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Abstract—Recent research has shown that deep learning 

techniques outperform traditional steganography and 

steganalysis methods. As a result, researchers have 

proposed increasingly complex and more extensive 

convolutional Neural Networks (CNNs) to detect 

Steganographic images to achieve a 1%–2% improvement 

over the state-of-the-art. In this paper, we propose a data 

preprocessing and distribution strategy that enhances 

accuracy and convergence during training. Our method 

involves bifurcating Spatial Rich Model (SRM) and Discrete 

Cosine Transform (DCT) filters, with one branch being 

trainable and the other untrainable. This strategy is 

followed by three blocks of residual convolutions and an 

excitation layer. Our proposed method improves the 

accuracy of CNNs applied to steganalysis by 2%–15% while 

maintaining stability.   

 

Keywords—convolutional neural network, deep learning, 

steganalysis, steganography, steganographic filters  

 

I. INTRODUCTION 

Recently, security challenges in the era of artificial 

intelligence have become a significant concern in digital 

transformation and communication [1]. As data and 

digital information are being transmitted rapidly over 

public networks, the technology for protecting and 

securing sensitive messages must be continuously 

discovered and developed. Digital multimedia 

steganography is an essential branch of information 

hiding, which provides a practical and secure way to 

address the problem of multimedia communication 

security. Steganography aims to hide messages in digital 

media such as images, audio, video, and text [2].  

Steganography is formulated with the famous problem 

of the prisoners (Alice and Bob), who want to exchange 

messages under the watchful eye of the prison warden. If 
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the prison warden considers the message suspicious, she 

will not allow it to reach the recipient [3]. Image 

steganography is applied in the frequency and spatial 

domains [4]. In the spatial domain, the Least Significant 

Bit (LSB) of each pixel in the image is changed, adapting 

to the outline of the image so that it is invisible to the 

human eye [5, 6]. The most common transform in the 

frequency domain is the Discrete Cosine Transform 

(DCT), with Joint Photographic Experts Group (JPG) 

data compression. DCT coefficients are modified to 

include the hidden message. Steganography algorithms in 

the spatial domain are HILL [7], HUGO [8],  

S-UNIWARD [9], WOW [10], and MiPOD [11]. For the 

frequency domain, there are algorithms such as F5 [12], 

J-UNIWARD [9], UERD30 [13], and UED [14]. 

 Image steganalysis consists of detecting the hidden 

messages within an image [15, 16]. Initially, detecting 

hidden messages within an image was performed with 

machine learning techniques. Machine learning generated 

problems due to the separation of the two processing 

stages (feature extraction and steganographic image 

classification). The feature extraction stage was usually 

performed with the Rich model [17], and the 

classification was performed with a support vector 

machine [18] and an ensemble classifier. If information is 

lost in the feature extraction stage, it is not recovered in 

the classification stage because they are two separate 

processes. Deep Learning (DL) techniques [19] and 

GPUs [20] improved the classification rate of 

steganographic images. DL techniques unify feature 

extraction and image classification stages into a single 

model eliminating errors generated with a support vector 

machine and ensemble classifier. In particular, 

Convolutional Neural Networks (CNNs) is a powerful 

tool for classifying steganographic images in frequency 

and spatial domains.  

Before CNNs in steganalysis, the most advanced 

approach was Spatial Rich Models (SRM) [17]. SRM is a 
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typical steganalysis method in which a high-pass filter 

bank is designed to obtain the steganographic image’s 

noise residuals. Image residuals are quantized and 

truncated by reducing their dynamic range. The SRM 

feature consists of high-order co-occurrence matrices 

collected from the noise residuals of the steganographic 

image. In SRM, symmetry rules were designed to 

improve feature robustness and reduce feature 

dimensions. SRM shows two significant characteristics; 

the difference between cover-stego image characteristics 

is minimal, and different cover images’ characteristics are 

often very other. The first characteristic means the 

distance between classes is small, while a large dispersion 

in the same class characterizes the second. Another 

widely used technique is to generate DCTR features as a 

result of performing convolution of the image in the 

spatial domain with the 64 DCT base patterns [21]. It has 

improved the results when classifying JPEG stego and 

cover images. In this study, we concatenate the two 

methods of SRM and DCTR features followed by a 

residual block stage and an activation layer. 

