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Abstract—Efforts to enhance the precision of heart disease 

detection methods are crucial in reducing the expensive 

healthcare expenses associated with the diagnostic processes. 

Extracting patterns from medical data can unlock 

associations to improve heart disease diagnosis techniques. 

This study aims to construct an efficient machine learning 

model to act as a reliable component of the medical decision 

support system. Seven different machine learning models 

were investigated including Logistic Regression, Support 

Vector Classifier, K-Nearest Neighbor (KNN), Random 

Forest, Decision Tree, Naïve Bayes, and Gradient Boosting 

Classifier, which are comprehensively explored for heart 

disease classification. Hyperparameter optimization for these 

algorithms involves three techniques: Grid Search, Random 

Search, and Bayes Search. The assessment of each model’s 

performance incorporates measuring specificity, sensitivity, 

and F1-scores, leveraging the dataset with 12 attributes and 

1189 observations from three medical clinics (Cleveland, 

Statlog, Hungary). Feature selection methods, including the 

wrapper method, embedded method Chi-Sqaured, and 

variance analysis, are deployed to identify highly correlated 

features, ultimately reducing the data’s dimensionality to 7 

features. The evaluation process employs 10-fold cross-

validation, demonstrating that the Random Forest Model 

achieves the highest average accuracy at 92.85%, surpassing 

the previously reported 86.9%. Additionally, 10-fold cross-

validation ensures the models’ reliability and resilience to 

data imbalance. Ensemble-based methods reaffirm the 

Random Forest’s superior performance in diagnosing heart 

diseases, boasting an accuracy of 94.96%. In sum, this 

developed model exhibits reliability in heart disease 

classification and presents a promising solution for medical 

applications, to effectively mitigate diagnostic costs and time 

constraints.  
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I. INTRODUCTION 

Cardiovascular Diseases (CVD) are highly prevalent in 

the world population, responsible for one- third of the total 

deaths per year, of which 7.5 million deaths are attributed 

to Coronary Heart Diseases (CHD). Approximately 1.8 

million of these deaths are sudden and linked with Acute 

Coronary Syndrome (ACS) [1]. Clinically, at least 16.1% 

of heart failure patients are misdiagnosed [2]. The 

diagnosis of CHD is often done through a coronary 

calcium scan utilizing X-rays for the arteries [3]. For the 

detection of CHD, CT Coronary Angiography (CTCA) 

has a sensitivity and specificity of 89% and 96%, 

respectively [4]. Machine Learning (ML) is deeply 

integrated into the medical field, especially in healthcare 

applications, where it aids in improving the diagnostic 

process. ML algorithms use data to learn complex and 

non-linear patterns relating to the features by minimizing 

the error between the predicted and actual outcomes.  
In the areas of medical application, the integration of 

Machine Learning (ML) has significantly augmented 

diagnostic procedures. ML algorithms leverage data to 

discern intricate and nonlinear patterns in the features, 

minimizing the disparity between predicted and actual 

outcomes. However, existing methods suffer from 

limitations, in particular in areas of subtle cardiac 

irregularities, which necessitates a more reliable and 

refined approach to diagnosis. Thus, this study attempts at 

bridging this gap by proposing an advanced machine 

learning model for precise and timely CHD detection. By 

utilizing seven different ML algorithms and optimizing 

their performance, we aim to offer a superior solution that 

can effectively reduce the frequency of misdiagnosis and 

streamline the diagnostic process for the patients. 

