
B-DT Model: A Derivative Ensemble Method

to Improve Performance of Intrusion Detection

System

Amarudin 1,2, Ridi Ferdiana 1,*, and Widyawan 1

1 Department of Electrical Engineering and Information Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
2 Faculty of Engineering and Computer Science, Universitas Teknokrat Indonesia, Lampung, Indonesia

Email: amarudin@mail.ugm.ac.id, amarudin@teknokrat.ac.id (A.); ridi@ugm.ac.id (R.F.); widyawan@ugm.ac.id (W.)

*Corresponding author

Abstract—In cyber security, system security must be

prioritized. Therefore, to improve system security, a system

device called an Intrusion Detection System (IDS) is needed.

IDS is a system that can detect suspicious activity on a

system or network. The constraint of IDS is many types of

attacks appear now, making it difficult to detect them.

Therefore, many IDS based on machine learning have been

applied to overcome this constraint. And machine learning

has been widely adopted to improve IDS performance.

However, false detection occurs frequently. The problem

raised in this study is the large number of false detections

that still occur. The main objective of this study is to reduce

the occurrence of false detection in IDS. Then, to achieve

this objective, this paper proposes a model called the B-DT

model. The Bagging-DT (B-DT) model combines the

Bagging technique ensemble-base and Decision Tree (DT)

classifier. The B-DT model was trained and evaluated on

NSL-KDD and UNSW-NB15 datasets. The results showed

that it can reduce false detection from 11,305 data to 243

data in the NSL-KDD dataset. Besides that, the B-DT model

can reduce false detection from 2,504 data to 871 in the

UNSW-NB15 dataset. In addition, model performance has

increased in accuracy, precision, recall, f1-score, and kappa-

score. Based on the results, the B-DT model’s performance

can achieve an accuracy of 99.45% on the NSL-KDD

dataset and 79.67% on the UNSW-NB15 dataset. This

model can work well not only on binary-class data but also

on multi-class labeled data. The statistical evaluation shows

this model has increased significantly compared to other

models. These results suggest that the proposed B-DT model

can effectively enhance the performance of IDS and be a

promising solution for practical applications.

Keywords—cyber security, network security, intrusion

detection system, ensemble learning, bagging, machine

learning, decision tree

I. INTRODUCTION

Intrusion Detection System (IDS) is a technology that

detects unauthorized access or malicious activity within a

computer system or network [1]. The primary goal of an

IDS is to identify and alert administrators of potential

security threats. IDS can be either host-based, installed on

individual computers, or network-based, deployed to

monitor network traffic. The two main types of IDS are

signature-based and anomaly-based [2]. Signature-based

IDS detects known threats by matching the incoming

traffic against a database of known attack signatures. On

the other hand, anomaly-based IDS detects suspicious

activity by analyzing the behavior of the system or

network and comparing it to a baseline of normal

behavior. An IDS is essential to a comprehensive security

solution and can significantly enhance an organization’s

security posture.

Nowadays, most of the development of IDS has been

integrated with Machine Learning (ML) or Deep

Learning (DL). ML and DL have developed rapidly and

have been widely adopted in several domains such as

cyber security [3, 4], computer vision [5], sentiment

analysis [6], healthcare systems [7, 8] image

processing [9, 10], Internet of Things (IoT) [11], electric

vehicles [12], and others. One of the current research

topics in the cybersecurity field is the Intrusion Detection

System (IDS), and intrusion detection is a critical topic in

cybersecurity [13].

Machine learning has been increasingly applied to

Intrusion Detection Systems (IDSs) to improve their

accuracy and efficiency [14]. An IDS is a security

mechanism that monitors and detects unauthorized access

or malicious activities on a network or computer system.

Machine learning algorithms can analyze large amounts

of data and identify patterns that may indicate a security

threat. The algorithms can learn from the data, identify

deviations from normal behaviour, and generate alerts

when it detects any unusual or malicious activity. It

makes IDSs more effective in detecting zero-day exploits

and sophisticated attacks. Additionally, machine learning

algorithms can be updated with new data in real-time,

allowing the system to adapt to changing threats and

improve accuracy.

However, using the machine learning approach

commonly encounters three primary obstacles [15], i.e.,

massive attack variants, imbalanced data distribution, and

the need for suitable data segmentation strategies. Based

on these obstacles it has an impact new problem on the

application of machine learning, i.e., (1) Lack of

Manuscript received June 25, 2023; revised July 20, 2023; accepted

September 4, 2023; published January 18, 2024.

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

87doi: 10.12720/jait.15.1.87-103

mailto:amarudin@mail.ugm.ac.id
mailto:amarudin@teknokrat.ac.id
mailto:ridi@ugm.ac.id
mailto:widyawan@ugm.ac.id

interpretability: One of the biggest challenges with

machine learning models is they can be difficult to

interpret and understand, making it difficult to determine

why the system made a particular decision. It can pose

problems when trying to assess the accuracy of the IDS

or respond to false alarms. (2) Data bias: Machine

learning models are only as good as the training data. If

the data used to train the model is biased or

unrepresentative, then the model will also be limited,

which can lead to poor results in intrusion detection. (3)

Overfitting: Overfitting is a common problem in machine

learning models where the model becomes too closely fit

to the training data, and as a result, it is not generalizable

to new, unseen data. It can be a problem in intrusion

detection, where the model might flag regular activity as

suspicious. Based on these three problems, false positives

and false negatives can occur in IDS. According to

research by Lin et al. [16], out of 2,821 detected alert

data, 1,138 were false positives.

A false positive is data traffic normal on the network

but is detected as an intrusion. Whereas a false negative is

an intrusion on the system, it is seen by IDS as a normal

condition. And if this happens, this is the most

challenging case in system security. Therefore, to

overcome the problem of false positives and negatives in

IDS, it is necessary to develop better machine learning

techniques to increase IDS performance.

Many machine learning techniques are applied to build

an IDS. Some old methods that researchers often use are

applying the single classifier technique, e.g., Decision

Tree, Support Vector Machine (SVM) [17], Naïve [18],

Random Forest [19], etc. However, the model’s

performance does not work well when applied to large

datasets and detecting attacks that appear, so false

positives and negatives are often found [20]. An

ensemble technique can potentially provide a solution

when a single classifier technique falls short in resolving

a case. To adjust this case, we can apply many other

machine-learning techniques to build an IDS.

Several recent studies have implemented an ensemble

classifier as a new technique in building IDS [21, 22].

However, the performance of this technique is not

optimal and can still be developed further with other

methods. Our motivation in this study was to identify the

most effective approach and demonstrate the performance

of ensemble classifiers. The main contributions of this

research can be summarized as follows:

• Enhance the performance of single classifiers

when applied to intrusion detection systems.

• Introduce a derivative ensemble approach called

Bagging-DT (B-DT), which utilizes the bagging

technique.

• Introduce a Recursive Feature Elimination (RFE)

technique to overcome data bias and overfit

problems.

• The proposed method can reduce false detection

on IDS.

• Introduce and show that the proposed method (B-

DT model) demonstrates superior performance

compared to basic single-classifier methods in

accuracy, recall, precision, kappa-score, and f1-

score.

The article is organized into six sections. Section I

provides an introduction, Section II presents the literature

review, Section III outlines the materials and methods

used, Section IV describes the proposed method,

Section V presents the results and discusses them, and

Section VI concludes the article and suggests future

studies.

II. LITERATURE REVIEW

Many techniques can be used to develop an IDS. Some

of the research applies machine learning to build it. Wang

et al. [23] developed an Intrusion Detection System (IDS)

using a single classifier approach to machine learning-

based, specifically SVM and Extreme Learning Machines

(ELMs). The performance of these classifiers was

assessed on the NSL-KDD and UNSW-NB15 datasets.

The study emphasized the importance of fast learning

speed in NIDS for ensuring prompt and effective defense

reactions.

Wang et al. [23] proposed a modified version of ELM

called the equality Constrained-optimization-based ELM

(C-ELM), which incorporates features from least squares

support vector machines. That paper focuses on the

application of C-ELM in network intrusion detection.

They propose an adaptively incremental learning strategy

to determine the optimal number of hidden neurons. The

article also presents the optimization criteria and a

method for dynamically increasing hidden neurons using

binary search. However, this study did not use an

ensemble technique. Therefore, for further research, there

is still an opportunity to improve model performance by

combining ensemble classifier techniques and feature

selection techniques.

Yang et al. [24] conducted a research study that

focused on applying a single classifier. However, they

used the KDD CUP 99 dataset, which is considered

outdated. Their studies relied on a single classifier

technique, specifically the LM-BP Neural Network. Even

though they achieved a relatively high accuracy of

93.31%, there is still room for improvement by

combining ensemble classifier techniques and other

feature selection techniques. Similarly, Jupriyadi [25]

utilized the NSL-KDD dataset but still used a single

classifier technique.