Main steganalysis architectures in chronological order 

for the spatial domain are the Xu-Net [22], Ye-Net [23], 

Yedroudj-Net [24], SR-Net [25], Zhu-Net [26], and 

GBRAS-Net [27]. The above CNNs, except for Xu-Net 

and SR-Net, use SRM filter banks to assist the feature 

extraction stage.  

This paper presents an exhaustive experimentation 

process in which different forms of image preprocessing 

on steganalysis CNNs were tested to determine which is 

most relevant, then design an image preprocessing stage 

that improves the accuracy of steganographic image 

detection for multiple architectures. SRM and DCT 

bifurcation was developed to improve the accuracy of the 

CNNs by 1% up to 10% approximately. This paper aims 

to generate a preprocessing module capable of 

transforming old CNNs into state-of-the-art competitive 

CNNs, without excessively increasing the computational 

cost. Moreover, this preprocessing will be the starting 

point for future research.  

The rest of the paper is structured as follows: 

Section  II describes the most relevant CNNs in image 

steganalysis in the spatial domain. Section III gives the 

details of materials, databases, Spatial Rich Models, 

experiments, Training, hyperparameters, Hardware, and 

resources. Section IV describes the results and Section V 

discusses the results. Finally, Section VI presents the 

conclusions of the work.  

II. RELATED LITERATURE  

This section will describe in chronological order the 

most relevant CNNs in steganalysis in the spatial domain: 

A. Xu-Net 

We use the Xu-Net with strategy in [28] for this 

research. Xu-Net is a CNN developed by Xu et al. [22]. 

This CNN consists of 5 convolutional layers in the 

feature extraction stage. The input is convolved with the 

30 SRM filters in the preprocessing block. Subsequently, 

the activation layer 3×TanH is used. This neural network 

with strategy incorporates a Spatial Dropout from the 

second convolutional block, implements a Leaky 

Rectified Linear Unit (ReLU) activation layer, after 

activation uses an Absolute (ABS) layer, has Batch 

Normalization (BN) after ABS, and a layer that 

concatenates three inputs. The classification stage has 

three Fully Connected (FC) layers of 128, 64, and 32 

units, respectively, with a Leaky ReLU activation and a 

SoftMax layer. The classification block is after global 

average pooling, and the optimizer was stochastic 

gradient descent. 

B. Ye-Net 

This CNN was proposed by Ye et al. [23]. For this 

research, Ye-Net with strategy in [28] was used. Like the 

previous networks, it implements a convolution to the 

input data with the 30 SRM filters to increase the 

perception of stenographic noise. It also has an activation 

function of 3×TanH. This CNN has eight convolutional 

layers for the feature extraction stage. With the strategy 

implemented in Ref. [28], this network has Spatial 

Dropout from the second convolutional block, activation 

Leaky ReLU, ABS, and BN in the above order. It has a 

concatenation layer of 3 inputs. In the classification stage, 

3 FC with 128, 64, and 32 units were activated with 

Leaky ReLU and SoftMax. The classification stage is 

after global average pooling and optimized with 

stochastic gradient descent. 

C. Yedroudj-Net 

This efficient type of CNN was designed by Yedroudj 

et al. [24], a hybrid of the best features of the 

convolutional neural networks Xu-Net, and Ye-Net. For 

this research, Yedroudj-Net was implemented with 

improvements to the strategy developed by Tabares-Soto 

et al. [28]. The architecture of this convolutional neural 

network implements the 30 SRM filters, implementing a 

3×TanH activation. This architecture has five 

convolutional layers in the feature extraction stage, and 

from the second layer, it implements Spatial Dropout, 

uses Leaky ReLU as an activation function, uses ABS, 

BN, and a 3-input concatenation layer. The classification 

stage uses three fully connected layers of 128, 64, and 32 

units, respectively, with Leaky ReLU and SoftMax 

activation. The classification stage is after global average 

pooling and uses stochastic gradient descent as an 

optimizer. 

D. GBRAS-Net 

Developed by Reinel et al. [27], this architecture has a 

3×TanH activation function and convolves the input 

image with 30 SRM filters in a preprocessing block. The 

activation function chosen for the convolution of the 

feature extraction stage is Exponential Linear Unit (ELU). 