II. LITERATURE REVIEW 

Various ML-algorithms were developed to diagnose 

heart diseases [5–11]. The difference between the papers 

was that researchers applied various data mining 

techniques such as association rules technique, Clustering, 

and classification algorithms to extract the most prominent 

parameters for predicting heart disease at good accuracy. In 

Ref. [5], five main machine learning techniques were 

implemented to determine which method produces the 

highest accuracy for this type of data. The implemented 

classifiers were Naïve Bayes, Decision Tree, Discriminant, 

Random Forest, and Support Vector Machine. The two 

datasets used were the Cleveland Clinic Foundation 
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dataset and the Statlog dataset [12]. Both datasets were 

processed to produce 14 attributes to reduce the number 

of variables. The results showed that all classification 

algorithms were able to accurately classify CHD patients; 

notably, decision tree was able to outperform all other 

datasets with an accuracy of 98%, which was followed by 

Random Forest at 93%. No overfitting analysis was 

performed on the decision tree model which perturb the 

reliability of the results considering the number of 

observations (573). 

In Ref. [6], the Cleveland dataset [13] and Statlog 

dataset were also combined and used as one dataset. The 

paper used seven different machine learning algorithms to 

compare the algorithms based on the accuracy of each. The 

algorithms were Logistic Regression, Support Vector 

Machine, Deep Neural Network, Decision Tree, Naïve 

Bayes, Random Forest, and K-Nearest Neighbor. The 

performance of each was evaluated using the same 

datasets, and the highest accuracy obtained was the Neural 

Network with 98.15%. 

In this report, the data from Hungary, Cleveland clinic, 

and Statlog will be combined and used as one dataset. The 

objective of this project is to develop a ML-based decision 

support system for healthcare that can accurately identify 

coronary heart disease patients faster than CTCA. This 

report is structured as the following: Section I introduces 

the problem. Section II describes the dataset and 

methodology implemented in training ML algorithms. 

While Section III presents and discusses the results of the 

explored ML algorithms, Section IV concludes the 

contribution of this work, as well, possibilities for future 

work. 

III. MATERIALS AND METHODS 

A. Data Exploration 

The dataset includes 14 predicting attributes for 1190 

patients. The attributes include age, sex, resting blood 

pressure (trestbps), degree of chest pain (cp), ranging from 

1-low to 4-high, cholesterol level, maximum heart rate 

(thalach), exercise-induced angina (exang) along with the 

peak (oldpeak) and the slope of the peak’s ST segment 

(slope), fasting blood sugar (fbs), and resting 

electrocardiogram (restecg). The data is labeled by a 

response variable which indicates whether a patient had a 

CHD or not. Out of the 1190 patients, 553 were diagnosed 

with CHD. 

Initially, the data was explored by visualizing the 

features and searching for missing or non-logical data. 

Although there are no missing data, yet there are non-

logical values in the cholesterol levels for 172 patients 

(14.5% of the patients). The cholesterol value for those 

patients is 0, which is not realistically possible. These 

values are more present for patients from the Hungary 

dataset. As well, chest pain type 4 is very common among 

heart disease patients, unlike the other three types of chest 

pain. The data is noticed to be biased towards men as 

around three-fourths of the population are men. Fig. 1 

shows the block diagram that illustrates the procedure. 

 

 

  

Fig. 1. A block diagram illustrating the procedure. 

B. Data Imbalance 

There are multiple ways to deal with data imbalance 

including under-sampling, over-sampling, Synthetic 

Minority Over-sampling TEchnique (SMOTE), and 

ensembles. Selecting the correct approach is critical in the 

field of health care to avoid inferring any misleading 

conclusions. While under-sampling imitates balance and 

expedites the training runtime, it results in a loss of 

classification performance due to the loss of the majority 

instances. Meanwhile, over-sampling increases the 

likelihood of overfitting and abrupt degradation in the 

predicted response as the model memorized patterns for 

the minority instances. Applying SMOTE and ensembles 

is better yet could be unnecessary if the imbalanced 

attributes were excluded during the feature selection 

process. Accordingly, the accuracy of each model will be 

assessed using the F1-scores to evaluate the need for 

balancing the data. 