Kurniabudi et al. [26] utilized a feature selection

technique combining Information Gain (IG), Ranking,

and Grouping methods. They researched using the

CICIDS-2017 dataset and applied Information Gain (IG)

as a feature selection technique. However, they do not

include ensemble techniques as classifiers, which results

in independent functionality of each classifier with no

increase in performance across classifiers. Therefore,

improving overall model performance by leveraging

ensemble classifiers is still possible.

The research conducted by Almasoudy et al. [27] has

developed a machine learning-based IDS with feature

selection and classification techniques. The research used

feature selection using the Differential Evolution (DE)

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

88

and Extreme Learning Machine (ELM) classification

techniques. Then the model is tested on the NSL-KDD

dataset. The test results show an increase in IDS

performance when DE reduces features. The

classification accuracy results for nine features and five

classes are 80.15%. Whereas without feature selection

(41 features five classes), the accuracy is only 76.44%.

However, this research has not yet applied the ensemble

classifier technique, so there are still opportunities to

develop further research.

Wisanwanichthan and Thammawichai [28] introduced

a novel technique called the Double-Layered Hybrid

Approach (DLHA). This approach combines two

classifiers, namely Naïve Bayes (NB) and SVM, in a two-

layer architecture. The first layer utilizes Naïve Bayes

(NB) to detect Denial-of-Service (DoS) and Probes, while

the second layer employs SVM to identify R2L and U2R

attacks. However, it should be noted that if a new type of

attack emerges beyond the general categories of DoS,

Probe, R2L, and U2R, the IDS may fail to detect it.

Additionally, using the NSL-KDD dataset in the research

is considered outdated. Therefore, future studies have the

potential to explore new datasets to develop and evaluate

models beyond the limitations of NSL-KDD.

Vishwakarma and Kesswani [18] implemented

machine learning in making a single classifier-based IDS.

This research works well even though the data

distribution is not balanced and reaches an accuracy value

of 97%. However, the model’s performance only works

well on binary-class data and doesn’t work well when

applied to multi-class data. For this reason, the

classification problem in multi-class data still needs

further research.

Based on several previous studies, many studies in the

IDS field still use a single classifier. Although some

studies have implemented the feature selection technique,

they still do not use the ensemble classifier technique. In

comparison, this study focuses on developing an

ensemble classifier-based IDS with a Bagging technique

called the B-DT model combined with RFE. Table I

presents the summary of related studies.

TABLE I. SUMMARY OF RELATED STUDIES

Ref.# (Year) Dataset FS Algorithm Proposed Method Classification Technique

Wang et al. [23] (2018) NSL-KDD, UNSW-NB15 - C-ELM Single Classifier

Yang et al. [24] (2019) KDD CUP 99 - LM-BP Single Classifier

Almasoudy et al. [27] (2020) NSL-KDD DE ELM Single Classifier

Wisanwanichthan and

Thammawichai [28] (2021)
NSL-KDD ICFS and PCA DLHA Single Classifier

Pranto et al. [3] (2022) NSL-KDD Basic FS
k-NN, DT, NB, LR,

RF, Voting
Single Classifier

Vishwakarma and Kesswani [18]

(2023)

NSL-KDD, UNSW-NB15, and

CIC-IDS2017
- Naïve Bayes Single Classifier

This Study (2023) NSL-KDD, UNSW-NB15 RFE B-DT Ensemble Classifier

III. MATERIALS AND METHODS

This section discusses the method used in building the

B-DT model. This model is made from two techniques.

Namely, bagging techniques ensemble-based and

classification techniques using Decision Tree (DT). Then,

this model is tested using a public dataset (NSL-KDD,

UNSW-NB15). In addition, the performance of this

model is compared with the other models to find out

which model is the best.

This study has six process stages, from dataset

collection to evaluation of the B-DT model. Stage 1

Dataset preparation. Stage 2 Data pre-processing. Stage 3

Feature Selection using Recursive Feature Elimination

(RFE). Stage 4 Constructing a machine learning model

using a combination of bagging ensemble and decision

tree classifier. Stage 5 Implement the proposed method

by conducting a training and testing model using the B-

DT Model. And Stage 6 evaluates the model to get the

best performance. Fig. 1 presents an overview of the

research process.

The study utilized a computer system with the

following specifications: an Intel Core i7-6600U CPU @

2.60 GHz, 2.81 GHz, SSD=1 TB, and RAM=16 GB. The

machine learning model was implemented using Python

3.9.7 and executed on the Microsoft Windows 10

operating system. The Python libraries employed in the

study included Numpy 1.22.2, Pandas 1.3.4, Matplotlib

3.4.3, and Scikit-learn 1.1.1.

Fig. 1. Overview of the research process.

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

89

A. Dataset Preparation

The IDS validation depends mainly on the datasets

used in the evaluation. Simulating intrusive behavior

allows us to evaluate the IDS’s capability. However,

obtaining real traffic for commercial products is difficult

due to privacy reasons. Many public datasets have been

developed that can be used to build IDS, including

KDDCup99, NSL-KDD, UNSW-NB15, CIC-IDS-2017,

ISCX, etc. Many researchers use them for benchmarking.

We used the most commonly used IDS dataset [29]:

NSL-KDD and UNSW-NB15.

Fig. 2. List of features on NSL-KDD.

1) NSL-KDD dataset description

The NSL-KDD dataset is a new type of dataset which

is the development of the KDDCup’99 dataset. The NSL-

KDD dataset can be downloaded from

https://www.unb.ca/cic/datasets/nsl.html. Even though

the NSL-KDD dataset is old, researchers still use it today

because the data is clean. The original NSL-KDD dataset

comprises 148,515 records, 43 features, and 40 class

labels. Fig. 2 presents the feature data description and

data type of the NSL-KDD.

2) UNSW-NB15 dataset description

The UNSW-NB15 dataset is a new type of dataset

compared to the NSL-KDD. It is a public dataset. We can

download this dataset from the official UNSW Sydney

website at https://research.unsw.edu.au/projects/unsw-

nb15-dataset. This original dataset comprises 700,001

records, 49 features, and ten classes. Fig. 3 presents the

feature data description and data type of the UNSW-

NB15.

Fig. 3. List of features on UNSW-NB15.

B. Data Pre-processing

Various actions are undertaken during pre-processing,

including data transformation, filtering, and

normalization. This pre-processing is done to the NSL-

KDD and UNSW-NB15 datasets to increase

classification performance. The following is the pre-

processing process for the NSL-KDD and UNSW-NB15

datasets.

1) Data transformation

The NSL-KDD and UNSW-NB15 datasets contain

numerous features and data in different formats,

including alphabets, numbers, symbols, etc. Analyzing

these features can be time-consuming and resource

intensive. Therefore, to overcome these challenges, a

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

90

transformation process was applied to convert symbolic

features into numeric features, aiming to mitigate

processing time and hardware resource usage. Fig. 4 is an

example of the data transformation process in NSL-KDD.

Fig. 4. Example of data transformation process on NSL-KDD.

In addition to the transformations performed on the

NSL-KDD dataset, we also performed on the UNSW-

NB15 dataset. The symbolic features in the NSL-KDD

dataset that were changed to numeric include: “scrcip”,

“sport”, “dstip”, “dsport”, “proto”, “state”, “service”, and

“attack_cat”.

2) Data filtering

We filtered the data on the NSL-KDD dataset by

grouping the class types from 40 into five groups: DoS,

Probing, R2L, U2R, and Normal. Whereas in the UNSW-

NB15 dataset, there is no class grouping. The UNSW-

NB15 dataset consists of 10 classes: DoS, Generic,

Exploit, Fuzzers, Reconnaissance, Backdoors, Analysis,

Shellcode, Worms, and Normal. In addition, irrelevant

data was also deleted. For example, on the NSL-KDD

dataset, too little data was deleted: “xsnoop”, “spy”,

“worm”, “sqlattack”, and “udpstorm”. In the UNSW-

NB15 dataset, there was no class deletion, but duplicate

data was removed. For example, the “normal” class on

UNSW-NB15 was also separated from the dataset.

3) Data normalization

This process adjusts the feature value range to a

balanced and proportional range. In this study, each value

within a featured record is scaled using Eq. (1), where X'

represents the normalized value, X is the current value in

the feature’s record, and Xmaximum denotes the

maximum values within the feature record. As a result,

the range of record values is transformed to lie between

zero and one.

maximum

'
X

X
X

= (1)

Based on the pre-processing that has been done, the

final dataset is obtained, ready to be used for the

classification process. The NSL-KDD dataset comprises

148,503 records, 42 features, and five classes. Table II

presents the distribution of class data for training and

testing the NSL-KDD dataset. The visualization of the

class distribution of training and testing data is shown in

Fig. 5. The X-axis shows the class name (type of

intrusion), and the Y-axis shows the training and testing

data amount.

