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Abstract—Bowing gesture while playing violin refers to the 

motion of the violinist’s arm. Violinists use different types of 

bow strokes to express musical phrases, played by the 

movement of the right arm holding the fiddle bow. 

Although the sound produced by each bow stroke is distinct, 

it can be difficult for new fiddlers to distinguish and 

recognize these bowing techniques. So, this paper presents a 

novel approach of an ensemble of multimodal deep learning 

models consisting of one Convolution Neural Network 

(CNN) and two Long Short-Term Memory (LSTM) models 

to classify into one of the five bowing classes: detaché, 

legato, martelé, spiccato and staccato. The dataset used 

consists of audio samples performed by 8 violinists along 

with the motion of their forearms measured using a Myo 

sensor device, to acquire 8-channels of Electromyogram 

(EMG) data and 13-channels of Inertial Measurement Unit 

(IMU) data. The audio features are extracted from audio 

excerpts and time domain features are extracted from EMG 

and IMU motion signals. These features are passed into an 

ensemble of deep learning models to make the final 

prediction using weighted voting. The proposed ensemble 

classifier was able to deliver optimal results with an overall 

accuracy of 99.5%, which is better than the previous studies 

that took only either audio or motion data into 

consideration.   

 

Keywords—violin bowing technique, audio features, motion 

features, Electromyogram (EMG), Inertial Measurement 

Unit (IMU), Essentia, Convolution Neural Network (CNN), 

Long Short-Term Memory (LSTM), deep learning model 

 

I. INTRODUCTION 

Music performers narrate music to their audience with 

expression and emotion, which forms the bridge of 

emotional communication between them. With 

instrumental music, the expression is projected by 

producing the variation in characteristics of sound such 

as dynamics, phrasing, timbre and articulation to bring 

the music to life. In bowed string instruments such as 

violin, the left hand is responsible only for pitch and 

vibrato, and the bow (right) hand can affect the sound with 

only three actions, i.e., bow speed, bow pressure and the 

change of sounding point. These three elements 
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correspond to the three dimensions that know in our 

physical world. Forward and backward action that’s bow 

speed, up and down that’s pressure and sideways that the 

sounding point [1]. The manner in which these elements 

are controlled, by the movement of the bowed (right) arm 

defines a bowing technique. Therefore, the sound 

produced and the movement on the right arm defines the 

type of bowing stroke, i.e., the bowing technique. 

Artificial intelligence has made significant progress in 

the field of music. Music genre classification [2], 

automated music generation, music recommendation 

system and so on depicts the blend of technology and 

music. However, the exploration on the grounds of 

stringed instruments such as violin, sarangi, and cello 

which been limited. Detection of these gestures in a 

violin sample requires expertise in the field of music. 

Hence, beginner violinists find quite a challenge to 

distinguish between the bowing techniques. In order to 

address this, the paper proposes the usage of deep 

learning methods in the identification of bowing 

gestures. The five commonly used bowing techniques 

have been chosen for the study, namely: detaché, legato, 

martelé, spiccato, staccato. 

The dataset considered [3] includes audio excerpts 

played by eight different participants using the five 

unique bowing techniques. The Myo device attached to 

the participant’s bow arm provides accurate readings of 

the rotational force and the directional attributes. These 

readings recorded assist in capturing the gestural 

expressions in the musical content. Both audio features, 

as well as motion features are taken into consideration for 

the analysis. 

Traditional machine learning algorithms were applied 

for bowing technique classification using either audio 

features or motion features. It’s seen that “detaché” is 

better classified in audio classifiers, whereas the motion 

classifier performed well in classifying “martelé”. In 

order to address this issue, this paper proposes a novel 

approach of ensemble of deep learning models consisting 

of a Convolution Neural Network (CNN) model for 

classification using audio features and two Long-Short 

Term Memory (LSTM) models that classify using the 

motion features. The main contribution of this paper is 

using multimodal features namely audio features and 
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motion features together to classify a specific bowing 

technique into five different classes. So far in the 

available literature, either of the two features is 

considered for classification. 

