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Abstract—The image classification is one of the significant 

applications in the area of Deep Learning (DL) with 

respective to various sectors. Different types of neural 

network architectures are available to perform the image 

classification and each of which produces the different 

accuracy. The dataset and the features used are influence the 

outcome of the model. The research community is working 

towards the generalized model at least to the domain specific. 

On this gesture the contemporary survey of various Deep 

Learning models is identified using knowledge information 

management methods to move further to provide optimal 

architecture and also to generalized Deep Learning model to 

classify images narrow down to the sector specific. The study 

systematically presents the different types of architecture, its 

variants, layers and parameters used for each version of Deep 

Learning model. Domain specific applications and limitations 

of the type of architecture are detailed. It helps the 

researchers to select appropriate Deep Learning architecture 

for specific sector.  

 

Keywords—image classification, deep learning, neural 

network 

 

I. INTRODUCTION 

One of the most significant applications of Deep 

Learning (DL) and Artificial Intelligence (AI) is image 

classification. The process of labeling images based on 

specific characteristics or features is known as image 

classification. These characteristics are discovered by the 

algorithm, which makes use of them to classify and 

differentiate between various images [1].  

The process of classifying images is known as image 

classification. This is accomplished by utilizing similar 

features found in images belonging to various classes to 

identify and label the images [2]. Neural networks are 

useful in categorizing images, and DL algorithms utilize 

them as the core mechanism. Essentially, DL algorithms 

are based on neural networks. 

Prediction, classification, and other functions are 

carried out by the neurons in multiple layers of a neural 

network. Each neuron’s output is sent to the neurons in the 

next layer, where it is tweaked until reaching the final 

output layer Fig. 1. 
 

 

Fig. 1. Neural network. 

In the neural network, the Initial data for the neural 

network is in the input layer. Hidden layers are between 

the input and output layers, which serve as the hub for all 

computing. The output layer generates the outcome given 

the inputs. A pre-trained machine learning model has 

already undergone extensive training on a large dataset to 

solve a similar problem. Using pre-trained models saves 

time and resources. Some available image classification 

models with their architecture and training methods are the 

VGG, ResNet [3], Inception, and MobileNet families. 

These models have resulted in exceptional performance in 

various image classification tasks, and they are extensively 

employed in DL frameworks such as Keras, TensorFlow, 

and PyTorch. Developers and researchers can use these 

frameworks to build and train their image classification 

models with ease. 

Optimal Architecture: Identify key architectural 

elements and parameters for each Deep Learning model 

version to guide the development of generalized and 

sector-specific image classification models. 

Domain-Specific Adaptation: Provide insights into 

domain-specific applications, limitations, and suitability 

of different DL architectures, aiding researchers in 

selecting the most suitable model for specific sectors. 

Growing Importance of Image Classification: In 

modern civilization, image categorization is crucial in a 

variety of industries, including healthcare, banking, 

agriculture, and manufacturing. The efficiency of 
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operations and decision-making are directly impacted by 

the capacity to classify photos effectively. 

Expanding DL Model Landscape: There are numerous 

neural network topologies that display different accuracy, 

computational efficiency, and adaptability properties in 

the domain of DL. For academics and practitioners 

attempting to harness the power of DL for specific 

applications, navigating this complicated environment can 

be overwhelming. 

Need for Sector-Specific Models: Generalised DL 

models provide a basis, but sector-specific models can 

considerably improve the effectiveness of picture 

categorization. Comparing a model created for 

autonomous vehicles to one optimised for medical image 

classification, for example, may necessitate different 

architectural considerations. 

Lack of Consolidated Information: Current resources 

frequently offer shards of information on distinct DL 

models. By providing a systematic and comprehensive 

overview of several DL architectures, their features, 

applications, and limits, this article aims to fill this 

knowledge gap. 

Future Research and Development Guidance: This 

article aims to assist researchers and developers in 

selecting or creating models by illuminating the subtleties 

of various DL architectures. By encouraging effective 

model selection and development procedures, this in turn 

advances the field. 

The rest of the paper present as: Section II reviewed 

method of collecting the relevant research papers; 

Section III explained technical details of pre-trained CNN 

Architectures; Section IV reviewed research papers used 

the pre-trained architectures; Section V introduced data 

sets used to train and apply the pre trained CNN 

architectures; Section VI discussed the CNN architectures 

on different perspective which really support for next level 

of state-of-art proposal in developing the generalized 

domain specific CNN model to classify the images. 

II. METHODOLOGY FOR ACQURING KNOWLEDGE  

In order to conduct a thorough analysis of the literature, 

various databases including Google Scholar, Scopus, 

Springer, IEEE Xplore, and ArXiv are examined. The key 

terms used for the search are “DL”, “image classification” 

and also used the name of the architectures.  

Thirty-five related papers were identified and removed 

the ten irrelevant papers by reading the abstracts and 

excluding the ones that did not meet our inclusion criteria 

as per Table I. 

TABLE I. KNOWLEDGE SOURCE 

Source of Article Collection Number of Relevant Papers Identified 

IEEE 14 

Scopus 5 

Google Scholar 4 

ArXiv 11 

Springer 3 
 

III. ARCHITECTURE OF PRE-TRAINED MODELS IN IMAGE 

CLASSIFICATION 

A. ResNet (Residual Networks) 

Microsoft Research introduced Residual Network 

architecture with the proposal of ResNet [4]. The idea of 

residual blocks was introduced in this architecture to 

address the issue of the vanishing/exploding gradient. Skip 

connections are a method that are employed in this 

network Table II. By skipping some layers in between, the 

skip connection links a layer’s activations to other layers. 