TABLE II. DISTRIBUTION OF CLASS ON NSL-KDD

No Class Name Data Train Data Test

1 Normal 53,937 23,116

2 DoS 37,354 16,009

3 Probing 9,848 4,221

4 R2L 2,750 1,179

5 U2R 63 26

Total 103,952 44,551

Total Train and Test 148,503

Fig. 5. NSL-KDD class distribution (training vs testing).

TABLE III. DISTRIBUTION OF CLASS ON UNSW-NB15

No Class Name Data Train Data Test

1 Exploits 2,825 1,251

2 Fuzzers 2,791 1,166

3 Generic 1,989 844

4 Reconnaissance 1,219 521

5 DoS 570 255

6 Analysis 225 91

7 Backdoors 211 75

8 Shellcode 151 72

9 Worms 15 9

Total 9,996 4,284

Total Train and Test 14,280

The pre-processing results on the UNSW-NB15

dataset did not change much feature and class data. As a

result, the final dataset in this research consisted of

14,280 records, 48 features, and nine classes. Table III

shows the distribution of classes in the UNSW-NB15

dataset after pre-processing. While Fig. 6 illustrates the

visualization of class distribution for the training and

testing data. The X-axis shows the class name (type of

intrusion), and the Y-axis shows the training and testing

data amount.

Fig. 6. UNSW-NB15 class distribution (training vs testing).

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

91

C. Feature Selection

Feature selection is one of the most essential

techniques and is often used in pre-processing [30]. The

main aim of feature selection is to identify and retain the

features that are most important in influencing the target

variable or improving the performance of a machine-

learning model. By reducing the dimensions of irrelevant

or redundant features, feature selection helps avoid

overfitting, increases computational speed, and improves

the interpretation of model results.

In this study, the feature selection technique employed

is the Wrapper technique. The Wrapper technique

assesses each feature using an additional algorithm

(classification algorithm) that is integrated into the

feature selection process [31]. This feature selection

technique uses the RFE (Recursive Feature Elimination).

Although many algorithms can serve as estimators in

RFE, the one utilized in this study employs a Decision

Tree (DT). Based on the argument that DT is highly

effective for classification scenarios.

D. Building Machine Learning Model

After completing the pre-processing stage, the next

step is to build the B-DT model. The development of this

model involves a single classifier, namely Decision Tree

(DT), as a base learner in B-DT. The B-DT model is a

combination of DT and Bagging techniques. Bagging

stands for Bootstrap Aggregating, an ensemble learning

technique introduced by Breiman [32] in 1996. This

method is an ensemble learning designed using a

Decision Tree-based classification model. The bagging

process works by resampling the dataset (creating a new

one) from the original one without considering its

features.

1) Decision Tree (DT)

Decision Tree is one of the popular classification

methods, and learning algorithms are pretty old. However,

it is prevalent because of its efficiency, which researchers

and practitioners use practically in classifying data [33].

There are many Decision Tree algorithms. ID3, C4.5, and

Assistant are well-known decision tree algorithms for

classification tasks. ID3 operates by dividing the data into

two groups based on their attributes, employing entropy

as a measure. Entropy quantifies the randomness present

within a class. A zero value indicates complete

homogeneity within the category, while a value of one

signifies complete randomness or no pattern. Eq. (2)

provides the mathematical representation of entropy.

2

1

*log ()
n

i

Entropy pi pi
=

= − (2)

2) Bagging ensemble

Bagging is an ensemble technique known as bootstrap

aggregating, which Breiman [32] introduced in 1996. It is

an ensemble learning method used to improve the

performance of models. Meanwhile, the classifier used in

this study is Decision Tree (DT). Then this classifier is

used as a base-learner ensemble with the Bagging

technique. Bagging is an ensemble classifier technique

built from a single classifier, e.g., ANN, SVM, NNR, NB,

and other unstable models. Bagging is very effective

when applied to an unstable classifier. For example, a

dataset with two unbalanced classes causes a lack of

accuracy in classification. Therefore, appropriate

algorithms are needed to improve classification accuracy.

One way to improve the accuracy of this study is by

using the Bagging method. Section IV (B-DT Model)

discusses the flow diagram of the Bagging method’s

operation.

E. Implementation of Proposed Method

The implementation phase is done by training and

testing the B-DT model using the dataset prepared in the

previous stage. The training data used is 70%, and the

testing data used is 30%. And then, we conducted the

implementation in three steps. The first implementation

stage used the NSL-KDD dataset, and the second used

the UNSW-NB15 dataset. After the commission, the final

step evaluates the model’s performance by measuring and

comparing the performance results with other models in

previous research.

F. Evaluation

Model evaluation in machine learning-based research

is critical. Model performance evaluation is carried out by

calculating all forms of prediction error rates in the model

that has been built. In this study, the model evaluation

refers to the confusion matrix. The performance metrics

include accuracy, recall, precision, kappa-coefficient, and

F1-score. The assessment of this research uses the

confusion matrix presented in Table IV.

TABLE IV. CONFUSION METRIC

Evaluation Predicted Positive Predicted Negative

Actual Positive TP FP

Actual Negative FN TN

According to Table IV, the evaluation metrics for

assessing the model’s performance are determined based

on four criteria: True Positive (TP), which represents the

number of correctly identified intrusions; True Negative

(TN), indicating the number of accurately identified

normal instances; False Positive (FP), which represents

the number of incorrect intrusion identifications; and

False Negative (FN), which indicates the number of

missed intrusions. These metrics provide insights into the

model’s performance in accurately identifying intrusions

and normal instances.

1) Accuracy

Accuracy measures the percentage of correctly

predicted positive and negative instances from the total

dataset. It answers, “What portion of the dataset was

accurately classified as intrusion or non-intrusion?” The

precision formula, as shown in Eq. (3). It is for quantifies

the precision of the classification model.

(TP+TN)
Accuracy=

TP+TN+FP+FN)
 (3)

2) Precision

Precision is one of the evaluation metrics often used by

researchers. In contrast to accuracy, precision is the ratio

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

92

of the correct positive predictions to the overall positive

prediction results. Precision is the ratio of correctly

positive predictions to the overall positive predicted

outcome. Precision answers the question, “What

percentage of the data is a correct intrusion from the total

data predicted intrusion?” Eq. (4) provides the formula

for precision.

Precision
TP

(TP+FP)
= (4)

3) Recall

Recall, also known as the Detection Rate (DR) in

Intrusion Detection Systems (IDS), measures the

proportion of correctly predicted intrusions compared to

the actual intrusions. It answers, “What percentage of the

predicted intrusion data matches the actual intrusion data?”

As presented in Eq. (5) of this research, the recall

calculation accurately determines the model’s

performance in detecting intrusions.

Recall=
TP

(TP+FN)
 (5)

4) F1-score

The F1-score is a metric that combines the precision

and recall of a model, striking a balance between the two.

It measures overall performance by considering both the

accuracy of positive predictions (precision) and the

ability to detect positive instances (recall). The

calculation of the F1-score, as presented in Eq. (6) of this

research, offers a quantitative assessment of the model’s

effectiveness in achieving a harmonious trade-off

between precision and recall.

𝐹1 = 2 
(Precision  Recall)

(Precision + Recall)
 (6)

5) Kappa-score

Apart from using the confusion metric, the kappa

coefficient is another way to assess model performance.

This method involves measuring the probability values of

true and false values from the detection results during

data testing. Eq. (7) describes the formula for calculating

the kappa score. And the criteria for testing results to be

declared good or no, namely referring to the kappa-

coefficient parameters presented in Table V.

KappaScore=
Agree-ChanceAgree

1-ChanceAgree
 (7)

where:

Agree = Total True Positive

ChanceAgree = Probabilitas A × Probabilitas B

Probability A = Total A / Total Data

TABLE V. PARAMETER OF KAPPA COEFFICIENT [34]

Strength of Agreement Kappa Statistic Value

Almost Perfect 0.8 –1.00

Substantial 0.61–0.80

Moderate 0.41–0.60

Fair 0.21–0.40

Slight 00–0.20

Poor <0.00

6) Statistic test

Statistical tests are essential to assess the performance

of the model. McNemar’s non-parametric statistical test

can measure model performance for its significance

level [35]. The McNemar statistical test was developed

from the chi-square test with the formula presented in

Eq. (8).

2

2

1

()k

i i

i i

O E
X

E=

−
= (8)

where:

Oi = the number of cases observed for category i.

Ei = expected number of possibilities for category i.