C. Feature Selection 

Feature selection methods, either qualitative or 

quantitative, aim to filter the most predicative features. 
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One of the aspects involved in quantitative filtering 

methods is the correlation between each attribute and the 

response. Multiple techniques were explored to normalize 

the data and compare their corresponding variances and 

weights, such as chi-squared, MinMax Scaler, log-

transformation, and z-scores. While the z-scores work best 

with normally distributed data (with little to no skewness), 

it must be supported with a continuity correction in the 

case of binary data. log-transformation offer a great 

solution for skewed distributions, yet do not outperform 

the chi-squared analysis in the case of categorical 

attributes. Since half of the attributes are categorical, the 

chi-squared distribution and MinMax Scaler are good 

techniques for normalizing the data. MinMax Scaler 

surpasses the chi-squared distribution as it better 

represents continuous distributions for non-categorical 

attributes given the absence of outliers. 

After exploring the correlation of each attribute with the 

response variable, its p-value, variance, and weight in the 

principal components with explained variance larger than 

5%, the features with the highest correlation and lowest p-

value were selected. The interaction between the features 

was also considered using their correlation with one 

another. Wrapper and embedded methods, model 

performance-based feature selection methods, were also 

applied. Further pre-processing and data analysis was 

carried out to engineer the best features. It is important to 

note that all pre-processing was done on the training data 

and applied later to the test data. 

D. Models Training and Evaluation 

The data was split using an 80/20 holdout. While 80% 

of the data was used for training and validation purposes, 

20% was used as a testing subset (new observations). A set 

of classification models were trained and tuned using a 10-

folds cross validation. Cross-validation was implemented 

on the training data to ensure that all observations have the 

chance of appearing in both training and validation 

datasets, as well, to avoid overfitting. The investigated 

classification models are Logistic Regression (LR), 

Support Vector Classifier (SVC), K-Nearest Neighbor 

(KNN), Random Forest (RF), Decision Tree (DT), Naïve 

Bayes (NB), and Gradient Boosting Classifier (GBC). The 

evaluation metrics for each model include the accuracy, 

specificity, sensitivity, and F1-scores. To assess the 

reliability of the selected features, each model was trained 

and tuned using the original dataset (excluding the 

cholesterol column) and the selected 7 features. 

E. Hyperparameter Tuning 

In order to improve the accuracy of the tested models, 

hyperparameter tuning was done for each model using 

three hyperparameter tuning methods. The methods used 

were GridSearch, RandomSearch, and BayesSearch. First, 

a set of parameter ranges was set before running any 

hyperparameter tuning methods. Then hyperparameter 

tuning models were run to check for the best parameters 

foreach model and apply using five folds cross validation 

on 80% of the data which was the training data. Next, the 

accuracy score was obtained by using the 20% data which 

was the testing data. Furthermore, a Stacked 

Generalization model was utilized. The Stacked 

Generalization model is a type of meta-learning 

algorithms to learn the best way of combining two or more 

machine learning algorithms. Since Stacked 

Generalization uses a base of different machine learning 

algorithms, the stacking ensembles are often 

heterogeneous. For this particular application the top three 

models based on accuracy were used for the base level and 

the meta-learner used was the fourth best accuracy. An 

accuracy score was obtained by using the testing data and 

a confusion matrix was plotted. 

IV. RESULT AND DISCUSSION 

Fig. 2 shows the histogram of patients with and without 

CHD as a function of blood cholesterol. It is observed that 

zero cholesterol values are imbalanced, as most of them 

are for patients with CHD. To deal with the outliers in the 

cholesterol values, extensive literature review and visuals 

were used. The collected cholesterol values are not well 

correlated with the response, CHD diagnosis, which 

implies one of the following: 1) the cholesterol value for 

some patients was collected without fasting (cholesterol 

level is highly dependent on the fat and carbohydrates 

level consumed in the last meal [14]), or 2) cholesterol is 

not directly related to the investigated heart disease, unlike 

stress levels (controversial studies showed no relation 

between cholesterol and CHD [15]). To investigate the 

reasons behind the missing cholesterol values, patients 

with zero cholesterol were compared against other patients 

for each attribute. the distribution for any attribute, e.g., 

age group or sex, had the same trends in both subsets. As 

the missing cholesterol values is not related to the values 

of any of the available attributes, the values are Missing 

Completely at Random (MCAR). 