This creates a block that remains. By stacking these 

residual blocks together, ResNets [5] are created.  

TABLE II. RESIDUAL NETWORK MODELS 

Model Layers Parameters (Million) Advantages Limitations 

ResNet50 50 23.6 
Simpler architecture, easier to optimize, better 

accuracy than previous models 
Not suitable for small datasets 

ResNet50V2 50 25.6 Faster convergence, better accuracy than ResNet50 Not suitable for small datasets 

ResNet101 101 42.6 Deeper architecture, better accuracy than ResNet50 Slower training time 

ResNet101V2 101 44.3 Faster convergence, better accuracy than ResNet101 Not suitable for small datasets 

ResNet152 152 60.2 Deeper architecture, better accuracy than ResNet101 Slower training time 

ResNet152V2 152 62.4 Faster convergence, better accuracy than ResNet152 Not suitable for small datasets 

 

 

Fig. 2. Types of ResNet architecture vs layers. 
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Fig. 3. Types of ResNet architecture vs number of parameters. 

This network follows a strategy in which, as opposed to 

layers learning the underlying mapping and let the network 

fit the residual mapping. Each step of the model’s five 

convolutional layers contains a different number of 

residual blocks Figs. 2 and 3. Final layer of fully connected 

layer is used for classification [3]. 

B. EfficientNet 

Convolutional Neural Network (CNN) architecture and 

scaling method EfficientNet [3] uses a compound 

coefficient to uniformly scale all width, depth and 

resolution dimensions Table III. 

TABLE III. EFFICIENTNET MODELS 

Model Layers Parameters (Million) Advantages Limitations 

EfficientNetB0 7 5.3 
Light weight, high accuracy, 

efficient 

May not perform well on complex datasets 

with large images 

EfficientNetB1 10 7.8 
Light weight, high accuracy, 

efficient 

May not perform well on complex datasets 

with large images 

EfficientNetB2 19 9.2 
Light weight, high accuracy, 

efficient 

May not perform well on complex datasets 

with large images 

EfficientNetB3 25 12.3 
Light weight, high accuracy, 

efficient 

May not perform well on complex datasets 

with large images 

EfficientNetB4 28 19.3 
Light weight, high accuracy, 

efficient 

May not perform well on complex datasets 

with large images 

EfficientNetB5 40 30.6 
Lightweight, high accuracy, 

efficient 

May not perform well on complex datasets 

with large images 

EfficientNetB6 52 43.0 
Lightweight, high accuracy, 

efficient 

May not perform well on complex datasets 

with large images 

EfficientNetB7 66 66.3 
Lightweight, high accuracy, 

efficient 

May not perform well on complex datasets 

with large images 

EfficientNetV2B0 21 20.0 
Improved performance compared 

to EfficientNetB0 

May not perform well on complex datasets 

with large images 

EfficientNetV2B1 27 30.0 
Improved performance compared 

to EfficientNetB1 

May not perform well on complex datasets 

with large images 

EfficientNetV2B2 33 40.0 
Improved performance compared 

to EfficientNetB2 
May not perform well on 

EfficientNetV2L 20 480 

This model has a higher accuracy 

rate and can handle complex 

image datasets. It also provides 

better generalization performance 

and faster inference time. 

The model requires a high computational cost 

due to its large size, and it may be difficult to 

train on low-end devices. 

 

In addition to squeeze-and-excitation blocks, the base 

EfficientNet-B0 network is built on MobileNetV2’s 

inverted bottleneck residual blocks. EfficientNet is a 

family of CNN architectures that have been designed to 

achieve better performance with fewer parameters and less 

computational resources than other architectures Figs. 4 

and 5. 

The choice of which EfficientNet model to use depends 

on the specific task requirements, available computational 

resources, and accuracy needs. Overall, the EfficientNet 

family of models provides a range of options for DL 

practitioners to choose from based on their specific needs. 

The different variants of EfficientNet have different 

performances between accuracy and efficiency, making 

them suitable for different applications. 
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Fig. 4. Types of EfficientNet architecture vs layers. 

 

Fig. 5. Types of EfficientNet architecture vs number of parameters. 

C. VGG16 

Very Deep Convolutional Networks for Large-Scale 

Image Recognition (VGG-16) [6], one of the most well-

liked pre-trained image classification models, is the VGG-

16. It was the model to compete when it was introduced at 

the ILSVRC 2014 Conference. VGG-16, developed by the 

University of Oxford’s Visual Graphics Group, 

outperformed AlexNet at the time and was quickly adopted 

by researchers and industry for image classification tasks 

Table IV. 

TABLE IV. VGG MODELS 

Model Layers 
Parameters 

(Million) 
Advantages Limitations 

VGG16 16 138 

Simple and 

easy to 

understand 

architecture 

Large number 

of parameters, 

slow training 

time 

VGG19 19 143 

Improved 

accuracy 

compared to 

VGG16 

Large number 

of parameters, 

slow training 

time 

 

VGG16 and VGG19 are deep CNNs with a simple 

architecture of 3×3 filters and max pooling layers. VGG16 

has 16 layers and 138 million parameters, while VGG19 

has 19 layers and 143 million parameters Fig. 6.  

 

Fig. 6. Types of VGG architecture vs layers. 