The calculation of the McNemar statistical test refers

to the contingency table presented in pada Fig. 7, with the

formula shown in Eq. (9).

2

2(| | 1)
X

A D

A D
=

− −

+
 (9)

where:

X2 = McNemar Statistical Value.

A = The amount of “Correct” detection results in

Classifier1 and “Incorrect” in Classifier2.

D = The number of “Incorrect” detection results in

Classifier1 and “Correct” in Classifier2.

The test criteria used are:

H0 = rejected if X2
 >= X2

table

 where the value of X2
table (chi-square)=3.841.

or

H0 = rejected if Pvalue<=α, where value α=0.05.

Fig. 7. Contingency table [36].

The null hypothesis (H0) assumes “no significant

increase in the model,” McNemar’s test was then

performed to compute the statistic values. If the

McNemar statistic value (X2) is more than or equal to our

chosen significance level (chi-square = 3.841), we can

reject H0. Therefore, if H0 is rejected, the model

performance has increased significantly. But if H0 is

accepted, the model performance has not increased

considerably.

IV. B-DT MODEL (PROPOSED METHOD)

Based on the type of classifier composing, the

ensemble classifier is divided into two, i.e., homogeneous

ensemble and heterogeneous ensemble [37]. A

homogeneous ensemble is a classification technique that

uses the same single classifier in each iteration to create

several classification variations. Examples of a

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

93

homogeneous ensemble are Bagging and Boosting.

Bagging is part of ensemble learning [38]. The classifiers

that can be used as base learners in Bagging are Random

Forest, SVM, Decision Tree, Naïve Bayes, etc. At the

same time, the algorithms used in Boosting include

AdaBoost, Gradient Boosting, and XgBoost. Meanwhile,

a heterogeneous ensemble is a classification technique

that uses several different classifiers, which are then

combined to form a new classifier. An example of a

heterogeneous ensemble is Stacking.

This study uses Bagging as an ensemble technique.

Bagging is part of ensemble learning which has good

performance for classification. This study proposes a B-

DT model Bagging-based to build IDS. The B-DT model

uses Decision Tree (DT) as the base learners. The

workings of the B-DT model are as follows:

• The first stage in this process divides the dataset into

70% as a training set and 30% as a testing set.

• Then the B-DT model resamples the dataset (creating

a subset) from the training set without considering its

features. The new dataset formed is termed a

bootstrap sample (subset sample). It is subset one

until subset (n).

• Then the B-DT model creates a model (DT) as much

as the number of subsets (n), namely DT(1) to DT(n).

• Furthermore, each bootstrap sample (training set) is

used to train each model (DT1 to DT(n)).

• Then each model is tested using a test set (testing set).

• Training and testing process on Bagging is carried out

in parallel.

• And the last step is voting on the test results of each

model.

Voting is one of the final stage techniques in Bagging.

The voting (majority vote) is carried out with the one-

man-one-vote rule to make the final decision from the

Bagging method. Voting techniques are often used in

classification cases. On the other hand, the mean method

can be used in regression cases. However, in this study,

using voting techniques. Fig. 8 presents an illustration of

how the B-DT model work.

Fig. 8. B-DT model flow (proposed).

The B-DT model is a development of the Bagging

technique. The Baging pseudocode is as presented in

Algorithm 1 [38]:

Algorithm 1. Construct the B-DT Model

Input: Dataset Z = {z1, z2, ..., zn}, with zi = (xi, yi),

where xi  and yi  {-1, +1}.

B, number of bootstrap samples.

Output: H:  → {−1, +1}, the final classifier.
1 for b = 1 to B do
2 Draw, with replacement, N samples from Z,

obtaining the bth bootstrap sample Zb
*.

3 From each bootstrap sample Zb
*, learn classifier Hb.

4 end for
5 Produce the final classifier by a majority vote of H1, ...,

Hb, that is,

1

() ()
B

b

b

H x sign H x
=

=
 
 
 


V. RESULT AND DISCUSSION

The results of this study are the answer to the research

objectives mentioned in the introduction. The main aim

of this research is to reduce the occurrence of false

detection in IDS. The massive attack variants, imbalanced

data distribution, and inappropriate data segmentation

strategy cause false detection in IDS. So, it impacts a lack

of interpretability, data bias, and overfitting. Therefore, to

overcome the interpretability problem in this study, we

use the RFE technique to select and transform dataset

features. Then, to overcome the data bias and overfitting

problem in this study, we use the B-DT model, which

utilizes the Bagging technique. By the application of RFE

and B-DT models, it can improve model performance in

reducing the occurrence of false detection in IDS.

This study conducted a system testing experiment

using two public datasets: NSL-KDD and UNSW-NB15.

Before classifying the two datasets, the first step is to

select features. The feature selection technique used is

Recursive Feature Elimination (RFE). Then, the results of

these desired features are used for the B-DT model

classification process. The feature selection and

classification results in both datasets (NSL-KDD,

UNSW-NB15) as follows.

A. Feature Selection Result

1) Feature selection on NSL-KDD

Feature selection in this research needs to be done.

Therefore, to get the best features, it is necessary to carry

out feature selection experiments with the RFE technique.

The RFE experiment was carried out in 25 iterations.

Based on the feature selection experiment using the RFE

technique on the NSL-KDD dataset, 20 features were

selected. Thus, the final data used for the classification

stage in the NSL-KDD dataset are 148,503 records, 20

features, and five classes. Fig. 9 presents the results of the

feature selection experiment on the NSL-KDD dataset.

The X-axis shows the number of features, and the Y-axis

shows the accuracy and kappa score. Fig. 10 presents the

feature data description and data type of the NSL-KDD.

2) Feature selection on UNSW-NB15

At this stage, feature selection was performed on the

UNSW-NB15 dataset using the RFE technique. Based on

the experiments that have been done, the best features are

nine features selected. Thus, the final dataset used for

classification in the UNSw-NB15 dataset is 14,280

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

94

records, nine features, and nine classes. Fig. 11 presents

the results of the feature selection experiment on the

UNSW-NB15 dataset. The X-axis shows the number of

features, and the Y-axis shows the accuracy and kappa

score. Fig. 12 presents the feature data description and

data type of the UNSW-NB15.

Fig. 9. Features selection process on NSL-KDD.

Fig. 10. List of selected features on NSL-KDD.

Fig. 11. Features selection process on UNSW-NB15.

Fig. 12. List of selected features on UNSW-NB15.

B. Results of Classification Using a Single Classifier

1) Single classification result on NSL-KDD

Various values were obtained based on the results of

classification experiments on the NSL-KDD dataset. The

classifiers used are Decision Tree (DT) and Naïve Bayes

(NB) single-based classifiers. Table VI presents the

measurement results.

Table VI presents the results of single classifiers, DT

and NB, on the NSL-KDD dataset. Various performance

metrics are evaluated, including accuracy, recall,

precision, kappa-score, and F1-score. For the DT

classifier, it achieves an accuracy of 99.6%, indicating its

ability to classify instances correctly. The precision is

99.5%, representing its capability to identify positive

cases accurately. The recall rate is also 99.6%, indicating

its ability to capture relevant data. The F1-score, which

combines precision and recall, is 99.36%. The kappa-

score, measuring the agreement between predicted and

actual classifications, is 98.2%, indicating an almost

perfect level of understanding. The true detection count is

4,466, and the false detection count is 285.

TABLE VI. SINGLE CLASSIFICATION RESULTS ON NSL-KDD

No Performance Metrics
Single Classifier

DT NB

1 Accuracy (%) 99.36 74.62

2 Precision (%) 99.35 84.33

3 Recall (%) 99.36 74.62

4 F1-Score (%) 99.36 78.19

5 Kappa Score (%) 98.92 60.83

6 Kappa Categoric Almost Perfect Substantial

7 True Detection 44,266 33,246

8 False Detection 285 11,305

9 Total Detection 44,551 44,551

10 Training Time 1.57 s 105 ms

11 Testing Time 23.7 ms 91.8 ms

In comparison, the NB classifier shows lower

performance. It achieves an accuracy of 74.62%,

precision of 84.33%, recall of 74.62%, and F1-score of

78.19%. The kappa score is 60.83%, indicating a

substantial level of agreement. The true detection count is

33,246, and the false detection count is 11,305.

The Table VI also includes information on the total

detection count, which is the same for both classifiers at

44,551. The training time for the DT classifier is 1.57

seconds, while the NB classifier takes 105 ms to train.

The testing time for the DT classifier is 23.7 ms, and for

the NB classifier, it is 91.8 ms.

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

95

The DT classifier performs exceptionally well on the

NSL-KDD dataset, achieving high accuracy, precision,

and kappa score. On the other hand, the NB classifier has

relatively lower accuracy and kappa-score, despite higher

precision. The DT classifier demonstrates more efficient

training and testing times than the NB classifier.