The rest of the paper is organized as follows: 

Section II describes the literature available for bowing 

classification using audio and motion features and the 

research gaps identified. Section III highlights some 

background details necessary to understand different 

bowing techniques for a violin player. Section IV 

discusses about the dataset, feature extraction process and 

the proposed classification technique for different bowing 

forearm movements. Section V details about the 

experimental setup, experiments carried out and the 

results obtained. Section VI concludes the work done 

and challenges faced during implementation and new 

research directions. 

II. RELATED WORK 

A. Hand Gesture Recognition Using EMG and IMU 

There have been several studies to recognize human 

gestures using Electromyography (EMG) and Inertial 

Measurement Unit (IMU) acquired from the Myo 

armband device. Tepe and Demir [4] presented a study 

on detecting and classifying muscle activation in EMG 

data acquired using the Myo armband. This study has 

extracted time domain features namely Mean Average 

Value (MAV), Root Mean Square (RMS), Waveform 

Length (WL), Slope Sign Change (SSC) and Zero 

Crossing (ZC) from EMG motion signal and used 

Support Vector Machine (SVM) classifier and got an 

average accuracy 98.75%. Tepe and Demir [5] presented 

the classification of hand gestures from EMG Myo 

armband data using SVM. In this study, time domain as 

well as frequency domain features were considered to get 

an average accuracy of 95.83%. Georgi et al. [6] have 

presented recognition of hand and finger gestures with 

EMG-based muscle activity sensing and IMU-based 

motion separately having obtained an average accuracy 

of 92.8% with IMU sensors and 85.1% with EMG 

sensors. This study showed that EMG as well as IMU 

systems can be used for hand gesture recognition. Ali and 

Yanen [7] have presented the SVM classification of 

controls of 6 DOF-robot using fused IMU and EMG 

features. With IMU features such as RMS and MAV and 

EMG features like Myopulse Percentage Rate and 

Average Amplitude Change, this study got an accuracy of 

above 98%. Dezhen et al. [8] studied and provided a 

comprehensive review of deep learning in EMG pattern 

recognition for human-machine interfaces. This study 

summarizes the opportunities, advantages, and challenges 

to use deep learning in solving questions involving EMG 

recognition. Vasconez et al. [9] have presented hand 

gesture recognition using both EMG IMU signals and 

Deep Q-Network (DQN) reinforcement learning 

algorithm and have obtained an accuracy of 97.5%, 

80.04%, 84.49% using DQN, K-Nearest Neighbors 

(KNN) and CNN classifiers, respectively. 

B. Bowing Technique Classification 

Mukherjee and Anand [10] presented the classification 

of cello bowing using motion features extracted from 3-

axis accelerometer, gyroscope and magnetometer 

gathered from the wearable Orient wireless sensors—one 

attached under the frog of the bow and the other on the 

wrist of the playing hand. This study has used Support 

Vector Machine (SVM) to classify bowing techniques 

such as legato, staccato, martelé, spiccato, tremolo, col 

legno & ricochet with 95% accuracy. Dalmazzo and 

Ramirez [11] presented bowing technique classification 

by applying Hierarchical Markov Model (HHMM) to 

data from inertial sensors and audio recordings acquired 

from a single violinist playing a simple G-Major scale 

and the accuracy obtained with motion only, audio 

only and audio + motion features are 93.2%, 39.01% 

and 94.61%, respectively. Sun et al. [12] presented 

the use of Deep learning models for classifying violin 

bowing techniques by analyzing the signals from inertial 

sensors and depth camera and were able to get an average 

accuracy greater than 80%. Dalmazzo and Ramirez [13] 

presented Deep Learning techniques for classifying violin 

bowing techniques such as detaché, legato, martelé, collé, 

staccato, ricochet, trémolo and col legno and were able to 

get an accuracy of 97.15%, 98.55%, 99.23% with CNN, 

3D-MultiHeaded CNN, CNN LSTM models respectively. 

This study has used a dataset that has only IMU features 

extracted from recordings of simple G-Major scale. 

Hernan et al. [14] presented an application of CNN to 

classify the bowing techniques such as detaché, legato, 

ricochet, spiccato and double-stops using audio features 

with an accuracy of 94.8%. Alvaro et al. [3] classified the 

bowing technique such as detaché, martelé, legato, 

staccato and spiccato using Hidden Markov Model and 

Sequential Monte Carlo Model and were able to get an 

average accuracy of 94.3%, 41.2%, 40.7% on the three 

different datasets with IMG + EMU features. 