 

Fig. 7. Types of VGG architecture vs number of parameters. 
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These two models are appropriate for image 

classification, object detection, and also segmentation 

tasks. VGG models are simple and easy to understand 

architecture, but it also have a many number of parameters 

and it uses a slow training time Fig. 7. VGG19 has 

improved accuracy compared to VGG16, but both models 

are not suitable for small datasets or limited computing 

resources.  

D. Xception 

Xception is a deep CNN with depth wise separable 

convolutions [7] that allow for a more efficient use of 

parameters and faster training than traditional 

convolutions Table V.  

TABLE V. XCEPTION MODELS 

Model Layers Parameters (Million) Advantages Limitations 

Xception 71 22.9 
High accuracy, faster training than Inception 

models 
High computational cost 

InceptionV3 48 23.85 

Good accuracy with fewer parameters, can be 

used for transfer learning, and can handle 

different input sizes. 

Computationally expensive, can 

lead to over fitting, and requires 

careful tuning of hyper parameters 

InceptionResNetV2 572 55.87 

High accuracy, fewer parameters than 

previous versions, robustness to adversarial 

examples, and can be used for transfer 

learning. 

Computationally expensive, can 

lead to over fitting, and requires 

careful tuning of hyper 

parameters. 

 

It has 71 layers and 22.9 million parameters, making it 

suitable for image classification, object detection, and face 

recognition tasks. Xception has high accuracy and faster 

training than Inception models, but it also has a high 

computational cost. 

E. ConvNeXt  

ConvNeXt is a notable advancement in CNN 

architecture that utilizes parallelized equivalent 

convolutional layers to improve accuracy and 

computational efficiency. It has gained significant 

attention and application in various computer vision tasks 

Table VI. ConvNeXt, a group of CNN architectures, shares 

many similarities with ResNeXt. “Aggregated Residual 

Transformations for Deep Neural Networks” is introduced 

in [8]. The primary concept behind ConvNeXt is to replace 

standard convolutional layers with a group of equivalent 

convolutional layers, which are then combined to generate 

the final output Fig. 8. 

TABLE VI. CONVNEXT MODEL 

Model Layers Parameters (Million) Advantages Limitations 

ConvNeXtTiny 10 0.6 
Small and fast with good accuracy, 

efficient on mobile devices 

Limited depth, may not perform as well 

as larger models on complex datasets 

ConvNeXtSmall 14 1.3 
Small and fast with good accuracy, 

efficient on mobile devices 

Limited depth, may not perform as well 

as larger models on complex datasets 

ConvNeXtBase 26 6.9 
Good balance of accuracy and speed, 

efficient on a range of devices 

Larger than the MobileNet-based 

models, may be slower on some devices 

ConvNeXtLarge 38 22.3 
High accuracy, competitive with state-

of-the-art models on a range of datasets 

Larger than the MobileNet-based 

models, may be slower on some devices 

ConvNeXtXLarge 64 56.6 

Highest accuracy, competitive with 

state-of-the-art models on a range of 

datasets 

Largest model in the series, requires 

more memory and processing power than 

the other models, may not be practical on 

some devices 

 

 

Fig. 8. Types of ConvNeXt architecture Vs Layers. 

 

Fig. 9. Types of ConvNeXt architecture vs number of parameters. 
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Overall, the ConvNeXt family of models provides a 

range of options for DL practitioners to choose from based 

on their specific needs and making them suitable for 

different applications and use cases Fig. 9. 

F. DenseNet (Densely Connected Convolutional 

Network) 

Densely Connected Convolutional Network (DenseNet) 

and Neural Architecture Search Network (NASNet) are 

two families of DL models that have achieved good 

performance on various computer vision tasks 

Table  VII  [9]. The varying parameter and layers are 

enhancing the performance Figs. 10 and 11. 

TABLE VII. DENSENET MODELS 

Model Layers Parameters (Million) Advantages Limitations 

DenseNet121 121 8 

Efficient use of parameters, high accuracy on small 

and medium-sized datasets, strong feature reuse 

across layers 

High memory consumption, slower 

training speed than other models 

DenseNet169 169 14 
Strong feature reuse across layers, lower memory 

consumption than DenseNet201 and ResNet models 

Slower training speed than other 

models 

DenseNet201 201 20 
Strong feature reuse across layers, high accuracy on 

large datasets, efficient use of parameters 

High memory consumption, slower 

training speed than other models 

 

 

Fig. 10. Types of DenseNet architecture vs layers. 

 

Fig. 11. Types of DenseNet architecture vs number of parameters. 

G. MobileNet 

MobileNet is a family of DL models that were 

introduced by Google in 2017. MobileNet is a family of 

DL models, it was introduced by Google in 2017. The 

MobileNet [10, 11] architecture is mainly designed to be 

computationally efficient and also lightweight, making it 

suitable for mobile devices and other resource constrained 

environments Table VIII. MobileNet achieves this by 

using depth wise separable convolutions, which reduce the 

number of parameters in the model while still preserving 

accuracy Figs. 12 and 13. 

TABLE VIII. MOBILENET MODELS 

Model Layers Parameters (Million) Advantages Limitations 

MobileNet 28 4.2 

Small size, fast, low-latency, low-power, 

efficient on mobile devices, low memory 

footprint 

Lower accuracy compared to larger models 

MobileNetV2 53 3.4 

Small size, fast, low-latency, low-power, 

efficient on mobile devices, improved 

accuracy compared to MobileNet 

Still lower accuracy compared to larger 

models, may require additional fine-tuning 

to improve accuracy on certain tasks 

 

 

Fig. 12. Types of MobileNet architecture vs layers. 

