the ensemble classifier’s accuracy, recall, 

precision, kappa-score, and F1-score. The ensemble 

classifier achieves a high accuracy rate of 99.45%, 

indicating its ability to classify instances correctly. The 

precision and recall rates are also 99.45%, demonstrating 

the classifier’s ability to identify positive cases and 

capture relevant data accurately. The F1-score, which 

combines precision and recall, is also 99.45%, indicating 

a balanced performance between precision and recall. 

The kappa-score, which measures the agreement between 

predicted and actual classifications, is almost perfect at 

99.08%, indicating a high level of understanding. The 

number of true detections is 44,308, while the number of 

false detections is 243. The total detection count is 44,551, 

indicating the ensemble classifier’s ability to handle the 

entire dataset. The training time for the ensemble 

classifier is 8.46 seconds, and the testing time is 188 

milliseconds, demonstrating its data processing efficiency. 

Additionally, the ensemble classifier is composed of 15 

estimators. Overall, the ensemble classifier exhibits 

excellent performance in accurately classifying instances 

and achieving a high level of agreement with the actual 

classifications on the NSL-KDD dataset. 

TABLE VIII. ENSEMBLE CLASSIFICATION RESULTS ON NSL-KDD 

No Performance Metrics B-DT Model (Proposed) 

1 Accuracy (%) 99.45 

2 Precision (%) 99.45 

3 Recall (%) 99.45 

4 F1-Score (%) 99.45 

5 Kappa Score (%) 99.08 

6 Kappa Categoric Almost Perfect 

7 True Detection 44,308 

8 False Detection 243 

9 Total Detection 44,551 

10 Training Time 8.46s 

11 Testing Time 188 ms 

12 Number of Estimator 15 

 

2) Ensemble classification result on UNSW-NB15 

At this stage, we utilize the classification method of 

Bagging, which is based on ensembles. The base learners 

for the ensemble are Decision Trees. Then this technique 

is called Bagging-DT (B-DT). Before classifying, the first 

step is to find the best estimator value. Based on the 

experiment on the UNSW-NB15 dataset, obtained the 

best estimators are 75 estimators. Fig. 15 presents the 

visualization of the results of Bagging-DT performance 

values based on the number of estimators on UNSW-

NB15. The X-axis shows the number of estimators, and 

the Y-axis shows the accuracy, precision, recall, F-score, 

and kappa score. 

 

 

Fig. 15. Bagging-DT performance value results based on the number of estimators on UNSW-NB15. 
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Based on Fig. 15, if we use DT as a base-learner 

bagging on the UNSW-NB15 dataset, the number of 

estimators must be used is 75. Furthermore, we can 

search for the performance value of the B-DT model 

using the confusion metric presented in Fig. 16. 

 

 

Fig. 16. B-DT confusion matrix on UNSW-NB15. 

We can determine the model’s performance score 

based on the confusion matrix presented in Fig. 16. Based 

on the experimental results in the UNSW-NB15 dataset, 

the accuracy value was obtained = 79.67%. Table IX 

presents the performance results of bagging-based 

classification (ensemble) on the UNSW-NB15 dataset. 

TABLE IX. ENSEMBLE CLASSIFICATION RESULTS ON UNSW-NB15 

No Performance Metrics B-DT Model (Proposed) 

1 Accuracy (%) 79.67 

2 Precision (%) 78.89 

3 Recall (%) 79.67 

4 F1-Score (%) 79.20 

5 Kappa Score (%) 73.90 

6 Kappa Categoric Substantial 

7 True Detection 3,413 

8 False Detection 871 

9 Total Detection 4,284 

10 Training Time 4.35 s 

11 Testing Time 112 ms 

12 Number of Estimator 75 

 

Table IX presents the ensemble classification results 

on the UNSW-NB15 dataset. The performance metrics 

indicate the ensemble classifier’s accuracy, recall, 

precision, kappa-score, and F1-score. The ensemble 

classifier achieves an accuracy rate of 79.67%, indicating 

the model can classify the intrusion well. The precision 

rate is 78.89%, demonstrating the classifier’s ability to 

identify positive cases accurately. The recall rate is 

7.67%, representing the classifier’s ability to capture 

relevant data. The F1-score, which combines precision 

and recall, is 79.20%. The kappa-score, which measures 

the agreement between predicted and actual 

classifications, is 7.90%, indicating a substantial level of 

understanding. The number of true detections is 3,413, 

while the number of false detections is 871. The total 

detection count is 4,284, indicating the classifier’s ability 

to handle the entire dataset. The training time for the 

ensemble classifier is 4.35 s, and the testing time is 

112  ms, showcasing its efficiency in processing the data. 