The previous studies have presented methods that 

incorporate either motion data [11–14] or audio data [10] 

and dataset considered was from a simple playing of 

violin such as scale. To the best of our knowledge, there 

is no work available where both motion and audio 

features are considered for classifying bowing categories. 

In the proposed approach, both audio and motion features 

extracted from excerpts of violinists playing Kreutzer 

Study No. 2 in C-Major [3] are considered for effective 

classification. 

III. MUSICAL MATERIALS 

Bowing allows musicians to express a wide variety of 

emotions. The pressure exerted on the bow, the position 

of the bow on the strings, the distribution of the bow’s 

weight and the inclination of the bow are all factors that 

impact the sound produced by the violin. Different 

combinations of these factors constitute the different 

bowing gestures. The following bowing techniques have 

been considered [3, 11]: 

• Detaché: Meaning separated. The most 

fundamental bowing technique in the violin 

repertoire. It involves a constant bow speed as 
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well as constant bow pressure, while moving 

smoothly from one note to note keeping the 

sound dynamically stable. 

• Martelé: Meaning hammered. It is a form of 

detaché with a more distinct attack. The 

motion starting point is given emphasis by using 

a faster and slightly stronger initial movement. At 

the end of the movement, there is a moment of 

silence. 

• Legato: A technique used to play more than 

one note on the same bow stroke. Excessive 

accents, attacks or emphasis are avoided by the 

musician. 

• Spiccato: The slowest of bowing strokes. The 

relaxed manner in which the bow is held as well 

as its bouncing results in a series of short, distinct 

notes. The strings are attacked on a vertical 

angular approach of the bow with a controlled 

weight and precise hand-wrist control. 

• Staccato: A variation of martelé which is shorter 

and sharper. Controlled pressure over the string 

followed by an accentuated release in the 

direction of the bow-stroke results in staccato 

having a clean attack. 

The dataset containing these five bowing techniques 

and their classification is discussed in Section IV. 

IV. METHODOLOGY 

A. Dataset 

The dataset used in this paper was obtained from 

Álvaro et al. [3]. All the bowing techniques were 

established in Kreutzer’s Study No. 2 in C-Major, a 

standard pedagogic repertoire. The dataset includes the 

multimodal (audio and motion) recordings of eight 

professional violinists performing the repertoire, 10 times 

each, using the following bowing techniques: legato, 

detaché, martelé, staccato and spiccato, this is called as 

primary dataset. The second set of data includes the 

recordings of the same violinist playing the same 

repertoire, 10 times each, with only three bowing 

techniques legato, detaché and spiccato, varying the 

dynamics from pianissimo to fortissimo (soft to loud), 

this is called as dynamic dataset. The third set of data 

includes the recordings of violinists playing the repertoire, 

10 times, with the same three bowing techniques but 

accelerating the speed from slow to fast, this is 

called as tempo dataset. Samples from all the three 

datasets primary, dynamic and tempo are put together and 

this is called full dataset. Table I shows the distribution 

of the samples for each bowing technique across the 

three different datasets. The dataset captures audio 

samples recorded at a sample rate of 44100 Hz along 

with the motion data of the forearm of each participant. 

The dataset includes the motion data, 8-channels of 

electromyography (EMG) data in a circular formation 

around the right forearm of each participant acquired 

from the Myo device and IMU data consisting of 3-axis 

gyroscope (x,y,z), 3-axis accelerometer (x,y,z) and the 

Myo’s calculated position data which provides Euler 

angles for pitch, roll and yaw along with Unit quaternions. 

TABLE I. DISTRIBUTION OF SAMPLES 

Bowing 

Techniques 

Primary 

Dataset 

Dynamic 

Dataset 

Tempo 

Dataset 

detaché 80 80 80 

legato 80 80 80 

spiccato 80 80 80 

martelé 80 - - 

staccato 80 - - 

 

B. Feature Extraction 

1) Audio feature extraction: For each audio sample 

around 73 features [2] were extracted using Essentia [15], 

an open-source C++ library for audio analysis and audio-

based music information retrieval. Segmentation of the 

input audio signal was performed by creating multiple 

frames of equal size along with a constant hop size to 

hop in between frames. Features were then extracted for 

each frame and their mean was taken. Fig. 1 represents 

the audio input signal for the excerpt played using legato 

along with its features in the form of a spectrogram. 