 

Fig. 13. Types of MobileNet architecture vs number of parameters. 
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TABLE IX. INCEPTION 

Model Layers Parameters (Million) Advantages Limitations 

InceptionV3 48 23.85 

Good accuracy with fewer parameters, can be 

used for transfer learning, and can handle 

different input sizes. 

Computationally expensive, can 

lead to over fitting, and requires 

careful tuning of hyper parameters 

InceptionResNetV2 572 55.87 

High accuracy, fewer parameters than 

previous versions, robustness to adversarial 

examples, and can be used for transfer 

learning. 

Computationally expensive, can 

lead to over fitting, and requires 

careful tuning of hyper parameters 

 

H. Inception  

InceptionV3, InceptionResNetV2, MobileNet, and 

MobileNetV2 are the DL models and is broadly used in the 

area of computer vision Table IX. Each model has its 

specific architecture and characteristics, making them 

suitable for different use cases based on the layer and 

parameter change Figs. 14 and 15. 

 

 

Fig. 14. Types of inception architecture vs layers. 

 

Fig. 15. Types of inception architecture vs number of parameters. 

I. NASNetMobile 

NASNetMobile is a neural architecture search network 

that was introduced in “Learning Transferable 

Architectures for Scalable Image Recognition” [12]. It has 

4.2 million parameters and is optimized for mobile devices 

Fig. 16.  

 

 

Fig. 16. Types of NASNetMobile architecture vs layers. 

 

Fig. 17. Types of NASNetMobile architecture vs number of parameters. 

NASNetMobile achieves better accuracy on the 

ImageNet dataset while being efficient enough to run on 

mobile devices Fig. 17. The architecture of 

NASNetMobile was discovered using a neural architecture 

search algorithm, automatically it searches the best 

architecture for a given task Table X. 

TABLE X. NASNETMOBILE 

Model Layers Parameters (Million) Advantages Limitations 

NASNet Mobile 53 4.9 
High accuracy, lightweight, efficient on mobile 

devices 

Large model size compared to 

other mobile models 

NASNetLarge 104 88.9 

State-of-the-art performance, modular 

architecture allows for customization, transfer 

learning 

High computational and memory 

requirements, not suitable for 

mobile devices 
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NASNetLarge is another neural architecture search 

network that has more parameters than NASNetMobile, 

with 88 million parameters. It achieves even higher 

accuracy than NASNetMobile on the ImageNet dataset. 

NASNetLarge is optimized for high-performance 

computing environments and is suitable for applications 

that require the highest accuracy, such as object detection 

and image segmentation. The architecture of 

NASNetLarge was also discovered using a neural 

architecture search algorithm 

IV. PRETRAINED MODELS-ARGUMENTATIVE REVIEW 

Literature review provides a summary of several 

popular DL architectures and their performance on various 

datasets. These architectures include VGG, ResNet, 

Inception, MobileNet, and ConvNeXt. The review also 

discusses the benefits and limitations of each architecture, 

providing valuable insights into their applications and 

potential use cases. 

The Deep residual network architecture is designed to 

enable the training of very deep neural networks. The 

vanishing gradient problem, occurs because of small 

gradient, it cannot effectively propagate through the 

network, and it is difficult to train very deep networks [4]. 

To solve this problem residual connections are used 

architecture, it allows the network to learn the variance 

between the input as well as output of a particular layer, 

instead of directly learn the output. this method is shown 

to considerably improve the accuracy of the deep neural 

networks for image recognition tasks. 

The concept of identity mappings is introduced along 

with residual connection. It states that the residual 

connections create additional complexity which makes the 

optimization process difficult and by allowing the network 

to learn identity mappings [5]. The residual method simply 

passes the input through a layer without making any 

changes, the authors show that it is possible to maintain 

simplify the architecture with improving performance. 

The existing architectures affects from a transaction 

between depth and width in deeper networks, it requires 

more computation to achieve accuracy, for wider networks 

it can be faster with less accurate. The proposes a new 

architecture for CNNs and it is called as inception-v4 is 

proposed to achieve high accuracy [1]. The inception-v4 

architecture is designed to address the problem of 

combining both depth and width in an integrated way. The 

article also introduced the new features, like factorized 

7×7 convolutions and an auxiliary classification, which 

helps to improve the performance on image classification 

tasks. 

The inception-v4 and inception-ResNet models which 

are the deep CNNs constructed on inception module [2]. 

The Inception-v4 architecture, which is an extension of the 

Inception architecture with added residual 

connections [12]. Residual connections are added in the 

inspectional ResNet between the inception modules and it 

helps for the gradient flow problem. This study stats that 

adding of the residual connections improves the 

performance of the model on the ImageNet classification 

task. 

The MobileNets architecture is mainly designed for 

efficient inference on mobile and also embedded 

devices  [10]. This model uses depth-wise separable 

convolution layers and it helps to reduce the number of 

parameters and also procedures required for inference. the 

authors also says that the MobileNet architecture is 

computationally more efficient and it can achieve good 

accuracy for image classification as well as object 

detection. 

The MobileNetv2 architecture which is an extended 

version of the MobileNet architecture [11]. This 

architecture uses inverted residual blocks with linear 

bottlenecks for improvin the accuracy of the model and it 

maintains the computational effectiveness of the original 

MobileNet. The study shows that MobileNetv2 

accomplishes better accuracy on the ImageNet 

classification. 