Additionally, the ensemble classifier is composed of 75 

estimators. Overall, the ensemble classifier performs well 

in accurately classifying instances and substantially 

agreeing with the actual classifications on the UNSW-

NB15 dataset. 

D. Compare the Result of Single and Ensemble 

1) Compare result classification on NSL-KDD 

In this section, we compared the experimental results 

with the performance of different models. When 

comparing the performance of single and ensemble 

models on the NSL-KDD dataset, it becomes evident that 

the ensemble outperforms the single classifier. We 

present the results of comparing single and ensemble-

based classifications in Table X. 

Table X compares the results of single classifiers (DT 

and NB) with an ensemble classifier (B-DT Model) on 

the NSL-KDD dataset. The performance metrics include 

accuracy, precision, recall, f1-score, and kappa-score.  

For the DT (Single) classifier, it achieves an accuracy 

of 99.36%, demonstrating its ability to classify instances 

accurately. The precision is 99.35%, indicating its 

capability to identify positive cases correctly. The recall 

rate is 99.36%, representing its ability to capture relevant 

data. The f1-score, which combines precision and recall, 

is also 99.36%. The kappa-score, measuring the 

agreement between predicted and actual classifications, is 

98.92%, indicating an almost perfect level of 

understanding. The true detection count is 44,266, and the 

false detection count is 285. 

TABLE X. COMPARE RESULTS OF SINGLE AND ENSEMBLE CLASSIFIER 

ON NSL-KDD 

No 
Performance 

Metrics 

DT 

(Single) 

NB 

(Single) 

B-DT Model 

(Proposed) 

1 Accuracy (%) 99.36 74.62 99.45 

2 Precision (%) 99.35 84.33 99.45 

3 Recall (%) 99.36 74.62 99.45 

4 F1-Score (%) 99.36 78.19 99.45 

5 Kappa Score (%) 98.92 60.83 99.08 

6 Kappa Categoric 
Almost 

Perfect 
Substantial 

Almost 

Perfect 

7 True Detection 44,266 33,246 44,308 

8 False Detection 285 11,305 243 

9 Total Detection 44,551 44,551 44,551 

10 Training Time 1.57 s 105 ms 8.46 s 

11 Testing Time 23.7 ms 91.8 ms 188 ms 

 

In comparison, the NB (Single) classifier shows 

slightly lower performance. It achieves an accuracy of 

74.62%, precision of 84.33%, recall of 74.62%, and f1-

score of 78.19%. The kappa score is 60.83%, indicating a 

substantial level of agreement. The true detection count is 

33,246, and the false detection count is 11,305. 

The proposed ensemble classifier, B-DT Model, 

demonstrates strong performance with an accuracy of 

99.45%, precision of 99.45%, recall of 99.45%, and F1-

score of 99.45%. The kappa score is 99.08%, indicating 

an almost perfect level of agreement. The true detection 

count is 44,308, and the false detection count is 243. 
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The training time for the single classifiers is 1.57 s for 

DT and 105 ms for NB, while the ensemble classifier 

takes 8.46 seconds to train. The testing time for the single 

classifiers is 23.7 ms for DT and 91.8 ms for NB, while 

the ensemble classifier requires 188 ms for testing. 

Overall, the B-DT Model ensemble classifier 

outperforms both single classifiers regarding accuracy, 

precision, and kappa-score on the NSL-KDD dataset. It 

achieves a high level of agreement with the actual 

classifications and demonstrates efficient training and 

testing times. Fig. 17 presents the visualization of the 

performance comparison between single classifier-based 

and B-DT models. The X-axis shows the measurement 

metric, and the Y-axis shows the score of each measure 

(accuracy, precision, recall, F-score, and kappa score). 