Essentia provides a large set of spectral, temporal, high-

level and tonal descriptors. The audio features extracted 

belong to the following categories: 

• Spectral features: These features provide 

general frequency-domain metrics of the audio 

signal. It also describes the shape of the spectrum. 

E.g.: Mel-Frequency Cepstral Coefficients 

(MFCCs), Gammatone Frequency Cepstral 

Coefficients (GFCCs), Flux, High Frequency 

Content (HFC). 

• Temporal features: These include time domain 

features of the audio signal. E.g.: RMS, Zero 

crossing rate, etc. 

• Tonal features: These features describe the 

arrangement of chords and keys in the audio 

signal. Examples include chord descriptors, pitch 

salience, dissonance, etc. 

 

 

Fig. 1. Input audio signal along with its spectrogram. 

2) Motion feature extraction: The motion data 

consists of 8 channels of EMG data along with IMU data 

that contains unit quaternions, Euler angles for pitch, yaw, 

roll and 3-axis accelerometer, 3-axis gyroscope
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adding up to a total of 21 input signals for each 

recording. For each of the input signals, five time-domain 

features were captured [16–20]. These include: Mean 

Absolute Value (MAV), Root Mean Square (RMS), 

Waveform Length (WL), Zero Crossing (ZC) and Slope 

Sign Change (SSC) [16]. The input signal was segmented 

into windows of length 1s along with an overlap of 50%. 

The features were individually calculated for each 

window [16]. RMS determines the power of the signal in 

the time domain whereas SSC and ZC determine a 

measure of the frequency content of the input signal [16]. 

Fig. 2 represent the input signal for one channel of EMG 

data taken for one recording along with the RMS and 

MAV computed for each window where definitions of 

RMS, MAV, WL, ZC and SSC are given in Eqs. (1)–(5), 

respectively. 

𝑅𝑀𝑆 =  1

𝑛
 √∑ (𝑥i)

2𝑛
𝑖=1                           (1) 

𝑀𝐴𝑉 =  1

𝑛
 ∑ |𝑥i|

𝑛
𝑖=1                                (2) 

𝑊𝐿 =  1

𝑛
 ∑ |𝑥i+1  −  𝑥i| 

𝑛−1
𝑖=1                     (3) 

𝑍𝐶 =  ∑ 𝑠𝑔𝑛(−𝑥i𝑥i+1) 𝑛
𝑖=1                     (4) 

𝑠𝑔𝑛(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

 

𝑆𝑆𝐶 =  ∑ 𝑓[(𝑥i  −  𝑥i−1)  (𝑥i  −  𝑥i+1)] 𝑛
𝑖=2              (5) 

𝑓(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

 

 

 

Fig. 2. EMG for one channel combined with RMS, MAV. 

C. Classification of Violin Bowing Technique Using ML 

Algorithms 

Following feature extraction, around 73 audio features 

and 105 motion features were obtained. The dataset is 

divided into four parts: original dataset containing all 

samples (880), the initial samples played using all five 

bowing techniques (400), the second variation wherein 

the dynamics were varied (240) and the third variation 

wherein the tempo was varied (240). To prevent 

overfitting, dimensionality reduction was performed on 

the audio as well as motion features using Principal 

Component Analysis (PCA). Fig. 3 represents a graph 

indicating the change in variance vs. the number of 

principal components for audio features. From the graph 

(Fig. 3), we can see that approximately 97% of the 

variance is explained when around 40 principal 

components are considered. A similar experiment was 

performed for motion features as well and it was 

observed that 30 principal components were required to 

explain approximately 97% of the variance. 

 

Fig. 3. PCA analysis for audio features. 

After selecting 40 and 30 principal components for the 

audio and motion features respectively, multiple machine 

learning models were trained and tested on all four 

datasets for audio features and motion features separately. 

10-fold cross-validation was used to validate the models. 

The following ML models were used: Logistic 

Regression, K-Nearest Neighbor, SVM (linear), Naive 

Bayes model and Multi-layer Perceptron (MLP). Table II 

presents the accuracy of each model on all four datasets 

for audio features as well as motion features individually. 