2) Single classification result on UNSW-NB15

Various values were obtained based on the results of

classification experiments on the UNSW-NB15 dataset.

The classifiers used are Decision Tree (DT) and Naïve

Bayes (NB) single-based. Table VII presents the results

of the measurement.

TABLE VII. SINGLE CLASSIFICATION RESULTS ON UNSW-NB15

No Performance Metrics
Single Classifier

DT NB

1 Accuracy (%) 77.01 41.55

2 Precision (%) 79.19 64.24

3 Recall (%) 77.01 41.55

4 F1-Score (%) 78.01 46.44

5 Kappa Score (%) 70.93 33.11

6 Kappa Categoric Substantial Fair

7 True Detection 3,299 1,780

8 False Detection 985 2,504

9 Total Detection 4,284 4,284

10 Training Time 74 ms 28 ms

11 Testing Time 999 µs 9 ms

Table VII presents the results of single classifiers, DT

and NB, on the UNSW-NB15 dataset. It includes various

performance metrics to evaluate the classifiers. The DT

classifier achieves an accuracy of 77.01%, indicating its

ability to classify instances correctly. The precision is

79.19%, representing its capability to identify positive

cases accurately. The recall rate is also 77.01%,

indicating its ability to capture relevant data. The F1-

score, which combines precision and recall, is 78.01%.

The kappa-score, measuring the agreement between

predicted and actual classifications, is 70.93%, indicating

a substantial level of understanding. The true detection

count is 3,299, and the false detection count is 985.

In comparison, the NB classifier shows lower

performance on the UNSW-NB15 dataset. It achieves an

accuracy of 41.55%, precision of 64.24%, recall of

41.55%, and f1-score of 46.44%. The kappa score is

33.11%, indicating a fair level of agreement. The true

detection count is 1,780, and the false detection count is

2,504.

Table VII also includes information on the total

detection count, which is the same for both classifiers at

4,284. The training time for the DT classifier is 74 ms,

while the NB classifier takes 28 ms to train. The testing

time for the DT classifier is 999 µs, and for the NB

classifier, it is nine ms.

Overall, the DT classifier performs better than the NB

classifier on the UNSW-NB15 dataset, achieving higher

accuracy, precision, recall, and kappa-score. The NB

classifier shows lower performance across these metrics.

The true detection count is higher for the DT classifier,

indicating its ability to capture more relevant instances.

The DT classifier also demonstrates a slightly longer

training time than the NB classifier, but both classifiers

have relatively fast testing times.

C. Results of Classification Using a Bagging (Ensemble)

1) Ensemble classification result on NSL-KDD

The classification approach is bagging at this stage,

based on ensemble techniques. The classifier used as base

learners is DT. Then this technique is called Bagging-DT

(B-DT). Before classifying, the first step is to find the

best estimator value. Based on the experiment on the

NSL-KDD dataset, the best estimator value is 15

estimators. Fig. 13 presents the visualization of the results

of Bagging-DT performance values based on the number

of estimators on NSL-KDD. The X-axis shows the

number of estimators, and the Y-axis shows the accuracy,

precision, recall, F-score, and kappa score.

Based on Fig. 13, if we use DT as base-learner

Bagging on the NSL-KDD dataset, the number of

estimators used is 15. Furthermore, we can search for the

performance value of the B-DT model using the

confusion metric presented in Fig. 14.

Fig. 13. Bagging-DT performance value results based on the number of estimators on NSL-KDD.

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

96

Fig. 14. B-DT confusion matrix on NSL-KDD.

We can determine the model’s performance score

based on the confusion matrix presented in Fig. 14. Based

on the experimental results in the NSL-KDD dataset, the

accuracy value = 99.45%. Table VIII shows the

performance results of bagging-based classification

(ensemble) on the NSL-KDD dataset.

Table VIII presents the ensemble classification results

on the NSL-KDD dataset. The performance metrics

indicate the ensemble classifier’s accuracy, recall,

precision, kappa-score, and F1-score. The ensemble

classifier achieves a high accuracy rate of 99.45%,

indicating its ability to classify instances correctly. The

precision and recall rates are also 99.45%, demonstrating

the classifier’s ability to identify positive cases and

capture relevant data accurately. The F1-score, which

combines precision and recall, is also 99.45%, indicating

a balanced performance between precision and recall.

The kappa-score, which measures the agreement between

predicted and actual classifications, is almost perfect at

99.08%, indicating a high level of understanding. The

number of true detections is 44,308, while the number of

false detections is 243. The total detection count is 44,551,

indicating the ensemble classifier’s ability to handle the

entire dataset. The training time for the ensemble

classifier is 8.46 seconds, and the testing time is 188

milliseconds, demonstrating its data processing efficiency.

Additionally, the ensemble classifier is composed of 15

estimators. Overall, the ensemble classifier exhibits

excellent performance in accurately classifying instances

and achieving a high level of agreement with the actual

classifications on the NSL-KDD dataset.

TABLE VIII. ENSEMBLE CLASSIFICATION RESULTS ON NSL-KDD

No Performance Metrics B-DT Model (Proposed)

1 Accuracy (%) 99.45

2 Precision (%) 99.45

3 Recall (%) 99.45

4 F1-Score (%) 99.45

5 Kappa Score (%) 99.08

6 Kappa Categoric Almost Perfect

7 True Detection 44,308

8 False Detection 243

9 Total Detection 44,551

10 Training Time 8.46s

11 Testing Time 188 ms

12 Number of Estimator 15

2) Ensemble classification result on UNSW-NB15

At this stage, we utilize the classification method of

Bagging, which is based on ensembles. The base learners

for the ensemble are Decision Trees. Then this technique

is called Bagging-DT (B-DT). Before classifying, the first

step is to find the best estimator value. Based on the

experiment on the UNSW-NB15 dataset, obtained the

best estimators are 75 estimators. Fig. 15 presents the

visualization of the results of Bagging-DT performance

values based on the number of estimators on UNSW-

NB15. The X-axis shows the number of estimators, and

the Y-axis shows the accuracy, precision, recall, F-score,

and kappa score.

Fig. 15. Bagging-DT performance value results based on the number of estimators on UNSW-NB15.

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

97

Based on Fig. 15, if we use DT as a base-learner

bagging on the UNSW-NB15 dataset, the number of

estimators must be used is 75. Furthermore, we can

search for the performance value of the B-DT model

using the confusion metric presented in Fig. 16.

Fig. 16. B-DT confusion matrix on UNSW-NB15.

We can determine the model’s performance score

based on the confusion matrix presented in Fig. 16. Based

on the experimental results in the UNSW-NB15 dataset,

the accuracy value was obtained = 79.67%. Table IX

presents the performance results of bagging-based

classification (ensemble) on the UNSW-NB15 dataset.

TABLE IX. ENSEMBLE CLASSIFICATION RESULTS ON UNSW-NB15

No Performance Metrics B-DT Model (Proposed)

1 Accuracy (%) 79.67

2 Precision (%) 78.89

3 Recall (%) 79.67

4 F1-Score (%) 79.20

5 Kappa Score (%) 73.90

6 Kappa Categoric Substantial

7 True Detection 3,413

8 False Detection 871

9 Total Detection 4,284

10 Training Time 4.35 s

11 Testing Time 112 ms

12 Number of Estimator 75

Table IX presents the ensemble classification results

on the UNSW-NB15 dataset. The performance metrics

indicate the ensemble classifier’s accuracy, recall,

precision, kappa-score, and F1-score. The ensemble

classifier achieves an accuracy rate of 79.67%, indicating

the model can classify the intrusion well. The precision

rate is 78.89%, demonstrating the classifier’s ability to

identify positive cases accurately. The recall rate is

7.67%, representing the classifier’s ability to capture

relevant data. The F1-score, which combines precision

and recall, is 79.20%. The kappa-score, which measures

the agreement between predicted and actual

classifications, is 7.90%, indicating a substantial level of

understanding. The number of true detections is 3,413,

while the number of false detections is 871. The total

detection count is 4,284, indicating the classifier’s ability

to handle the entire dataset. The training time for the

ensemble classifier is 4.35 s, and the testing time is

112 ms, showcasing its efficiency in processing the data.

Additionally, the ensemble classifier is composed of 75

estimators. Overall, the ensemble classifier performs well

in accurately classifying instances and substantially

agreeing with the actual classifications on the UNSW-

NB15 dataset.

D. Compare the Result of Single and Ensemble

1) Compare result classification on NSL-KDD

In this section, we compared the experimental results

with the performance of different models. When

comparing the performance of single and ensemble

models on the NSL-KDD dataset, it becomes evident that

the ensemble outperforms the single classifier. We

present the results of comparing single and ensemble-

based classifications in Table X.