 

 

Fig. 17. Comparison of single and B-DT on NSL-KDD. 

2) Compare result classification on UNSW-NB15 

Based on the experimental results, we assessed and 

compared the performance of several models. Comparing 

the performance of the single and ensemble models on 

the UNSW-NB15 dataset shows that the ensemble’s 

performance is superior to the old technique (single 

classifier). Table XI presents the outcomes of a 

comparison between single and ensemble-based 

classifications. 

TABLE XI. COMPARE RESULTS OF SINGLE AND ENSEMBLE CLASSIFIER 

ON UNSW-NB15 

No 
Performance 

Metrics 

DT 

(Single) 

NB 

(Single) 

B-DT Model 

(Proposed) 

1 Accuracy (%) 77.01 41.55 79.67 

2 Precision (%) 79.19 64.24 78.89 

3 Recall (%) 77.01 41.55 79.67 

4 F1-Score (%) 78.01 46.44 79.20 

5 Kappa Score (%) 70.93 33.11 73.90 

6 Kappa Categoric Substantial Fair Substantial 

7 True Detection 3,299 1,780 3,413 

8 False Detection 985 2.504 871 

9 Total Detection 4,284 4,284 4,284 

10 Training Time 74 ms 28 ms 4.35 s 

11 Testing Time 999 µs 9 ms 112 ms 

 

Table XI compares the results of single classifiers (DT 

and NB) with an ensemble classifier (B-DT Model) on 

the UNSW-NB15 dataset. The performance metrics 

include accuracy, precision, recall, F1-score, and kappa-

score. 

For the DT (Single) classifier, it achieves an accuracy 

of 77.01%, indicating its ability to classify instances 

correctly. The precision is 79.19%, representing its 

capability to identify positive cases accurately. The recall 

rate is 77.01%, indicating its ability to capture relevant 

data. The F1-score, which combines precision and recall, 

is 78.01%. The kappa-score, measuring the agreement 

between predicted and actual classifications, is 70.93%, 

indicating a substantial level of understanding. The true 

detection count is 3,299, and the false detection count is 

985. 

In comparison, the NB (Single) classifier shows lower 

performance. It achieves an accuracy of 41.55%, 

precision of 64.24%, recall of 41.55%, and F1-score of 

46.44%. The kappa score is 33.11%, indicating a fair 

level of agreement. The true detection count is 1,780, and 

the false detection count is 2,504. 

The proposed ensemble classifier, B-DT Model, 

demonstrates improved performance with an accuracy of 

79.67%, precision of 78.89%, recall of 79.67%, and F1-

score of 79.20%. The kappa score is 73.90%, indicating a 

substantial level of agreement. The true detection count is 

3,413, and the false detection count is 871. 

The training time for the single classifiers is 74 

milliseconds for DT and 28 milliseconds for NB, while 

the ensemble classifier takes 4.35 seconds to train. The 

testing time for the single classifiers is 999 µs for DT and 

nine milliseconds for NB, while the ensemble classifier 

requires 112 milliseconds for testing. 

Overall, the B-DT Model ensemble classifier 

outperforms both single classifiers regarding accuracy, 

precision, and Kappa Score on the UNSW-NB15 dataset. 

It achieves a higher level of agreement with the actual 

classifications and demonstrates efficient training and 

testing times. Fig. 18 presents the visualization of the 

performance comparison of single classifier-based and B-

DT models. The X-axis shows the measurement metric, 

and the Y-axis shows the score of each measure 

(accuracy, precision, recall, F-score, and kappa score). 

 

 

Fig. 18. Comparison of single and B-DT on UNSW-NB15. 

E. Statistic Test Result 

Statistical testing is necessary to assess model testing 

results derived from single and ensemble classifiers. This 

statistical test aims to determine the model 

improvement’s significance level. We conducted 

statistical testing using a non-parametric test technique. It 
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uses the McNemar technique. McNemar’s statistical test 

does not rely on specific assumptions about the data 

distribution [35]. It compares paired classifiers by 

analyzing their performance on a test set. This test allows 

us to determine if there are significant differences 

between the paired classifiers based on their performance. 

The significance level (α) is set at 0.05 or with the chi-

square table (X2
table) value of 3,841. Table XII presents 

the statistical test results. 