The Densely Connected Convolutional Networks 

(DenseNet) architecture built on dense blocks in its place 

of traditional convolutional layers [9, 13]. In a dense block, 

all layer receives feature maps from all previous layers and 

also passes its own feature maps to its all of the subsequent 

layers. The DenseNet gives the good accuracy on the 

ImageNet classification, compare to more parameter-

efficient deep CNNs. 

The Condensed CNNs (CondenseNets) architecture 

designed for more parameter-efficient compare to other 

deep CNNs [14]. This work is a combination of dense 

blocks with skip connections for decreasing the number of 

parameters necessary for the model with the same 

accuracy. The CondenseNets is having significantly fewer 

parameters than other deep CNNs and also gives the better 

results for image classification. 

The purpose Multi-Scale Dense Networks (MSDNet) 

architecture is to attain more computationally efficient 

than other deep CNNs [15]. The architecture uses a 

mixture of dense blocks with various growth rates and it 

helps to enable multi-scale feature learning. The MSDNet 

is also more suitable e Image classification. The CNN 

architecture based on the reinforcement learning which is 

automatically searching for neural network parameter is 

proposed in [16]. The study shows that the method is 

capable to learn novel neural network architectures which 

is suitable for image classification and object detection. 

The EfficientNet is a combination of model extraction, 

neural architecture search as well as conditional 

computation to yield a family of EfficientNet models that 

are very small and faster than the actual models. Even 

Smaller method decreasing the dimension of EfficientNet 

models with accuracy [17].  

A novel attention mechanism for semantic segmentation 

that helps for improvement of the accuracy of existing 

methods using less computational cost [18]. The channel 

attention module is easily incorporated into existing 

segmentation networks and it illustrates the efficiency on 

several benchmark datasets. Tensor decompositions is 

used to find the important components of the architecture 

and shows how it is use full for optimization the 

architecture for precise tasks. It is used to investigating the 

architecture [19]. 
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A family of mobile-friendly CNN architectures called 

MobileNets are designed for resource-constrained devices. 

The depth wise separable convolutions, which allow for a 

more reduction in the number of parameters and FLOPS 

required for mobile vision tasks [20]. Inverted residual 

blocks and linear bottlenecks is included in a new version 

of the MobileNet architecture which improves accuracy 

and efficiency over the original MobileNet [21]. The 

inverted residual blocks and linear bottlenecks, supports 

for the efficient use of computational resources and better 

performance on small devices. 

A temporally-shifted attention mechanism that reduced 

the number of parameters and FLOPS is applied in a light-

weight version of the Vision Transformer (ViT) 

architecture for video recognition. Due to the reduced 

number of parameters and FLOPS required for video 

recognition tasks simultaneously maintaining 

accuracy [22]. A new model scaling method for CNNs 

which is using less parameters and FLOPS associated to 

all the existing models is used. The compound scaling 

method that is used to optimizes the scaling of depth, width, 

and resolution of the network concurrently [23].  

The convergence and acceleration properties of 

Residual Neural Network (ResNet) architectures became 

popular for image classification tasks. The improved of 

ResNet architecture that accelerates the convergence and 

reduces the number of parameters while maintaining 

accuracy. The proposed modification involves replacing 

the identity shortcut connections with a linear mapping 

that is learned during training [6]. The enhanced of ResNet 

architecture was evaluated on several benchmark datasets 

and demonstrate improved convergence and performance 

compared to the standard ResNet architecture. 

A new family of neural network architectures, called 

EfficientNetV2 that are designed to be smaller and faster 

than the original EfficientNet architecture while 

maintaining accuracy [3]. The high accuracy is achieved 

by introducing a new compound scaling method that 

jointly scales the width, depth and resolution of the 

network in a balanced way. They also introduce a new 

training technique, called Stochastic Depth, that improves 

training speed by randomly dropping network layers 

during training. The model is evaluated on numerous 

benchmark datasets and presented with fewer parameters 

and less computation than previous models. 

The architecture of VGGNet, a deep CNN that achieves 

better performance on the ImageNet dataset. The network 

consists of a series of convolutional layers with small 

filters and max-pooling layers, followed by several fully 

connected layers [24]. The implementation investigates 

the effect of increasing the depth of the network on 

performance and find that deeper networks perform better, 

but with diminishing returns beyond a certain depth. They 

also compare their network to other state-of-the-art 

networks and demonstrate superior performance. 

The AlexNet involves of many convolutional layers 

with small filters, max-pooling layers, and many fully 

connected layers. The AlexNet architecture is deep CNN 

based model performances well on the ImageNet dataset. 

Several techniques are used to regularize the network and 

it prevents from overfitting, it includes dropout and data 

augmentation. Rectified Linear Units (ReLU) as the 

activation function, used for improving the performance, 

compare to traditional activation functions [8, 25]. The 

efficiency is evaluated using the ImageNet dataset, 

reaching a top-5 error rate of 15.3%, it is a major 

improvement compare to existing results.  

The deep CNN, VGG-16 architecture achieves better 

performance on the ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) [26]. This architecture 

consists of 16 layers, with small 3x3 filters as well as max 

pooling layers. The proposed method also experimented 

the effect of depth on the network’s performance and it 

shows that increasing the depth of the network reaches the 

improved performance. 

The GoogLeNet architecture and it also known as 

Inception v1 consists of multiple inception modules. It was 

designed for efficient factorization of the convolutional 

filters into smaller ones. The auxiliary classifiers of 

GoogleNet are used to improve the convergence of the 

network in training. The GoogLeNet architecture is 

attained best performance on the ILSVRC 2014 

challenge [7]. 