Table X compares the results of single classifiers (DT

and NB) with an ensemble classifier (B-DT Model) on

the NSL-KDD dataset. The performance metrics include

accuracy, precision, recall, f1-score, and kappa-score.

For the DT (Single) classifier, it achieves an accuracy

of 99.36%, demonstrating its ability to classify instances

accurately. The precision is 99.35%, indicating its

capability to identify positive cases correctly. The recall

rate is 99.36%, representing its ability to capture relevant

data. The f1-score, which combines precision and recall,

is also 99.36%. The kappa-score, measuring the

agreement between predicted and actual classifications, is

98.92%, indicating an almost perfect level of

understanding. The true detection count is 44,266, and the

false detection count is 285.

TABLE X. COMPARE RESULTS OF SINGLE AND ENSEMBLE CLASSIFIER

ON NSL-KDD

No
Performance

Metrics

DT

(Single)

NB

(Single)

B-DT Model

(Proposed)

1 Accuracy (%) 99.36 74.62 99.45

2 Precision (%) 99.35 84.33 99.45

3 Recall (%) 99.36 74.62 99.45

4 F1-Score (%) 99.36 78.19 99.45

5 Kappa Score (%) 98.92 60.83 99.08

6 Kappa Categoric
Almost

Perfect
Substantial

Almost

Perfect

7 True Detection 44,266 33,246 44,308

8 False Detection 285 11,305 243

9 Total Detection 44,551 44,551 44,551

10 Training Time 1.57 s 105 ms 8.46 s

11 Testing Time 23.7 ms 91.8 ms 188 ms

In comparison, the NB (Single) classifier shows

slightly lower performance. It achieves an accuracy of

74.62%, precision of 84.33%, recall of 74.62%, and f1-

score of 78.19%. The kappa score is 60.83%, indicating a

substantial level of agreement. The true detection count is

33,246, and the false detection count is 11,305.

The proposed ensemble classifier, B-DT Model,

demonstrates strong performance with an accuracy of

99.45%, precision of 99.45%, recall of 99.45%, and F1-

score of 99.45%. The kappa score is 99.08%, indicating

an almost perfect level of agreement. The true detection

count is 44,308, and the false detection count is 243.

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

98

The training time for the single classifiers is 1.57 s for

DT and 105 ms for NB, while the ensemble classifier

takes 8.46 seconds to train. The testing time for the single

classifiers is 23.7 ms for DT and 91.8 ms for NB, while

the ensemble classifier requires 188 ms for testing.

Overall, the B-DT Model ensemble classifier

outperforms both single classifiers regarding accuracy,

precision, and kappa-score on the NSL-KDD dataset. It

achieves a high level of agreement with the actual

classifications and demonstrates efficient training and

testing times. Fig. 17 presents the visualization of the

performance comparison between single classifier-based

and B-DT models. The X-axis shows the measurement

metric, and the Y-axis shows the score of each measure

(accuracy, precision, recall, F-score, and kappa score).

Fig. 17. Comparison of single and B-DT on NSL-KDD.

2) Compare result classification on UNSW-NB15

Based on the experimental results, we assessed and

compared the performance of several models. Comparing

the performance of the single and ensemble models on

the UNSW-NB15 dataset shows that the ensemble’s

performance is superior to the old technique (single

classifier). Table XI presents the outcomes of a

comparison between single and ensemble-based

classifications.

TABLE XI. COMPARE RESULTS OF SINGLE AND ENSEMBLE CLASSIFIER

ON UNSW-NB15

No
Performance

Metrics

DT

(Single)

NB

(Single)

B-DT Model

(Proposed)

1 Accuracy (%) 77.01 41.55 79.67

2 Precision (%) 79.19 64.24 78.89

3 Recall (%) 77.01 41.55 79.67

4 F1-Score (%) 78.01 46.44 79.20

5 Kappa Score (%) 70.93 33.11 73.90

6 Kappa Categoric Substantial Fair Substantial

7 True Detection 3,299 1,780 3,413

8 False Detection 985 2.504 871

9 Total Detection 4,284 4,284 4,284

10 Training Time 74 ms 28 ms 4.35 s

11 Testing Time 999 µs 9 ms 112 ms

Table XI compares the results of single classifiers (DT

and NB) with an ensemble classifier (B-DT Model) on

the UNSW-NB15 dataset. The performance metrics

include accuracy, precision, recall, F1-score, and kappa-

score.

For the DT (Single) classifier, it achieves an accuracy

of 77.01%, indicating its ability to classify instances

correctly. The precision is 79.19%, representing its

capability to identify positive cases accurately. The recall

rate is 77.01%, indicating its ability to capture relevant

data. The F1-score, which combines precision and recall,

is 78.01%. The kappa-score, measuring the agreement

between predicted and actual classifications, is 70.93%,

indicating a substantial level of understanding. The true

detection count is 3,299, and the false detection count is

985.

In comparison, the NB (Single) classifier shows lower

performance. It achieves an accuracy of 41.55%,

precision of 64.24%, recall of 41.55%, and F1-score of

46.44%. The kappa score is 33.11%, indicating a fair

level of agreement. The true detection count is 1,780, and

the false detection count is 2,504.

The proposed ensemble classifier, B-DT Model,

demonstrates improved performance with an accuracy of

79.67%, precision of 78.89%, recall of 79.67%, and F1-

score of 79.20%. The kappa score is 73.90%, indicating a

substantial level of agreement. The true detection count is

3,413, and the false detection count is 871.

The training time for the single classifiers is 74

milliseconds for DT and 28 milliseconds for NB, while

the ensemble classifier takes 4.35 seconds to train. The

testing time for the single classifiers is 999 µs for DT and

nine milliseconds for NB, while the ensemble classifier

requires 112 milliseconds for testing.

Overall, the B-DT Model ensemble classifier

outperforms both single classifiers regarding accuracy,

precision, and Kappa Score on the UNSW-NB15 dataset.

It achieves a higher level of agreement with the actual

classifications and demonstrates efficient training and

testing times. Fig. 18 presents the visualization of the

performance comparison of single classifier-based and B-

DT models. The X-axis shows the measurement metric,

and the Y-axis shows the score of each measure

(accuracy, precision, recall, F-score, and kappa score).

Fig. 18. Comparison of single and B-DT on UNSW-NB15.

E. Statistic Test Result

Statistical testing is necessary to assess model testing

results derived from single and ensemble classifiers. This

statistical test aims to determine the model

improvement’s significance level. We conducted

statistical testing using a non-parametric test technique. It

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

99

uses the McNemar technique. McNemar’s statistical test

does not rely on specific assumptions about the data

distribution [35]. It compares paired classifiers by

analyzing their performance on a test set. This test allows

us to determine if there are significant differences

between the paired classifiers based on their performance.

The significance level (α) is set at 0.05 or with the chi-

square table (X2
table) value of 3,841. Table XII presents

the statistical test results.

Table XII presents the results of statistical tests

comparing the Decision Tree (DT) classifier with the B-

DT classifier and the Naive Bayes (NB) classifier with

the B-DT classifier. It includes the statistic values for

each comparison on two datasets, NSL-KDD and

UNSW-NB15.

For the comparison between DT and B-DT on the

NSL-KDD dataset, the statistic obtained value is 13,341.

Thus, this value is greater than the chi-square (X2
Table),

where the chi-square value (X2
Table) is determined to be

3,841. This value represents the result of a statistical test

conducted to assess the difference in performance

between the two classifiers (DT vs B-DT). There is a

significant increase. Similarly, for the comparison

between NB and B-DT on the NSL-KDD dataset, the

statistic value is 10,919,825. This value indicates the

outcome of the statistical test performed to evaluate the

performance difference between the NB and the B-DT

classifiers.

TABLE XII. STATISTIC TEST RESULT WITH MCNEMAR’S TEST

No Dataset
Statistic Value (X2)

DT vs (B-DT) NB vs (B-DT)

1 NSL-KDD 13,341 10,919,825

2 UNSW-NB15 53,204 1,363,760

Moving to the UNSW-NB15 dataset, the statistic value

for the DT vs B-DT comparison is 53,204. This value

reflects the statistical test result comparing the DT

classifier with the B-DT classifier on this dataset. Finally,

for the NB vs B-DT comparison on the UNSW-NB15

dataset, the statistic value is 1,363,760. This value

represents the outcome of the statistical test performed to

assess the difference in performance between the NB

classifier and the B-DT classifier on the UNSW-NB15

dataset. These statistic values provide insights into the

significance of the performance differences observed

between the classifiers. Higher statistic values indicate a

more significant difference in performance between the

compared classifiers (Single vs Ensemble).