This architecture also has separable convolutions, depth 

separable convolutions, and shortcuts for feature 

extraction, which handle the same padding and the same 

number of filters at the beginning and the end. The trigger 

function chosen for the convolution of the feature 

extraction stage is ELU. This architecture also has 

separable convolutions, depth separable convolutions, 
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and shortcuts for feature extraction, which handle the 

same padding and the same number of filters at the 

beginning and the end. This architecture implements 

separable convolutions inside the shortcuts with some 

filters of 30 and 60 of size 3×3, with a stride of 1×1 and 

no change in padding. This CNN consists of 8 

convolutional layers with 3×3 filters, ending this stage 

has two convolutional layers of size 1×1, a stride of 1, 

and does not change the padding. The first two layers of 

this stage are convolved with 30 filters, the following 

four layers with 60 filters, the penultimate layer with 30 

filters, and the last one with 2. This CNN implements 

average pooling layers after batch normalization to 

reduce dimensionality, with a pooling size of 2×2 and a 

stride of 2. This network uses a SoftMax layer after 

global average pooling and does not use fully connected 

layers. 

III. MATERIALS AND METHODS 

A. Database 

Experiments were performed with the BOSSBase 1.01 

database, which has 10,000 grayscale images of size 

512×512×1 pixels in a Portable Gray Map (PGM) [29]. 

The images were resized to 256×256×1 pixels. The stego 

images were created from each cover image using the 

steganographic algorithms S-UNIWARD [9] and 

WOW  [10] with two different payloads (0.4 and 0.2 bpp). 

The open-source tool Aletheia [30] was used to apply 

steganography to the images. The images were split into 

cover and stego pairs, of which 4,000 was used for 

training, 1,000 for validation, and 5,000 for testing. Data 

distribution was based on [22, 23, 26]. 

B. Spatial Rich Models (SRM) 

The Spatial Rich Models (SRM) [17] are a set of sub-

models that capture various types of relationships among 

neighboring samples of noise residuals from 

steganographic images. Constructing these sub-models 

starts by computing the noise residuals using high-pass 

filters, which suppress image content allowing for a more 

robust statistical description. Then, truncation and 

quantization are applied to these noise residuals, 

truncation limits the residual dynamic range, and 

quantization makes the residual more sensitive to changes 

in edges and textures. After that, co-occurrence matrices 

are computed in vertical and horizontal directions that are 

later turned into sub-models by leveraging symmetries of 

natural images [17]. 

Since their introduction in 2012, SRM has been 

essential in steganalysis systems. Even for the latest CNN 

contributions, this set of filters acts as a preprocessing 

stage that enhances the steganographic noise improving 

the detection accuracy. Fig. 1 presents the set of SRM 

used for digital image steganalysis. 

C. DCTR Feature Extraction 

DCTR is a process developed by Holub et al. [21], 

which they expose in more depth in their research, below 

we show roughly how these feature maps are obtained. 

The DCTR features are obtained by convolving the image 

in the spatial domain with the 64 DCT base kernels. Each 

has a size of 8×8, giving us an activation map of 64 filters 

with dimensions 256×256. 

𝐵(𝑘,𝑙) = (𝐵𝑚𝑛
(𝑘,𝑙)

), 0 ≤ 𝑚, 𝑛, 𝑘, 𝑙 ≤ 4: 

𝐵𝑚𝑛
(𝑘,𝑙)

=
𝑤𝑘𝑤𝑙

4
𝑐𝑜𝑠

π𝑘(2𝑚+1)

16
𝑐𝑜𝑠

π𝑙(2𝑛+1)

16
               (1) 

where 𝑤0 =
1

√2
, 𝑤𝑖 = 1 𝑓𝑜𝑟 𝑖 > 0. 

The grayscale image X is convolved with each of the 

64 DCT basis patterns B(k, l), to generate a set of 64 

undecimated DCTs, each of which is denoted by U(k, l) 

for the (k, l) − th DCT basis pattern as set of 64 DCTs, 

each of which is denoted by U(k, l) for the (k, l) − th 

DCT basis pattern as: 

𝑈(𝑘,𝑙) = 𝑋 · 𝐵(𝑘,𝑙), 0 ≤ 𝑘, 𝑙 ≤ 4                   (2) 

 

 

Fig. 1. The 30 SRM filter values. 

D. Strategy Proposed to Improving the Preprocessing 

Stage 

The preprocessing stage is crucial in the feature 

extraction process because it is the stage where the filters 

highlight the steganographic noise. In this research, a 

bifurcation was designed in the preprocessing stage. Each 

branch concatenates the 30 SRM filters mentioned in 

Section III-B and 64 DCT basis weights mentioned in 

Section III-C, giving a total of 94 filters for each branch 

of the bifurcation, one of these branches will be kept 

trainable (the weights of the 94 filters are modified in 

training) and the other branch is kept constant, see Fig. 2. 