FaceNet is a deep neural network architecture for face 

recognition and clustering that learns a high-dimensional 

embedding for each face image [27]. A triplet loss function 

that encourages the embeddings of images of the same 

identity to be closer together than embeddings of images 

of different identities. The FaceNet architecture consists of 

a deep CNN followed by a fully connected layer that 

produces the embedding. FaceNet acquires a mapping 

function starts the high-dimensional space of face images 

it moves to a low-dimensional embedding space, the 

distances between the embeddings are correspond to the 

similarities between the faces This is achieved by training 

a Deep Neural Network (DNN) on a large-scale face 

dataset (over 200 million images), using a triplet loss 

function that encourages the embeddings of the same face 

to be close together and those of different faces to be far 

apart. The method can also be used for face clustering and 

face verification tasks. 

The deep CNN architecture was proposed for the 

ImageNet Large Scale Visual Recognition Challenge 

(ILSVRC) and achieved a top-5 level test error of 15.3% 

It has 8 layers, along with large 11×11 and 5×5 filters, and 

the activation function used is Rectified Linear Units 

(ReLU) [28]. The work illustrated with an 8-layer neural 

network and it consist of the convolutional and also fully 

connected layers, with 60 million parameters of a dataset 

with 1.2 million images from 1000 categories. The main 

support of this work, it has used Rectified Linear Units 

(ReLU) as activation functions, and it always allows faster 

training and better performance compared to traditional 

activation functions like sigmoid and hyperbolic tangent. 

The achievement of this architecture generated the 

extensive use of deep CNNs for image classification and 

other computer vision tasks.  

The deconvolution networks are used to visualize and 

understand the features. It also helps to activate the 

specific features in the network. The visualization shows 
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that generating the saliency maps that highlight the main 

regions of an image and it contribute to the network’s 

classification decision [29]. 

A backpropagation and the gradient of the output class 

score with respect to the input image and it helps to 

highlight the regions of the image that contributed the most 

to the classification decision. The same is introduced for 

visualizing the internal representations of deep CNNs and 

generating saliency maps to highlight the regions of an 

input image that are important for classification [30]. They 

also established a method for visualizing the activations of 

separate neurons in the network and some of these neurons 

are responded to advanced semantic concepts like faces 

and text. 

The Wide Residual Networks (WRNs) is significantly 

improved the performance of deep neural networks on a 

wide range of image classification tasks [31]. The 

proposed work shows that by increasing the width of the 

residual blocks in a deep network, they could achieve 

better, on the ImageNet dataset while using fewer 

parameters than previous methods. Experimental results 

shows that the WRN architecture is robust to solve 

overfitting problem and can simplify better for new 

datasets. 

The ImageNet Large Scale Visual Recognition is a 

competition for object detection and classification tasks 

using deep neural networks [32]. The dataset consists of 

over twelve lakh high-resolution images and covers 

thousand object categories are used to analysis and solve 

the challenges. It also evaluated and compared the 

performance of different deep neural network architectures 

on the dataset. 

Aggregated Residual Transformations (ART) is new 

deep neural network architecture, which aims to improve 

the performance of deep neural networks with reduced 

computational cost [33]. It is achieved by using residual 

connections and aggregating the predictions of multiple 

ART modules within the same network. The experimental 

results show on various image classification tasks proves 

that ART achieves more computationally efficient than 

previous deep neural network architectures. 

A CNN architecture and it is designed for mobile 

devices with less computational resources are proposed 

in [34]. The work introduced ShuffleNet unit and it 

substitutes the standard convolutional layer in the network. 

The ShuffleNet unit consists of three main parts that is 

pointwise group convolution, channel shuffle, and depth 

wise convolution. The pointwise group convolution is used 

for reducing the number of input channels, the channel 

shuffle is used for randomly shuffle the output channels 

from different groups and the depth wise convolution is 

used to accomplish the actual convolutional operation. The 

ShuffleNet architecture achieves better accuracy on the 

ImageNet dataset. 

ShuffleNet V2 is an improved version of the ShuffleNet 

architecture [34, 35]. The main contributions of the 

ShuffleNet V2 is channel shuffle operation and a set of 

procedures for designing effective CNN architectures. The 

new channel shuffle operation is designed to improve the 

efficiency of the network by reducing the communication 

overhead between different groups of channels. The 

architecture shows that the channel shuffle operation can 

be used to replace the standard concatenation operation 

used in residual networks, leading to significant 

improvements in both accuracy and computational 

efficiency. The procedures proposed are based on the idea 

of “pruning and splitting”, where the network is first 

pruned to remove redundant connections and then split 

into smaller sub-networks and it leads to significant 

improvements in both accuracy and computational 

efficiency, also reducing the complexity of the architecture 

design process. It is mainly used for mobile devices with 

limited computational resources. 

The DenseNet-169 mode is used for detecting COVID-

19 patients from chest X-ray images [36]. Nearest-

neighbour interpolation technique was used for data 

preprocessing and Adam Optimizer was used for 

optimization and accuracy achieved is 96.37%. 

The inverted-bell-curve-based ensemble of DL (or CNN) 

models are developed for the detection of COVID-19 from 

CXR images [37]. The existing transfer learning, 

pretrained weights are not enough for COVID-19 CXR 

images. The combination of VGG16, ResNet18 and 

Densenet161 models are used to train on the available data 

and confidence score level is combined and used in the 

proposed ensemble method. It considers a classifier 

predicts the correct class with a high score value and 

identifies a wrong class using less score value. The work 

shows that the ensemble method producing superior 

results. 