TABLE II. ML MODEL ACCURACIES ON ALL DATASETS 

ML Models 
Full Primary Dynamic Tempo 

Audio Motion Audio Motion Audio Motion Audio Motion 

LR 99.3 90.2 98.8 92 100 97.5 100 97.1 

KNN 98.4 98.4 97.8 99.5 100 99.2 100 95 

SVM 99.9 88.2 97 92.7 100 97.1 100 98.8 

NB 82.7 81.7 85.5 81 92.1 89.2 95.8 86.7 

MLP 99.7 97.6 99 97.5 100 98.8 100 99.2 

 

 
(a)                                             (b) 

Fig. 4. Confusion matrices of MLP with (a) audio and (b) motion 

feature. 

From Table II, it is observed that audio features have a 

greater impact as compared to motion features. The 

Naïve Bayes classifier gives the least accuracy whereas 

the MLP classifier gives the highest accuracy for all 

datasets. From Fig. 4, it can be seen that “detaché” is 

better classified in audio classifiers, “martelé” is better 

classified in motion classifiers. In order to address the 

need for both audio and motion features for better 

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

43



 

Fig. 5. System diagram of proposed ensemble of deep learning models for bowing technique classification. 

classification of violin bowing techniques, this paper 

proposes a novel approach of ensemble of deep learning 

models consisting of a CNN model for classification 

using audio features and two LSTM models that classify 

using the motion features.  

D. Classification of Violin Bowing Technique Using 

Ensemble of Multimodal Deep Learning Models 

The system diagram of the proposed ensemble of deep 

learning models comprising of a CNN model along with 

two LSTM models is as shown in Fig. 5. 

Fig. 6 shows the architecture of the CNN model, 

consisting of two convolution layers and an output layer, 

that predominantly uses the audio features extracted from 

the violin excerpt. The features are extracted from 

Essentia and PCA is applied to select 67 features for 

(N)samples. The dataset forming the input shape of [N, 

67] is used to train the CNN model. For instance, with 

primary dataset we have an input shape of [400, 67]. 

Once the model is trained using this data, it compiles the 

first stage of prediction with respect to the audio features. 

Further, EMG signals are segmented into windows of 

length 0.25 s along with an overlap of 50% to extract 

time domain features over each window to give 40 

features in 42 timesteps for (N)samples. The dataset 

forming the input shape of [N, 42, 40], is used to train the 

first 2D-LSTM model. For instance, with primary dataset 

we have an input shape of [400, 42, 40]. Fig. 7 shows the 

architecture for the first LSTM model consisting of an 

LSTM layer and a dense layer with drop out before the 

output layer. This contributes to the second set of 

predictions. 

 

 

Fig. 6. CNN architecture for audio data. 
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Fig. 7. LSTM architecture for EMG data. 

 

Fig. 8. LSTM architecture for IMU data. 

Lastly, IMG signals are segmented into windows of 

length 0.25s along with an overlap of 50% to extract time 

domain features over each window to give 65 features in 

42 time-steps for (N)samples. The dataset forming the 

input shape of [N, 42, 65], is used to train the second 

2D-LSTM model. For instance, with primary dataset 

we have an input shape of [400, 42, 65]. The 

architecture used for the second LTSM model consisting 

of an LSTM layer and a dense layer with drop out before 

the output layer is shown in Fig. 8. This model 

provides the third set of predictions. As a final step, the 

predictions generated above are integrated using softmax 

voting. 

V. EXPERIMENTAL SETUP AND RESULTS 

The proposed ensemble of deep learning models-based 

violin bowing technique classifier was trained and tested 

on 4 datasets primary dataset, dynamic dataset and 

tempo dataset and full dataset using 10-fold stratified 

cross-validation, 9-folds for training and 1-fold for 

testing. 

A. Primary Dataset 

The results of applying ensemble of deep learning 

models classifier for the primary dataset is shown in 

Table III. 