The 94 output channels of each branch are summed to 

form a 94-channel feature map. In SR-Net [25], it is 

discussed that clustering can reduce the power of 

steganographic noise, but the shortcut connection can 

benefit the signal from this noise. Using the same strategy 

as in [25, 31], a so-called bottleneck block and two basic 

blocks based on residual networks without pooling [32]. 

The bottleneck performs a 1×1 convolution with the 94 

output filters of the bifurcation, followed by another 3×3 

convolution and a final 1×1 convolution. An attention 

module called “Squeezeand-Excitation” [33] was added 

to perform a direct access connection with the features 
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obtained by the bifurcation. Two basic residual building 

blocks are implemented. Each stage consists of 3×3 

convolutions and 94 kernels, see Fig. 3. In all residual 

blocks, no pooling was performed, and a Batch 

Normalization (BN) layer and Leaky ReLU activation 

were used. 

 

 

Fig. 2. A preprocessing stage, bifurcation of concatenated, trainable, and 

untrainable SRM and DCT filters.  

E. Training and Hyper-Parameters 

1) GBRAS-Net: For this network, a batch size of 32 

images was set and trained for 150 epochs. All layers 

were initialized with normal glorot except the initial 

preprocessing layer. The Adam optimizer was used with 

the following configuration: 

• Learning rate: 0.001 

• Beta 1: 0.9 

• Beta 2: 0.999. 

• Decay: 0.0 

• Epsilon: 1×10–8 

This network uses a categorical cross-entropy loss for 

two classes, a batch normalization with momentum 0.2, 

epsilon 0.001, scale is False, center is True, trainable 

True, fused is None, renorm clipping is None, renorm is 

False, adjustment is None and renorm momentum is 0.4. 

the maximum absolute value normalizes the SRM filters. 

2) Others CNNs: The training bach size for the Xu-

Net, Ye-Net, and Yedroudj-Net networks was 32 images 

and trained for 150 epochs. The hyperparameters used for 

the fully connected layers and the convolutional layers 

are as follows: 

• Normal glorot initializer.  

• L2 regularization for kernels and bias.  

• The spatial dropout rate has a value of 0.1.  

• BN has a momentum value of 0.2.  

• Epsilon: 0.001.  

• Renorm: 0.4. 

• The momentum of the stochastic gradient 

descent optimizer: 0.95. 

• Learning rate initialized: 0.005. 

The activation used for the convolutional layers is 

ReLU with a negative slope of 0.1, converting the ReLU 

to a leaky ReLU. 

 

 

Fig. 3. Proposed residual neural network with 94 channels as input (SRM + DCT Bifurcation), the output is the input of the neural networks trained in 

this research. 

F. Hardware and Resources 

Python 3.7.5 was used to build the architecture for this 

experiment, and the model was designed mainly with 

TensorFlow 2.4.1 [34] on a workstation running Ubuntu 

as an operating system. The computer runs 2 Tesla V100-

PCIE 32 GB graphics cards, CUDA Version 11.2, 7 

Intel(R) Xeon(R) Gold 6130 processors at 2.10 GHz, and 

40GB of RAM. For design and initial experimentation, 

the Google Colaboratory platform was used in an 

environment with a Tesla P100 PCIe with 16 GB, CUDA 

Version 10.1, and 25 GB of RAM. 

All resources, including source code and databases of 

this project, are available as open-source software in the 

following repository: https://github.com/BioAITeam/Pre 

processing-Strategy-to-Improve-the-Performance-of-Con 

volutional-Neural-Networks-Applied-to-Stegan. 
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IV. RESULT  

Figs. 4 and 5 show the learning curves as a function of 

training epochs for the GBRAS-Net, Ye-Net, and Xu-Net 

networks for the S-UNIWARD and WOW 

steganographic algorithms, respectively, trained for 150 

epochs. 
 

 

Fig. 4. Test accuracy Curves for S-UNIWARD steganographic 

algorithms with a 0.4 bpp payload of GBRAS-Net, Ye-Net and Xu-Net 

with our strategy. 

 

Fig. 5. Test accuracy Curves for WOW steganographic algorithms with 

a 0.4 bpp payload of GBRAS-Net, Ye-Net and Xu-Ne with our strategy. 