F. Comparison of True and False Detection Results

The following is the comparison result of false and true

detection. We conducted the experiments on two datasets,

namely NSL-KDD and UNSW-NB15. Fig. 19 compares

true and false detection results on the NSL-KDD dataset.

Fig. 20 shows the comparison of true and false detection

results on the UNSW-NB15 dataset. The X-axis shows

the classifier, and the Y-axis shows the true and false

detection numbers.

Based on Fig. 19, the B-DT model has improved

performance compared to DT and NB. This performance

improvement is demonstrated by correctly detecting

44,308 intrusions compared to only 243 incorrectly

detected instances. Meanwhile, the DT and NB models

still found many detection errors. The DT model detected

44,266 correct data and 285 incorrect detections.

Meanwhile, the NB model detected 33,246 correct data

and 11,305 false detection data.

Fig. 19. True and false detection results on NSL-KDD.

Fig. 20. True and false detection results on UNSW-NB15.

Based on Fig. 20, the B-DT model has improved

performance compared to DT and NB. This performance

enhancement is substantiated by correctly detecting 3,413

instances of intrusions, in contrast to 871 incorrectly

detected cases. Meanwhile, the DT and NB models still

found many detection errors. The DT model had 3,299

correct detections and 985 incorrect detections.

Meanwhile, the NB model had 1,780 correct data

detections and many false detections, reaching 2,504 data.

G. Performance Comparison of B-DT with Other

Models

Model evaluation in this study is critical. The model

evaluation aims to measure the success rate of model

improvement. One of the evaluation methods used to

measure model performance is to measure values based

on confusion metrics. In addition, model performance can

also be evaluated by comparing the performance of the B-

DT model with the performance of models in other

studies.

Table XIII compares the B-DT model proposed in this

study and several existing Intrusion Detection System

(IDS) models from various references. The comparison

encompasses factors such as the dataset used, Feature

Selection (FS) algorithm, the proposed method,

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

100

classification technique, classification type, and achieved

accuracy. The references span a range of years and

datasets, and they employ single and ensemble classifier

techniques. Table XIII provides valuable insights into the

performance of the B-DT model about the broader

landscape of existing IDS models.

The B-DT model showcased significant success, as

evidenced by its superior performance compared to

several existing IDS models. Based on Table XIII, the B-

DT model’s accuracy rates for the NSL-KDD and

UNSW-NB15 datasets surpass those of the other models.

For the NSL-KDD dataset, the B-DT model achieved an

accuracy of 99.45%, while for the UNSW-NB15 dataset,

it achieved an accuracy of 79.67%. This comparison

demonstrates the B-DT model’s effectiveness in

achieving high accuracy levels for multi-class

classification scenarios. These results underscore the

potential of the B-DT ensemble classifier in enhancing

IDS performance across diverse datasets and

classification types.

TABLE XIII. COMPARISON OF B-DT MODEL VS EXISTING IDS MODEL

Ref.# (Year) Dataset FS Algorithm Proposed Method Classification Technique Classification Type Accuracy

Yang et al. [24] (2019) KDD CUP’99 - LM-BP Single Classifier Multi-Class 99.31%

Almasoudy et al. [27]

(2020)
NSL-KDD DE ELM Single Classifier Binary, Multi-Class 80.15%

Wisanwanichthan and

Thammawichai [28]

(2021)

NSL-KDD ICFS and PCA DLHA Single Classifier Multi-Class 88.97%

Amarudin et al. [21]

(2022)
UNSW-NB15 - SVM Single Classifier Multi-Class 75.89%

Amarudin et al. [22]

(2022)
UNSW-NB15 - SVM Single Classifier Multi-Class 75.89%

Vishwakarma and

Kesswani [18] (2023)
UNSW-NB15 - Naïve Bayes Single Classifier Binary Class 86.09%

Vishwakarma and

Kesswani [18] (2023)
NSL-KDD - Naïve Bayes Single Classifier Binary Class 97.00%

This Study (2023) UNSW-NB15 RFE DT Single Classifier Multi-Class 77.01%

This Study (2023) UNSW-NB15 RFE NB Single Classifier Multi-Class 41.55%

This Study (2023) NSL-KDD RFE DT Single Classifier Multi-Class 99.36%

This Study (2023) NSL-KDD RFE NB Single Classifier Multi-Class 74.62%

Proposed (2023)
UNSW-NB15,

NSL-KDD
RFE B-DT Ensemble Classifier Multi-Class

79.67%,

99.45%

VI. CONCLUSION

This research introduces a derivative ensemble

approach called B-DT, which combines a single classifier

(Decision Tree) and a Bagging technique. Bagging is one

of the ensembles learning techniques that perform well in

classification. In addition, the B-DT model combines

with a wrapper-based feature selection technique. The

feature selection technique used as a wrapper is Feature

Recursive Elimination (FRE).

Based on the experiment in this study, the B-DT model

significantly enhances the performance of IDS.

Combining the RFE and B-DT models can reduce data

bias and overfit in the model. The B-DT model

demonstrates the highest accuracy of 99.45% on the

NSL-KDD dataset, surpassing the accuracy achieved by

the individual classifiers (DT: 99.36% and NB: 74.62%).

Similarly, on the UNSW-NB15 dataset, the B-DT model

achieves an accuracy of 79.67% compared to the

individual classifiers (DT: 77.01% and NB: 41.55%).

Besides that, this B-DT model can reduce false

detection. The test results on the NSL-KDD dataset

showed 44,308 true and 243 false detections. The

detection test results on the UNSW-NB15 dataset showed

3,413 true detection results and 871 false detections.

Therefore, the paper concludes that applying B-DT

models based on an ensemble classifier can solve

problems that occur in IDS. However, this study ignores

the use of processing time. The evaluation of IDS

superiority is only based on metrics: accuracy, recall,

precision, kappa score, and F1-score. In our future studies,

we will explore the application of ensemble classifiers in

combination with other feature selection techniques. By

exploring ensemble classifier and feature selection

methods, we hope to improve IDS performance for the

better in the future.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

All authors in this study have contributed to the work.

A. contributed to data collection, model design, model

testing simulations, statistical analysis, and paper writing.

R.F. contributed to the data analysis, statistical analysis,

and prof-read. W. contributed to the data analysis, model

design analysis, and proof-read; all authors had approved

the final version.

ACKNOWLEDGEMENT

We want to thank “Universitas Gadjah Mada” for

facilitating this research. Additionally, we thank

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

101

“Universitas Teknokrat Indonesia” for supporting us to

finish this research.

REFERENCES

[1] T. A. Alamiedy, M. Anbar, Z. N. M. Alqattan, and Q. M. Alzubi,

“Anomaly-based intrusion detection system using multi-objective

grey wolf optimisation algorithm,” J. Ambient Intell. Humaniz.

Comput., vol. 11, 2019. doi: 10.1007/s12652-019-01569-8

[2] H. Rajadurai and U. D. Gandhi, “A stacked ensemble learning

model for intrusion detection in wireless network,” Neural

Comput. Appl., vol. 5, 2020. doi: 10.1007/s00521-020-04986-5

[3] M. B. Pranto, M. H. A. Ratul, M. M. Rahman, I. J. Diya, and Z.-B.

Zahir, “Performance of machine learning techniques in anomaly

detection with basic feature selection strategy—A network

intrusion detection system,” J. Adv. Inf. Technol., vol. 13, no. 1, pp.

36–44, 2022. doi: 10.12720/jait.13.1.36-44

[4] A. Sadia, F. Bashir, R. Q. Khan, and A. Khalid, “Comparison of

machine learning algorithms for spam detection,” J. Adv. Inf.

Technol., vol. 14, no. 2, pp. 178–184, 2023.

doi: 10.12720/jait.14.2.178-184

[5] H. Al-Dmour, A. Tareef, A. M. Alkalbani, A. Hammouri, and B.

Alrahmani, “Masked face detection and recognition system based

on deep learning algorithms,” J. Adv. Inf. Technol., vol. 14, no. 2,

pp. 224–232, 2023. doi: 10.12720/jait.14.2.224-232

[6] D. Elangovan and V. Subedha, “Firefly with multilayer perceptron

based feature selection and classification model for sentiment

analysis,” J. Adv. Inf. Technol., vol. 14, no. 2, pp. 342–349, 2023.

doi: 10.12720/jait.14.2.342-349

[7] X. Sun, A. Douiri, and M. Gulliford, “Applying machine learning

algorithms to electronic health records to predict pneumonia after

respiratory tract infection,” J. Clin. Epidemiol., vol. 145, pp. 154–

163, May 2022. doi: 10.1016/j.jclinepi.2022.01.009

[8] A. Hennebelle, H. Materwala, and L. Ismail, “HealthEdge: A

machine learning-based smart healthcare framework for prediction

of type 2 diabetes in an integrated IoT, edge, and cloud computing

system,” in Proc. 14th Int. Conf. Ambient Syst. Networks Technol.,

2023, pp. 331–338. doi: 10.1016/j.procs.2023.03.043

[9] T. Doan, “Large-scale insect pest image classification,” J. Adv. Inf.