The purpose of MobileNet architecture is that it uses 

depth wise separate convolutions [38], it reduces the 

parameter count compared to the existing models with 

fixed convolutions. Diving the convolution into 1X1 point 

wise and 3×3 in depth wise is the novel approach in 

MobileNet. The classification function ReLU achieves an 

accuracy of 96.22%. This study presents a system for 

medical image categorization and Alzheimer’s ailment 

recognition. Alzheimer’s disease has five stages. 

V. DATASET USED TO TRAIN AND TEST 

The authors handled various data set in each model. The 

data set is another deciding factor of model accuracy. The 

researcher working towards the generalization of model 

has focus more on data set also. The reviews summary 

about the details of various data sets used in model training 

and the accuracy attained are mentioned in Table XI. 

The accuracies are depending on the implementation, 

hyper parameters, and other experimental settings.  

There are various architectures used for DL in image 

classification. VGG, Inception [12], and ResNet [2, 26] are 

some of the widely studied models. VGG is a deep CNN 

that has 19 layers, and it was the winner of the ImageNet 

Challenge 2014. Inception is a DL architecture that uses 

multiple filters with different kernel sizes. It has been used 

in various applications such as image and speech 

recognition. ResNet [6] is a deep neural network that uses 

residual blocks to improve the accuracy of the model. It 

has been widely used in various applications such as object 

recognition and detection. 
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TABLE XI. DATA SETS USED IN VARIOUS MODELS 

Dataset Model Accuracy 

Caltech-101 AlexNet 90.40% 

Caltech-256 AlexNet 57.00% 

Fashion-MNIST CNN 92.50% 

QuickDraw CNN 75.00% 

FER2013 CNN 71.50% 

Chest X-Ray DenseNet-121 90.40% 

MURA DenseNet-169 90.50% 

LFW FaceNet 99.63% 

PASCAL VOC 2012 FCN 79.70% 

SVHN GoogleNet 96.80% 

DTD GoogLeNet 47.30% 

CUB-200-2011 GoogLeNet 77.60% 

Street View House Numbers 

(SVHN) 
GoogLeNet 96.30% 

Stanford Dogs GoogLeNet 84.90% 

SUN397 GoogLeNet 63.60% 

Places205 GoogLeNet 50.30% 

Open Images Inception-v3 78.90% 

Google Landmarks Inception-v3 82.60% 

Dog Breed Identification (Dogs 

vs Cats) 
Inception-v4 93.80% 

INaturalist ResNet-101 85.40% 

PASCAL-50S ResNet-101 86.20% 

Tiny ImageNet ResNet-50 77.50% 

EuroSAT ResNet-50 98.60% 

Oxford Flowers VGG-16 98.00% 

Oxford Pets VGG-16 94.30% 

Food-101 VGG-16 82.40% 

UC Merced Land Use VGG-16 89.20% 

Describable Textures VGG-16 82.70% 

MIT Indoors VGG-16 70.40% 

 

These models were trained with ImageNet, CIFAR-10, 

and CIFAR-100 data sets. CIFAR-10 has 60,000 images 

with 10 classes, CIFAR-100 has 60,000 images with 100 

classes, and the ImageNet data set consist 1.2 million 

images with 1000 classes. These data sets collected from 

academic and research institutions. It has a few thousand 

to more than a million images. 

The data set used and the number of layers in the model 

influenced how accurate these models were. On the 

ImageNet data set, VGG accuracy is 92.7% while 

Inception had an accuracy of 95.2%. On the ImageNet data 

set, ResNet achieved an accuracy of 96.54% [2]. 

VI. DISCUSSION ON ARGUMENTATIVE REVIEW 

In this section, discusses the different algorithms and 

models used in DL and also its application in image 

classification. Also discussed the different data set used, 

the source, and the volume of data, along with the accuracy 

achieved by these models. The final layer of a DL model 

usually contains a classification function, such as SoftMax 

or sigmoid, that maps the model’s outputs to a probability 

distribution over the possible classes. The specific function 

used depends on the nature of the classification task. 

A. Accuracy Attained in Various DL Models Based on 

Analysis 

Recent advancements in DL and computer vision 

algorithms have greatly improved the accuracy of image 

recognition tasks. The development of more effective and 

efficient DL architectures has played a significant role in 

this progress.  

These architectures have been designed to extract more 

meaningful features from input data, resulting in better 

accuracy in image recognition tasks. The emergence of 

pre-trained models has also made it easier for researchers 

to develop and deploy new models, leading to further 

improvements in performance. 

Overall, the advancements in DL architectures have 

opened up new possibilities for the field of computer 

vision, allowing for more accurate and efficient image 

recognition. With the continued development of DL 

algorithms and architectures, even the greater progress can 

be expected in the future. 

Table XII gives a review of many different DL 

architectures and their accuracies on the ImageNet dataset. 

It shows that few recent architectures, such as EfficientNet 

and ConvNeXt [32], be likely to attain higher accuracies 

than the previous architectures such as ResNet and 

Inception. The highest is achieved by EfficientNetB7 [24] 

at 84.4%, using the ImageNet dataset. However, it is 

significant to note that the accuracies are not directly 

equivalent across different architectures, as they may have 

been trained and evaluated using different methods and 

settings.  

Therefore, the optimal of architecture for a particular 

application should be based on different factors such as 

computational resources, model complexity, and task 

requirements. 