This preprocessing strategy was trained on the 

BOSSBase 1.01 database to improve the accuracy of the 

CNNs spoken in Section II, using S-UNIWARD and 

WOW as steganographic algorithms at a payload of 

0.2  bpp and 0.4 bpp. 

The results obtained for this research on the CNN Xu-

Net are compared with the results achieved by this 

network in its original form and with the improvement 

made by Tabares-Soto et al. [28], see Table I. 

TABLE I. PERCENT ACCURACY VALUE FOR XU-NET COMPARED TO 

STRATEGIES FOR THE S-UNIWARD AND WOW STEGANOGRAPHIC 

ALGORITHMS, WITH PAYLOADS OF 0.2 AND 0.4 BPP 

CNN 
S-UNIWARD 

0.2 bpp 

S-UNIWARD 

0.4 bpp 

WOW 

0.2 bpp 

WOW 

0.4 bpp 

Original  

Xu-Net 
60.90 72.80 67.60 79.30 

Xu-Net with 

strategy in 

[28] 

68.29 78.19 73.52 82.21 

Xu-Net with 

our strategy 
75.96 87.54 79.91 89.89 

 

Table II shows the results of this research compared to 

the original CNN, the modification made by Tabares-

Soto et al. [28] and our strategy. 

TABLE II. PERCENTAGE ACCURACY VALUE IN YE-NET COMPARED TO 

STRATEGIES FOR THE S-UNIWARD AND WOW STEGANOGRAPHIC 

ALGORITHMS, WITH PAYLOADS OF 0.2 AND 0.4 BPP 

CNN 
S-UNIWARD 

0.2 bpp 

S-UNIWARD 

0.4 bpp 

WOW 

0.2 bpp 

WOW 

0.4 bpp 

Original  

Ye-Net 
60 68.80 66.90 76.80 

Ye-Net with 

strategy in 

[28] 

71.03 81.01 75.47 84.51 

Ye-Net with 

our strategy 
75.96 87.54 80.71 89.17 

 

The results of Yedroudj-Net for the experiment are 

compared with the original network and with the 

improvement made by Tabares-Soto et al. [28], see 

Table  III. 

TABLE III. PERCENTAGE ACCURACY VALUE IN YEDROUDJ-NET 

COMPARED TO STRATEGIES FOR THE S-UNIWARD AND WOW 

STEGANOGRAPHIC ALGORITHMS, WITH PAYLOADS OF 0.2 AND 0.4 BPP 

CNN 
S-UNIWARD 

0.2 bpp 

S-UNIWARD 

0.4 bpp 

WOW 

0.2 bpp 

WOW 

0.4 bpp 

Original 

Yedroudj-Net 
63.30 77.20 72.20 85.90 

Yedroudj-Net 

with strategy in 

[28] 

67.73 79.64 76.23 84.70 

Yedroudj-Net 

with our 

strategy 

76.23 86.79 79.56 89.26 

 

The last experiment was performed on GBRAS-Net, 

Table IV compares the results of this experiment 

compared to the original network. 

TABLE IV. PERCENT ACCURACY VALUE IN GBRAS-NET COMPARED 

TO STRATEGY FOR THE S-UNIWARD AND WOW STEGANOGRAPHIC 

ALGORITHMS, WITH PAYLOADS OF 0.2 AND 0.4 BPP 

CNN 
S-UNIWARD 

0.2 bpp 

S-UNIWARD 

0.4 bpp 

WOW 

0.2 bpp 

WOW 

0.4 bpp 

Original 

GBRAS-Net 
73.60 87.10 80.30 89.80 

GBRAS-Net 

with our 

strategy 

79.91 91.00 85.90 92.23 

TABLE V. PERCENT ACCURACY VALUE IN GBRAS-NET WITH OUR 

STRATEGY COMPARED TO THE CONVOLUTIONAL TRANSFORMER (CVT) 

FOR THE WOW STEGANOGRAPHIC ALGORITHM, WITH PAYLOADS OF 0.2 

AND 0.4 BPP 

CNN WOW 0.2 bpp WOW 0.4 bpp 

CVT stego 85.25 92.10 

GBRAS-Net with our strategy 85.90 92.23 

 

In recent years significant advances have been 

developed in artificial intelligence thanks to 

implementing transformers. Research in steganalysis has 

not been the exception. For this research, we take the 

results achieved by Luo et al. [35], who developed an 

architecture of convolutional transformers improving 

many of the results reported in the literature on traditional 

convolutional architectures. Table V compares GBRAS-

Net with our strategy and the results achieved by Luo  

et al. [35]. Table VI shows the percentage increase in 
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accuracy of the steganalysis architectures applying our 

strategy compared to the original ones. 