 

  

Fig. 2. Distribution of people with and without heart disease as a 

function of blood cholesterol. 

Fig. 3 shows the correlation heatmap between all 

attributes from the original dataset. The two attributes with 

the highest correlation to the response variable are chest 

pain (cp) and exercise-induced angina (exang). It was 

noticed that filtering out patients with zero cholesterol 

values (around 14% of the patients) affects its correlation 

to the response variable (changes from −0.2 to +0.11). On 

the other hand, the correlation of other attributes with the 

response variable experienced slight to no effects. Then, 

feature engineering process was conducted according to 
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the correlation values, p-values, variances, principal 

components, wrapper, and embedded methods.  

 

  

Fig. 3. Heatmap for correlations between attributes-original dataset. 

Figs. 4 and 5 show the results obtained from the 

wrapper and embedded methods, respectively. The 

selected features were picked according to the ones 

proposed by the embedded method along with the 

correlation and variance statistics. The selected 7 features 

are (age, chest pain, fasting blood sugar, maximum heart 

rate, exercise induced angina, and its peak’s ST segment 

slope) which will be used to predict the response variable 

(identify CHD patients). Considering that cholesterol had 

small variances, the cholesterol attribute was dropped 

without the need to filter or replace the zero-valued cells. 

 

  

Fig. 4. Model performance as a function of the number of selected 

features—Wrapper method (Sequential Forward Selection). 

  

Fig. 5. Feature importance and cumulative percentage—Embedded 

method. 

Figs. 6 and 7 show the results for the trained models 

using all attributes, except cholesterol, and the engineered 

7 attributes. The best performing model was RF, with an 

accuracy and sensitivity of 89.5% and 91.7%, respectively, 

when trained using the selected 7 features.  

 

 

Fig. 6. Models’ performance metrics using all attributes, except 

cholesterol. 

  

Fig. 7. Models’ performance metrics using the engineered 7 features. 

Table I lists the average test accuracy for each of the 

models using all attributes and only the selected features. 

It is noticed that the maximum difference in the scores is 

around 6% which reflects well-engineered features. Using 

the selected features is more computationally efficient 

(average training period reduced by around 35%) without 

sacrificing the models’ performance. After calculating the 

F1-scores for each model, it was found that the maximum 

difference between any of the F1-score and the model 

accuracy is 4%.  

TABLE I. ACCURACY OF EACH MODEL USING ALL ATTRIBUTES, 

EXCEPT CHOLESTEROL, AND THE SELECTED 7 ATTRIBUTES 

Model Accuracy (11 Features) Accuracy (7 Features) 

RF 95.80% 89.50% 

KNN 88.23% 86.13% 

SVC 89.50% 86.13% 

GB 92.44% 85.29% 

LR 86.97% 84.45% 

NB 86.97% 84.03% 

DT 86.55% 83.61% 

 

Figs. 8 and 9 show the confusion matrices for the best 

performing model, RF, using all attributes and the selected 

7 features, respectively. In the case of identifying heart 
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disease, the most critical value is the number of False 

Negatives (FN). Thus, tuning the models aims to minimize 

the number of FN instances without increasing the number 

of False Positive (FP) incidents. In other words, to 

improve the F1-score for the ‘diseased’ patients without 

forfeiting that for ‘healthy’ patients. 

 

  

Fig. 8. Confusion matrix for RF model using the engineered 7 

features—pre-tuning. 

  
Fig. 9. Confusion matrix for RF model using the engineered 7 features 

after Grid Search tuning. 