Table XII presents the results of statistical tests 

comparing the Decision Tree (DT) classifier with the B-

DT classifier and the Naive Bayes (NB) classifier with 

the B-DT classifier. It includes the statistic values for 

each comparison on two datasets, NSL-KDD and 

UNSW-NB15. 

For the comparison between DT and B-DT on the 

NSL-KDD dataset, the statistic obtained value is 13,341. 

Thus, this value is greater than the chi-square (X2
Table), 

where the chi-square value (X2
Table) is determined to be 

3,841. This value represents the result of a statistical test 

conducted to assess the difference in performance 

between the two classifiers (DT vs B-DT). There is a 

significant increase. Similarly, for the comparison 

between NB and B-DT on the NSL-KDD dataset, the 

statistic value is 10,919,825. This value indicates the 

outcome of the statistical test performed to evaluate the 

performance difference between the NB and the B-DT 

classifiers.  

TABLE XII. STATISTIC TEST RESULT WITH MCNEMAR’S TEST 

No Dataset 
Statistic Value (X2) 

DT vs (B-DT) NB vs (B-DT) 

1 NSL-KDD 13,341 10,919,825 

2 UNSW-NB15 53,204 1,363,760 

 

Moving to the UNSW-NB15 dataset, the statistic value 

for the DT vs B-DT comparison is 53,204. This value 

reflects the statistical test result comparing the DT 

classifier with the B-DT classifier on this dataset. Finally, 

for the NB vs B-DT comparison on the UNSW-NB15 

dataset, the statistic value is 1,363,760. This value 

represents the outcome of the statistical test performed to 

assess the difference in performance between the NB 

classifier and the B-DT classifier on the UNSW-NB15 

dataset. These statistic values provide insights into the 

significance of the performance differences observed 

between the classifiers. Higher statistic values indicate a 

more significant difference in performance between the 

compared classifiers (Single vs Ensemble). 

F. Comparison of True and False Detection Results 

The following is the comparison result of false and true 

detection. We conducted the experiments on two datasets, 

namely NSL-KDD and UNSW-NB15. Fig. 19 compares 

true and false detection results on the NSL-KDD dataset. 

Fig. 20 shows the comparison of true and false detection 

results on the UNSW-NB15 dataset. The X-axis shows 

the classifier, and the Y-axis shows the true and false 

detection numbers. 

Based on Fig. 19, the B-DT model has improved 

performance compared to DT and NB. This performance 

improvement is demonstrated by correctly detecting 

44,308 intrusions compared to only 243 incorrectly 

detected instances. Meanwhile, the DT and NB models 

still found many detection errors. The DT model detected 

44,266 correct data and 285 incorrect detections. 

Meanwhile, the NB model detected 33,246 correct data 

and 11,305 false detection data. 

 

 

Fig. 19. True and false detection results on NSL-KDD. 

 

Fig. 20. True and false detection results on UNSW-NB15. 

Based on Fig. 20, the B-DT model has improved 

performance compared to DT and NB. This performance 

enhancement is substantiated by correctly detecting 3,413 

instances of intrusions, in contrast to 871 incorrectly 

detected cases. Meanwhile, the DT and NB models still 

found many detection errors. The DT model had 3,299 

correct detections and 985 incorrect detections. 

Meanwhile, the NB model had 1,780 correct data 

detections and many false detections, reaching 2,504 data. 

G. Performance Comparison of B-DT with Other 

Models 

Model evaluation in this study is critical. The model 

evaluation aims to measure the success rate of model 

improvement. One of the evaluation methods used to 

measure model performance is to measure values based 

on confusion metrics. In addition, model performance can 

also be evaluated by comparing the performance of the B-

DT model with the performance of models in other 

studies. 

Table XIII compares the B-DT model proposed in this 

study and several existing Intrusion Detection System 

(IDS) models from various references. The comparison 

encompasses factors such as the dataset used, Feature 

Selection (FS) algorithm, the proposed method, 
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classification technique, classification type, and achieved 

accuracy. The references span a range of years and 

datasets, and they employ single and ensemble classifier 

techniques. Table XIII provides valuable insights into the 

performance of the B-DT model about the broader 

landscape of existing IDS models. 