TABLE VI. PERCENTAGE INCREASE IN ACCURACY OVER THE ORIGINAL 

NETWORKS USING OUR STRATEGY ON THE PROPOSED CNNS FOR THE 

S-UNIWARD AND WOW STEGANOGRAPHIC ALGORITHMS WITH A 

PAYLOAD OF 0.2 BPP AND 0.4 BPP 

CNN 
S-UNIWARD 

0.2 bpp 

S-UNIWARD 

0.4 bpp 

WOW 

0.2 bpp 

WOW 

0.4 bpp 

Xu-Net 15.06 14.74 12.31 10.59 

Ye-Net 15.96 18.74 13.81 12.37 

Yedroudj-Net 12.96 9.59 7.36 3.36 

GBRAS-Net 6.31 3.90 5.60 2.43 

 

Fig. 6 shows the ROC curve for GBRAS-Net, with an 

AUC of 0.98 for both classes, indicating excellent model 

performance on the binary classification task.  

 

 

Fig. 6. ROC curve for GBRAS-Net with our strategy in WOW 0.4 bpp. 

V. CROSS VALIDATION 

Machine learning models sometimes fail to generalize 

adequately or produce significantly varying results when 

changing the test data. Therefore, dividing data into 

training, validation, and test sets does not always have an 

objective result, as it may incur bias or overfitting. In the 

experiment presented in Table VII, 10-fold cross-

validation is employed to evaluate the proposed strategy, 

and the reported accuracy and standard deviation provide 

relevant information on the model’s generalization 

capability. 

TABLE VII. METRICS CALCULATED IN THE 10-FOLD CROSS-

VALIDATION FOR CNNS APPLYING THE STRATEGY FOR THE 

STEGANOGRAPHIC ALGORITHMS S-UNIWARD AND WOW WITH A 

PAYLOAD OF 0.4 BPP 

CNN 
S-UNIWARD 0.4 bpp WOW 0.4 bpp 

Acc SD Acc SD 

Xu-Net 87.14 2.81 89.38 2.15 

Ye-Net 87.26 2.61 88.94 1.84 

Yedroudj-

Net 
86.13 1.95 89.35 1.88 

GBRAS-

Net 
90.65 1.83 91.83 1.61 

VI. DISCUSSION 

Since the introduction of CNN for image steganalysis, 

the main contribution of the field has been the design of 

new architectures that further improve detection accuracy. 

This paper presents a modification of the preprocessing 

stage of some existing CNNs and three residual blocks 

with an attention channel, improving accuracy without 

significant changes in the provided architectures. Based 

on the results shown in Tables I–IV, the bifurcation and 

the inclusion of a trainable set of SRM filters, DCT filters, 

and residual blocks improve the accuracy of 

steganographic image detection. The main idea of this 

fork is to leverage the original SRM and DCT filters and 

allow the network optimization process to update these 

filters based on the content of the images, which 

increases the perception of steganographic noise. In 

addition, the main idea of including the three residual 

blocks and the attention channel is to save energy, avoid 

gradient fading, and focus on the steganographic noise. 

The results indicate that concatenating SRM and DCT 

filters, making them trainable adds variability and 

increases the efficiency of the preprocessing stage, 

perhaps by focusing on different image features. Table VI 

shows the percentage increase in accuracy provided by 

the strategy concerning the original networks. 

As shown in Figs. 4 and 5, the strategy not only 

increases the accuracy percentage when classifying stego 

and cover images but also preserves the stability of the 

networks, as the test accuracy during training evolves 

similarly in all cases. 

VII. CONCLUSION 

The proposed preprocessing stage has improved the 

detection of steganographic images without significant 

changes to the original CNN architectures. The 

bifurcation of SRM and DCT filters into trainable and 

untrainable, along with including three combined residual 

blocks called bottleneck with an attention block (SE-

Block) and two residual building blocks, has 

demonstrated the critical role of data preprocessing in 

steganalysis. The modified preprocessing stage has 

improved the perception of steganographic noise and 

facilitated training and convergence in feature extraction, 

thereby achieving higher accuracy. 