TABLE III. CLASSIFICATION METRIC OF ENSEMBLE OF DEEP 

LEARNING MODELS FOR PRIMARY DATASET 

 Precision Recall F1-Score Support 

detaché 1.00 0.99 0.99 80 

legato 0.96 1.00 0.98 80 

martelé 0.99 0.99 0.99 80 

spiccato 0.99 1.00 0.99 80 

staccato 1.00 0.96 0.98 80 

macro avg 0.99 0.99 0.99 400 

weighted avg 0.99 0.99 0.99 400 

 

Fig. 9 shows the confusion matrices of CNN audio 

classifier, 2D LSTM-EMG motion classifier, 2D LSTM-

IMU motion classifier and ensemble model classifier for 

primary dataset. 

For primary dataset, the accuracies of applying CNN 

using audio features, 2D LSTM using EMG-motion 

features and 2D LSTM using IMU-motion features are 

97.5%, 90.5% and 95.0%, respectively. As it can be seen 

in the confusion matrices Fig. 9, “legato” is classified 

better with the audio classifier and “martelé” is classified 

better with the IMU-motion classifier. With the proposed 

ensemble of deep learning models, the accuracy obtained 

is 98.8%. 

 

 

Fig. 9. Confusion matrices of primary dataset. 
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B. Dynamic Dataset 

The results of applying ensemble of deep learning 

model classifier for the dynamic dataset is as shown in 

Table IV. Fig. 10 shows the confusion matrices of CNN 

audio classifier, 2D LSTM-EMG motion classifier, 2D 

LSTM-IMU classifier and ensemble model classifier for 

dynamic dataset. 

For dynamic dataset, the accuracies of applying CNN 

using audio features, 2D LSTM using EMG-motion 

features and 2D LSTM using IMU-motion features are 

97.5%, 91.7%, and 99.2%, respectively. With the 

proposed ensemble of deep learning models, the accuracy 

obtained ~100.0%. This indicates that the ensemble of 

deep learning models is able to classify and predict 

bowing techniques of violin excerpts with variation in 

dynamics, i.e., from soft to loud, with greater accuracy. 

TABLE IV. CLASSIFICATION METRIC OF ENSEMBLE OF DEEP 

LEARNING MODEL FOR DYNAMIC DATASET 

 Precision Recall F1-Score Support 

detaché 1.00 1.00 1.00 80 

legato 1.00 1.00 1.00 80 

spiccato 1.00 1.00 1.00 80 

macro avg 1.00 1.00 1.00 240 

weighted avg 1.00 1.00 1.00 240 

 

 

Fig. 10. Confusion matrices of dynamic dataset. 

C. Tempo Dataset 

The results of applying ensemble of deep learning 

model classifier for the tempo dataset is shown in 

Table V. Fig. 11 shows the confusion matrix of CNN 

audio classifier, 2D LSTM-EMG motion classifier, 2D 

LSTM-IMU classifier and ensemble model classifier for 

dynamic dataset. 

TABLE V. CLASSIFICATION METRIC OF ENSEMBLE DEEP LEARNING 

MODEL FOR TEMPO DATASET 

 Precision Recall F1-Score Support 

detaché 1.00 0.99 0.99 80 

legato 0.99 0.99 0.99 80 

spiccato 0.99 1.00 0.99 80 

macro avg 0.99 0.99 0.99 240 

weighted avg 0.99 0.99 0.99 240 

 

Fig. 11. Confusion matrices of tempo dataset. 

For tempo dataset, the accuracies of applying CNN 

using audio features, 2D LSTM using EMG-motion 

features and 2D LSTM using IMU-motion features are 

99.2%, 91.2%, and 97.9%, respectively. With the 

proposed ensemble of deep learning model, the accuracy 

obtained is 99.2%. This indicates that the ensemble of 

deep learning models is able to classify and predict 

bowing techniques of violin excerpts with variation in 

tempo, i.e., from slow to fast speed, with greater 

accuracy. 

D. Full Dataset 

The results of applying ensemble of deep learning 

model classifier for the full dataset is as shown in 

Table VI. Fig. 12 shows the confusion matrices of CNN 

audio classifier, 2D LSTM-EMG motion classifier, 2D 

LSTM-IMU motion classifier and ensemble model 

classifier for dynamic dataset. For full dataset, the 

accuracies of applying CNN using audio features, 2D 

LSTM using EMG-motion features and 2D LSTM 

using IMU-motion features are 99.0%, 89.5%, and 

96.7%, respectively. With the proposed ensemble of 

deep learning models, the accuracy obtained is 99.5%. 