Technol., vol. 14, no. 2, pp. 328–341, 2023.

doi: 10.12720/jait.14.2.328-341

[10] Z. F. Hassan, F. Al-Shareefi, and H. Q. Gheni, “A coloured image

watermarking based on genetic k-means clustering methodology,”

J. Adv. Inf. Technol., vol. 14, no. 2, pp. 242–249, 2023.

doi: 10.12720/jait.14.2.242-249

[11] I. H. Sarker, A. I. Khan, Y. B. Abushark, and F. Alsolami,

“Internet of Things (IoT) security intelligence: A comprehensive

overview, machine learning solutions and research directions,”

Mob. Networks Appl., 2022. doi: 10.1007/s11036-022-01937-3

[12] H. Yang, J. Hong, F. Liang, and X. Xu, “Machine learning-based

state of health prediction for battery systems in real-world electric

vehicles,” J. Energy Storage, vol. 66, no. April, 107426, 2023.

doi: 10.1016/j.est.2023.107426

[13] Y. Pacheco and W. Sun, “Adversarial machine learning: A

comparative study on contemporary intrusion detection datasets,”

in Proc. 7th Int. Conf. Inf. Syst. Secur. Priv., 2021, pp. 160–171.

doi: 10.5220/0010253501600171

[14] G. Yedukondalu, G. H. Bindu, J. Pavan, G. Venkatesh, and A.

Saiteja, “Intrusion detection system framework using machine

learning,” in Proc. 3rd Int. Conf. Inven. Res. Comput. Appl., 2021,

pp. 1224–1230. doi: 10.1109/ICIRCA51532.2021.9544717

[15] Y. D. Lin, Z. Q. Liu, R. H. Hwang, V. L. Nguyen, P. C. Lin, and

Y. C. Lai, “Machine learning with variational autoencoder for

imbalanced datasets in intrusion Detection,” IEEE Access, vol. 10,

2022. doi: 10.1109/access.2022.3149295

[16] L. Hu, T. Li, N. Xie, and J. Hu, “False positive elimination in

intrusion detection based on clustering,” in Proc. 2015 12th

International Conference on Fuzzy Systems and Knowledge

Discovery, 2015, pp. 519–523. doi: 10.1109/FSKD.2015.7381996

[17] R. Zhang, Y. Song, and X. Wang, “Network intrusion detection

scheme based on ipso-svm algorithm,” in Proc. 2022 IEEE Asia-

Pacific Conf. Image Process. Electron. Comput., 2022, pp. 1011–

1014. doi: 10.1109/IPEC54454.2022.9777568

[18] M. Vishwakarma and N. Kesswani, “A new two-phase intrusion

detection system with Naïve Bayes machine learning for data

classification and elliptic envelop method for anomaly detection,”

Decis. Anal. J., vol. 7, 100233, 2023.

doi: 10.1016/j.dajour.2023.100233

[19] G. Zhu, H. Yuan, Y. Zhuang, Y. Guo, X. Zhang, and S. Qiu,

“Research on network intrusion detection method of power system

based on random forest algorithm,” in Proc. 2021 13th Int. Conf.

Meas. Technol. Mechatronics Autom., 2021, pp. 374–379.

doi: 10.1109/ICMTMA52658.2021.00087

[20] Y. Zhou, G. Cheng, S. Jiang, and M. Dai, “Building an efficient

intrusion detection system based on feature selection and

ensemble classifier,” Comput. Networks, vol. 174, 2020.

doi: 10.1016/j.comnet.2020.107247

[21] A. Amarudin, R. Ferdiana, and W. Widyawan, “Performance of

intrusion detection system using bagGING ensemble with Sdn-

BAse classifier,” in Proc. 2022 IEEE 7th International

Conference on Information Technology and Digital Applications

(ICITDA), 2022, vol. 1.

[22] A. Amarudin, R. Ferdiana, and W. Widyawan, “New approach of

ensemble method to improve performance of IDS using S-SDN

classifier,” in Proc. 2022 IEEE International Conference on

Communication, Networks and Satellite (COMNETSAT), 2022, pp.

463–468.

[23] C. R. Wang, R. F. Xu, S. J. Lee, and C. H. Lee, “Network

intrusion detection using equality constrained-optimization-based

extreme learning machines,” Knowledge-Based Syst., vol. 147, pp.

68–80, 2018. doi: 10.1016/j.knosys.2018.02.015

[24] A. Yang, Y. Zhuansun, C. Liu, J. Li, and C. Zhang, “Design of

intrusion detection system for internet of things based on

improved Bp neural network,” IEEE Access, vol. 7, pp. 106043–

106052, 2019. doi: 10.1109/ACCESS.2019.2929919

[25] Jupriyadi and A. I. Kistijantoro, “Vitality based feature selection

for intrusion detection,” in Proc. 2014 International Conference of

Advanced Informatics: Concept, Theory and Application

(ICAICTA), 2014, pp. 93–96.

[26] Kurniabudi, D. Stiawan, Darmawijoyo, M. Y. B. B. Idris, A. M.

Bamhdi, and R. Budiarto, “CICIDS-2017 dataset feature analysis

with information gain for anomaly detection,” IEEE Access, vol. 8,

pp. 132911–132921, 2020. doi: 10.1109/ACCESS.2020.3009843

[27] F. H. Almasoudy, W. L. Al-Yaseen, and A. K. Idrees,

“Differential evolution wrapper feature selection for intrusion

detection system,” Procedia Computer Science, vol. 167, no. 2019,

pp. 1230–1239, 2020. doi: 10.1016/j.procs.2020.03.438

[28] T. Wisanwanichthan and M. Thammawichai, “A double-layered

hybrid approach for network intrusion detection system using

combined naive bayes and SVM,” IEEE Access, vol. 9, pp.

138432–138450, 2021. doi: 10.1109/ACCESS.2021.3118573

[29] A. Amarudin, R. Ferdiana, and W. Widyawan, “A systematic

literature review of intrusion detection system for network security:

Research trends, datasets and methods,” in Proc. 2020 4th

International Conference on Informatics and Computational

Sciences (ICICoS), 2020.

[30] S. Cateni, V. Colla, and M. Vannucci, “A fuzzy system for

combining filter features selection methods,” Int. J. Fuzzy Syst.,

vol. 19, no. 4, pp. 1168–1180, 2017. doi: 10.1007/s40815-016-

0208-7

[31] R. A. R. Mahmood, A. Abdi, and M. Hussin, “Performance

evaluation of intrusion detection system using selected features

and machine learning classifiers,” Baghdad Sci. J., vol. 18, no.

2(Suppl.), 0884, 2021. doi: 10.21123/bsj.2021.18.2(suppl.).0884

[32] L. Breiman, “Bagging predictors,” Mach. Learn., vol. 24, no. 2, pp.

123–140, Aug. 1996. doi: 10.1007/BF00058655

[33] S. Mitrofanov and E. Semenkin, “An approach to training decision

trees with the relearning of nodes,” in Proc. 2021 35th Int. Conf.

Inf. Technol., 2021, pp. 1–5.

doi: 10.1109/InfoTech52438.2021.9548520

[34] J. R. Landis and G. G. Koch, “The measurement of observer

agreement for categorical data,” Biometrics, vol. 33, no. 1, pp.

159–174, 1977.

[35] Q. McNemar, “Note on the sampling error of the difference

between correlated proportions or percentages,” Psychometrika,

vol. 12, no. 2, pp. 153–157, 1947. doi: 10.1007/BF02295996

[36] J. Brownlee. How to calculate McNemar’s test to compare two

machine learning classifiers. [Online]. Available:

https://machinelearningmastery.com/mcnemars-test-for-machine-

learning/

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

102

[37] A. A. Aburomman and M. B. I. Reaz, “A survey of intrusion

detection systems based on ensemble and hybrid classifiers,”

Comput. Secur., vol. 65, pp. 135–152, 2017.

doi: 10.1016/j.cose.2016.11.004

[38] G. Kumar, K. Thakur, and M. R. Ayyagari, “MLEsIDSs: Machine

learning-based ensembles for intrusion detection systems—A

review,” J. Supercomput., vol. 76, no. 11, pp. 8938–8971, 2020.

doi: 10.1007/s11227-020-03196-z

Copyright © 2024 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

103

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V15N1-87