TABLE XII. ACCURACY ATTAINED IN VARIOUS DL MODELS 

Architecture Accuracy 

ResNet101V2 [4] 80.40% 

ResNet152 [4] 78.10% 

ResNet152V2 [3,5] 80.30% 

InceptionV3 [1] 78.80% 

InceptionResNetV2 [2] 80.40% 

MobileNet [10] 70.60% 

MobileNetV2 [11] 71.80% 

DenseNet121 [9] 74.90% 

DenseNet169 76.00% 

DenseNet201 77.30% 

NASNetMobile [14] 74.00% 

NASNetLarge 82.70% 

EfficientNetB0 [23] 77.30% 

EfficientNetB1 79.10% 

EfficientNetB2 80.00% 

EfficientNetB3 81.10% 

EfficientNetB4 82.60% 

EfficientNetB5 83.30% 

EfficientNetB6 84.00% 

EfficientNetB7 78.00% 
EfficientNetV2B0 [3] 79.00% 

EfficientNetV2B1 80.30% 

EfficientNetV2B2 81.10% 

EfficientNetV2B3 82.20% 

EfficientNetV2S [24] 84.30% 

EfficientNetV2M 84.90% 

EfficientNetV2L 85.50% 

ConvNeXtTiny [8, 18] 73.60% 

ConvNeXtSmall 78.50% 

ConvNeXtBase 79.80% 

ConvNeXtLarge 80.80% 

ConvNeXtXLarge 81.20% 

B. Criteria for Model Fixation 

This section, discusses about the criteria used in many 

papers to fix the model, the reasons behind the high 
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accuracy achieved, the unique field in which the models 

are used, and the domains in which they have been used 

the most.  

The performance of the models is evaluated using Top1 

accuracy and it measures the percentage of images for 

which the predicted class is the same as the ground class. 

However, some papers also use top-5 accuracy, which 

measures the percentage of images for which the predicted 

class is among the top-5 predicted classes [19]. Some other 

criteria used in many papers to fix the model were the 

number of layers, the learning rate, the batch size, and the 

optimizer. The number of layers impact the accuracy of the 

model. Too many layers can lead to over fitting, and too 

few layers result in under fitting. The learning rate can be 

defined the percentage of weights of the model are used in 

training. The batch size gives the details of number of 

samples used in each iteration, and the optimizer is used to 

optimize the loss function. The architectures focused on 

reducing the number of parameter and improve the 

scaling [22, 23]. The another criterial focused is FLOPS, 

which was aimed to reduce. That supports in using the 

model in handheld devices [20]. 

C. Cause of High Accuracy 

The papers that produced high accuracy due to various 

techniques it includes data augmentation, transfer learning, 

and regularization [8] used for implementation. Data 

augmentation mainly used for creating new training data 

by applying random transformations to the existing data. 

Transfer learning is responsible for a pre-trained model on 

a large dataset as a starting point and fine-tuning it on a 

smaller dataset. Regularization helps adding constraints to 

the model to prevent over fitting. The model with more 

layers will not produce always higher accuracy. The 

performance of the model depends on many different 

factors such as the architecture, the dataset, and the 

optimization algorithm. 

 The deeper models be likely to capture more complex 

features, which helps to improve the accuracy. The model 

with more layers produced higher accuracy, but the 

limitation is many layers can be a source of over fitting. 

The optimal number of layers varies depending on the data 

set. The learning rate and the batch size also have a great 

impact on the accuracy of the model. 

D. Domains Applied 

The models applied in the healthcare, autonomous 

driving, and agriculture. In healthcare, these models have 

been used for cancer detection, brain tumor detection, CT 

SCAN of COVID-19 and diagnosis. In autonomous 

driving, these models are used for object detection and 

tracking. In agriculture, these models have been used for 

crop classification and yield estimation. The domains in 

which these models have been used the most are computer 

vision, image classification, and object recognition. The 

initial learning rates, and learning saturation levels of 

different models for various applications is in Table XIII. 

These parameters can also vary based on the 

convergence speed of selected model and the specific 

problem. 

 

TABLE XIII. LEARNING RATE OF MODEL WITH EPOCH IN VARIOUS 

APPLICATIONS 

Application 
Transfer 

Model 

Initial 

Learning 

Rate 

Learning 

Saturation 

Level 

Number 

of 

Epochs 

Image 

Classification 

VGG16 0.001 0.0001 40 

ResNet50 0.01 0.0005 30 

DenseNet 0.0005 0.00005 50 

EfficientNet 0.001 0.0001 50 

Xception 0.001 0.0001 40 

ConvNet 0.0002 0.00002 60 

Object 

Detection 
ResNet50 0.01 0.0005 30 

Xception 0.01 0.0005 40 

Semantic 

Segmentation 
U-Net 0.0001 0.00001 80 

EfficientNet 0.0002 0.00002 60 

Speech 

Recognition 
ResNet50 0.0005 0.0001 50 

Xception 0.0005 0.0001 40 

Sentiment 

Analysis 
VGG16 0.0002 0.00002 60 

EfficientNet 0.0002 0.00002 60 
 

VII. CONCLUSION 

This study’s scope included a thorough investigation of 

pre-trained deep learning models in a variety of 

applications. These models are priceless resources that 

speed up training procedures and provide the basic 

building blocks for the creation of complex models. The 

ability to customize model selection to individual use cases 

enables programmers to create unique deep learning 

applications more quickly. These results make it clear that 

the current study plays a crucial function in assisting both 

beginning and experienced developers. This study 

accelerates the creation of deep learning applications by 

incorporating a wide variety of pre-trained models. The 

subtle conclusions drawn from our research provide 

weight to the dynamic interaction between model 

architectures and application environments. 
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