The B-DT model showcased significant success, as 

evidenced by its superior performance compared to 

several existing IDS models. Based on Table XIII, the B-

DT model’s accuracy rates for the NSL-KDD and 

UNSW-NB15 datasets surpass those of the other models. 

For the NSL-KDD dataset, the B-DT model achieved an 

accuracy of 99.45%, while for the UNSW-NB15 dataset, 

it achieved an accuracy of 79.67%. This comparison 

demonstrates the B-DT model’s effectiveness in 

achieving high accuracy levels for multi-class 

classification scenarios. These results underscore the 

potential of the B-DT ensemble classifier in enhancing 

IDS performance across diverse datasets and 

classification types. 

TABLE XIII. COMPARISON OF B-DT MODEL VS EXISTING IDS MODEL 

Ref.# (Year) Dataset FS Algorithm Proposed Method Classification Technique Classification Type Accuracy 

Yang et al. [24] (2019) KDD CUP’99 - LM-BP Single Classifier Multi-Class 99.31% 

Almasoudy et al. [27] 

(2020) 
NSL-KDD DE ELM Single Classifier Binary, Multi-Class 80.15% 

Wisanwanichthan and 

Thammawichai [28] 

(2021) 

NSL-KDD ICFS and PCA DLHA Single Classifier Multi-Class 88.97% 

Amarudin et al. [21] 

(2022) 
UNSW-NB15 - SVM Single Classifier Multi-Class 75.89% 

Amarudin et al. [22] 

(2022) 
UNSW-NB15 - SVM Single Classifier Multi-Class 75.89% 

Vishwakarma and 

Kesswani [18] (2023) 
UNSW-NB15 - Naïve Bayes Single Classifier Binary Class 86.09% 

Vishwakarma and 

Kesswani [18] (2023) 
NSL-KDD - Naïve Bayes Single Classifier Binary Class 97.00% 

This Study (2023) UNSW-NB15 RFE DT Single Classifier Multi-Class 77.01% 

This Study (2023) UNSW-NB15 RFE NB Single Classifier Multi-Class 41.55% 

This Study (2023) NSL-KDD RFE DT Single Classifier Multi-Class 99.36% 

This Study (2023) NSL-KDD RFE NB Single Classifier Multi-Class 74.62% 

Proposed (2023) 
UNSW-NB15, 

NSL-KDD 
RFE B-DT Ensemble Classifier Multi-Class 

79.67%, 

99.45% 

 

VI. CONCLUSION 

This research introduces a derivative ensemble 

approach called B-DT, which combines a single classifier 

(Decision Tree) and a Bagging technique. Bagging is one 

of the ensembles learning techniques that perform well in 

classification. In addition, the B-DT model combines 

with a wrapper-based feature selection technique. The 

feature selection technique used as a wrapper is Feature 

Recursive Elimination (FRE).  

Based on the experiment in this study, the B-DT model 

significantly enhances the performance of IDS. 

Combining the RFE and B-DT models can reduce data 

bias and overfit in the model. The B-DT model 

demonstrates the highest accuracy of 99.45% on the 

NSL-KDD dataset, surpassing the accuracy achieved by 

the individual classifiers (DT: 99.36% and NB: 74.62%). 

Similarly, on the UNSW-NB15 dataset, the B-DT model 

achieves an accuracy of 79.67% compared to the 

individual classifiers (DT: 77.01% and NB: 41.55%).  

Besides that, this B-DT model can reduce false 

detection. The test results on the NSL-KDD dataset 

showed 44,308 true and 243 false detections. The 

detection test results on the UNSW-NB15 dataset showed 

3,413 true detection results and 871 false detections. 

Therefore, the paper concludes that applying B-DT 

models based on an ensemble classifier can solve 

problems that occur in IDS. However, this study ignores 

the use of processing time. The evaluation of IDS 

superiority is only based on metrics: accuracy, recall, 

precision, kappa score, and F1-score. In our future studies, 

we will explore the application of ensemble classifiers in 

combination with other feature selection techniques. By 

exploring ensemble classifier and feature selection 

methods, we hope to improve IDS performance for the 

better in the future. 
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