The results suggest that optimizing DCT and SRM 

filters can further increase the efficiency of data 

preprocessing, improving steganalysis accuracy. The high 

complexity of CNNs may not be necessary if efficient 

data preprocessing is available. The proposed strategy 

increases the model’s sensitivity to steganographic noise 

thanks to the preprocessing stage, allowing it to focus 

globally on different image characteristics. Figs. 4 and 5 

demonstrate that this strategy improves accuracy in 

classifying stego and cover images and preserves network 

stability. Future research could focus on optimizing DCT 

and SRM filters to enhance the efficiency of data 

preprocessing and steganalysis accuracy. 

CONFLICT OF INTEREST 

The authors declare no conflict of interest.  

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

38



AUTHOR CONTRIBUTIONS 

MABO, HBAA, GI, RRP, and RTS conceived the 

experiments; EMR, JPVP, and MATM conducted the 

experiments; MABO and EMR analyzed the results; 

MABO, EMR, JPVP, HBAA, GI, RRP, MATM, and 

RTS wrote and reviewed the manuscript. All authors had 

approved the final version. 

FUNDING 

This research was funded by Dirección de 

Investigaciones y Posgrados of Universidad de Manizales. 

ACKNOWLEDGMENT 

The authors thank the Universidad Autonoma de 

Manizales, Manizales, Colombia, for support and 

covering publication fees under project 645-2019 TD.  

Also, the authors would like to thank the Dirección de 

Investigaciones y Posgrados of the Universidad de 

Manizales for their support. 

REFERENCES  

[1] M. Hassaballah, M. A. Hameed, A. I. Awad, and K. Muhammad, 

“A novel image steganography method for industrial internet of 

things security,” IEEE Trans. Industr. Inform, vol. 17, no. 11, pp. 

7743–7751, 2021. 

[2] M. A. Hameed, O. A. Abdel-Aleem, and M. Hassaballah, “A 

secure data hiding approach based on least-significant-bit and 

nature-inspired optimization techniques,” J. Ambient Intell. 

Humaniz. Comput., 2022. 

[3] G. J. Simmons, “The prisoners’ problem and the subliminal 

channel,” Advances in Cryptology, Boston, MA: Springer US, 

1984, pp. 51–67. 

[4] M. Hassaballah, Digital Media Steganography: Principles, 

Algorithms, and Advances, San Diego, CA: Academic Press, 2020. 

[5] N. F. Johnson and S. Jajodia, “Exploring steganography: Seeing 

the unseen,” Computer (Long Beach Calif.), vol. 31, no. 2, pp. 26–

34, 1998. 

[6] J. Fridrich, M. Goljan, and R. Du, “Detecting LSB steganography 

in color, and gray-scale images,” IEEE Multimed., vol. 8, no. 4, pp. 

22–28, 2001. 

[7] B. Li, M. Wang, J. Huang, and X. Li, “A new cost function for 

spatial image steganography,” presented at 2014 IEEE 

International Conference on Image Processing (ICIP), 2014. 

[8] T. Pevný, T. Filler, and P. Bas, “Using high-dimensional image 

models to perform highly undetectable steganography,” 

Information Hiding, Berlin, Heidelberg: Springer Berlin 

Heidelberg, 2010, pp. 161–177. 

[9] V. Holub, J. Fridrich, and T. Denemark, “Universal distortion 

function for steganography in an arbitrary domain,” EURASIP J. 

Multimed. Inf. Secur., vol. 2014, no. 1, 2014. 

[10] V. Holub and J. Fridrich, “Designing steganographic distortion 

using directional filters,” presented at 2012 IEEE International 

Workshop on Information Forensics and Security (WIFS), 2012. 

[11] V. Sedighi, R. Cogranne, and J. Fridrich, “Content-adaptive 

steganography by minimizing statistical detectability,” IEEE 

Trans. Inf. Forensics Secur., vol. 11, no. 2, pp. 221–234, 2016. 

[12] A. Westfeld, “F5—A steganographic algorithm: High capacity 

despite better steganalysis,” in Proc. Information Hiding, Berlin, 

Heidelberg: Springer Berlin Heidelberg, 2001, pp. 289–302. 

[13] L. Guo, J. Ni, W. Su, C. Tang, and Y.-Q. Shi, “Using statistical 

image model for JPEG steganography: Uniform embedding 

revisited,” IEEE Trans. Inf. Forensics Secur., vol. 10, no. 12, pp. 

2669–2680, 2015. 

[14] L. Guo, J. Ni, and Y. Q. Shi, “Uniform embedding for efficient 

JPEG steganography,” IEEE Trans. Inf. Forensics Secur., vol. 9, 

no. 5, pp. 814–825, 2014. 