This shows that the ensemble of deep learning models is 

able to classify and predict the samples of violin excerpts 

with variation in dynamics and variation in tempo to the 

respective classes without much uncertainty. That is, 

violin excerpts with the “detaché” technique with soft-

loud variation are classified as “detaché” class. Similarly, 

violin excerpts with the “detaché” technique with slow-

fast variation are classified as “detaché” class. 

TABLE VI. CLASSIFICATION METRIC OF ENSEMBLE OF DEEP 

LEARNING MODELS FOR FULL DATASET 

 Precision Recall F1-Score Support 

detaché 1.00 0.99 1.00 240 

legato 0.99 1.00 1.00 240 

martelé 0.99 0.99 0.99 80 

spiccato 1.00 1.00 1.00 240 

staccato 0.99 1.00 0.99 80 

macro avg 0.99 1.00 0.99 880 

weighted avg 1.00 1.00 1.00 880 
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Fig. 12. Confusion matrices of full dataset. 

TABLE VII. COMPARISON OF ALVARO ET AL. [3] AND PROPOSED METHOD 

Datasets 
Alvaro et al. [3] Proposed Method 

PF-IMU HMM5-IMU PF-IMU+EMG HMM5-IMU+EMG 1D CNN-AUDIO 2D LSTM-EMG 2D LSTM-IMU Softmax Voting 

Primary 91.3 98.9 94.3 90.2 97.5 90.5 95 98.8 

Dynamic 81.6 81.3 41.2 39.5 97.5 91.7 99.2 100 

Tempo 82 81.2 40.7 37 99.2 91.2 97.9 99.2 

Full - - - - 99 89.5 96.7 99.5 

 

The comparison of accuracies of the proposed 

approach with the previous study Alvaro et al. [3] is 

shown in Table VII. In the proposed approach the 

accuracies obtained are consistent among all four datasets. 

It can be seen that in the previous study [3] the accuracies 

of dynamic and tempo datasets have decreased compared 

to the primary dataset and when both IMU and EMG are 

considered, the accuracies are very less. 

TABLE VIII. COMPARISON OF PROPOSED METHOD WITH EXISTING 

WORKS 

Features [3] [10] [11] [12] [13] [14] 
Proposed 

Method 

Audio - 94.8 93.2 - - - 99.0 

Motion 94.5 - 39.1 31.3 98.31 95.0 96.7 

Audio & 

Motion 
- - 94.6 - - - 99.5 

Camera 

Depth 
- - - 74.7 - - - 

Camera 

Depth & 

Motion 

- - - 80.9 - - - 

 

The comparisons of accuracies of the proposed 

approach with the previous studies [3, 10–14] are shown 

in Table VIII. It can be observed that the overall 

accuracies of the proposed approach considering either 

audio, motion or audio and motion features are better than 

previous studies. Since Dalmazzo et al. [13] has 

considered a simple G-Major scale violin excerpt and the 

accuracy may be slightly higher for the motion-only 

classifier. 

VI. CONCLUSION 

For identifying the bowing technique both the sound 

produced by the violin and the movement on the right 

arm is essential. In this paper, an investigation of violin 

bowing technique classification using audio features 

from Essentia [15] and time domain motion features was 

done and evaluated on four datasets namely primary, 

dynamic, tempo and full datasets. Better classification of 

“legato” in the audio-classifier and “martelé” in the 

motion-classifier has driven the proposal of ensemble of 

deep learning, 1-CNN for audio features and 2-LSTM for 

EMG-motion and IMU-motion features, for violin 

bowing technique classification. The results show that 

the use of both audio and motion features gives better 

accuracy.  

Violin bowing technique classification accuracy of 

98.8%, 100.0%, 99.2%, 99.5% obtained for primary, 

dynamic, tempo and full datasets respectively with 

ensemble of deep learning models is better than the 

earlier proposed approaches to the best of our knowledge. 

In future, we would like to study the extraction of 

frequency domain features from motion signals and use 

them to train and predict violin bowing techniques, that 

may further give better accuracy. Furthermore, we would 
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like to study and improve the model that can classify 

more violin bowing techniques. 
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