The tuning parameters used varied between different 

models, however, the main parameters investigated dealt 

with the number of iterations, max depth, kernels, and ‘C’ 

values. However, one common parameter that was fixed 

for all models was the number of folds used to run the 

hyperparameter tuning models which was five folds. 

Table  II shows the accuracy of each model before and 

after tuning using the selected 7 attributes. 

TABLE II. ACCURACY OF EACH MODEL BEFORE AND AFTER TUNING 

USING THE SELECTED 7 ATTRIBUTES 

 

Model 

Test Accuracy  

[pre-tuning] 

Test Accuracy  

[post-tuning] 

 
Grid 

Search 

Random 

Search 

Bayes 

Optimization 

RF 89.50% 94.96% 90.34% 90.76% 

KNN 86.13% 87.82% 86.55% 86.55% 

SVC 86.13% 89.08% 84.87% 89.08% 

GB 85.29% 84.03% 84.87% 85.29% 

LR 84.45% 87.39% 79.83% 79.83% 

NB 84.03% 86.97% 86.97% 86.97% 

DT 83.61% 80.25% 81.51% 80.25% 

 

Previous work in Ref. [16] was implemented on the 

same dataset and achieved a classification accuracy of 

86.9% with diagnosis rate of 93.3% using RF model. In 

this study, the tuned RF model achieved an accuracy of 

94.96% with a diagnosis rate of 94.3%. As both models 

were based on a 10-fold cross-validation and 80/20 split, 

the accuracies are comparable. The accuracy improvement 

is mainly related to the difference in handling the 

cholesterol attribute. While the cholesterol attribute was 

completely dropped in this study, patients with zero 

cholesterol were filtered in [16]. Another aspect that may 

drop the accuracy is data imbalance. Balancing the 

patients in terms of sex attribute was not conducted in [16], 

however, it is not needed in this study as sex attribute was 

dropped during the feature selection process. 

The results could be compared with previous work 

conducted on smaller datasets including [5, 6]. While the 

size of the dataset comprises of 1190 patients in this study, 

only 573 patients were used in [5, 6]. In Ref. [5], the most 

accurate model was reported as the decision tree with 99% 

accuracy and no cross- validation. The second most 

accurate was the random forest with 93% accuracy. In 

Ref.  [6], the highest accuracy was around 98%. As both 

studies lack the cross-validation step, the results could be 

comparable to the highest accuracies among the 10-folds 

in this study. Among the trained 10-folds, RF had the 

highest accuracy of 98.9% after tuning which outperforms 

the performance reported in [5]. Given the dataset size of 

573 patients, the unconsidered imbalance, the absence of 

cross-validation, and the unreported number of branches 

for the decision tree model with 99%, the model results are 

highly questionable. 

V. CONCLUSION 

In this paper, multiple machine learning algorithms 

were implemented to classify coronary heart disease 

patients using the data from 3 clinics (Hungary, Cleveland, 

and Statlog). The trained models included Logistic 

Regression, Support Vector Classifier, K-Nearest 

Neighbor, Random Forest, Decision Tree, Naïve Bayes, 

and Gradient Boosting Classifier. In addition to a 80/20 

data split, a 10-fold validation was conducted for all 

models. Using the selected features, the Random Forest 

algorithm outperformed all the models with an accuracy of 

89.50% (pre-tuning) and 94.96% (post-tuning). The study 

anticipated weak links between cholesterol levels and 

CHD. The Random Forest model is to provide a decision 

support system for healthcare sector to identify coronary 

heart disease patients along with CT coronary angiography. 

The Algorithm could improve the accuracy of detecting 

heart disease and reduce the need for immense health care 

expenses and a long diagnosis process. Future plans for 

using ML for the diagnosis of coronary heart disease may 

include the development of more sophisticated algorithms 

that can handle the complexity of the disease and 

incorporate a greater number of risk factors. There may 

also be efforts to improve the interpretability of ML 

models, to allow for a better understanding of the 

reasoning behind a diagnosis. 
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