[15] T.-S. Reinel, R.-P. Raul, and I. Gustavo, “Deep learning applied to 

steganalysis of digital images: A systematic review,” IEEE Access, 

vol. 7, pp. 68970–68990, 2019. 

[16] R. Tabares-Soto et al., “Digital media steganalysis,” Digital 

Media Steganography, Elsevier, 2020, pp. 259–293. 

[17] J. Fridrich and J. Kodovsky, “Rich models for steganalysis of 

digital images,” IEEE Trans. Inf. Forensics Secur., vol. 7, no. 3, 

pp. 868–882, 2012. 

[18] C. Cortes and V. Vapnik, “Support-vector networks,” Mach. 

Learn., vol. 20, no. 3, pp. 273–297, 1995. 

[19] S. Theodoridis, “Neural networks and deep learning,” Machine 

Learning, Elsevier, 2020, pp. 901–1038. 

[20] R. T. Soto, Parallel Programming on Heterogeneous 

Architectures, 2016. (in Spanish) 

[21] V. Holub and J. Fridrich, “Low-complexity features for JPEG 

steganalysis using undecimated DCT,” IEEE Trans. Inf. Forensics 

Secur., vol. 10, no. 2, pp. 219–228, 2015. 

[22] G. Xu, H.-Z. Wu, and Y.-Q. Shi, “Structural design of 

convolutional neural networks for steganalysis,” IEEE Signal 

Process. Lett., vol. 23, no. 5, pp. 708–712, 2016. 

[23] J. Ye, J. Ni, and Y. Yi, “Deep learning hierarchical representations 

for image steganalysis,” IEEE Trans. Inf. Forensics Secur., vol. 12, 

no. 11, pp. 2545–2557, 2017. 

[24] M. Yedroudj, F. Comby, and M. Chaumont, “Yedroudj-Net: An 

efficient CNN for spatial steganalysis,” presented at 2018 IEEE 

International Conference on Acoustics, Speech, and Signal 

Processing (ICASSP), 2018. 

[25] M. Boroumand, M. Chen, and J. Fridrich, “Deep residual network 

for steganalysis of digital images,” IEEE Trans. Inf. Forensics 

Secur., vol. 14, no. 5, pp. 1181–1193, 2019. 

[26] R. Zhang, F. Zhu, J. Liu, and G. Liu, “Depth-wise separable 

convolutions and multi-level pooling for an efficient spatial CNN-

based steganalysis,” IEEE Trans. Inf. Forensics Secur., vol. 15, pp. 

1138–1150, 2020. 

[27] T.-S. Reinel et al., “GBRAS-Net: A convolutional neural network 

architecture for spatial image steganalysis,” IEEE Access, vol. 9, 

pp. 14340–14350, 2021. 

[28] R. Tabares-Soto et al., “Strategy to improve the accuracy of 

convolutional neural network architectures applied to digital 

image steganalysis in the spatial domain,” PeerJ Comput. Sci., vol. 

7, e451, 2021. 

[29] P. Bas, T. Filler, and T. Pevný, “’Break our steganographic 

system’: The ins and outs of organizing BOSS,” Information 

Hiding, Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 

59–70. 

[30] D. L. Hostalot, “Daniel Lerch’s personal page,” Daniellerch.me, 

2023. 

[31] W. You, H. Zhang, and X. Zhao, “A Siamese CNN for image 

steganalysis,” IEEE Trans. Inf. Forensics Secur., vol. 16, pp. 291–

306, 2021. 

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for 

image recognition,” presented at 2016 IEEE Conference on 

Computer Vision and Pattern Recognition (CVPR), 2016. 

[33] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-

excitation networks,” arXiv preprint, arXiv:1709.01507, 2017. 

[34] M. Abadi et al., “TensorFlow: Large-scale machine learning on 

heterogeneous distributed systems,” arXiv preprint, 
arXiv:1603.04467, 2016. 

[35] G. Luo, P. Wei, S. Zhu, X. Zhang, Z. Qian, and S. Li, “Image 

steganalysis with convolutional vision transformer,” presented at 

ICASSP 2022, 2022 IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP), 2022. 

 

Copyright © 2024 by the authors. This is an open access article 

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any 

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made. 

 

Journal of Advances in Information Technology, Vol. 15, No. 1, 2024

39

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V15N1-33



