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Abstract—Wireless sensor networks play essential role in 

daily life scenarios due to their wide range of applications. 

These networks are widely adopted in to accomplish several 

tasks such as smart cities, smart transportation, weather 

monitoring etc. These networks have limited resources and 

suffer from various challenges which impact their 

performance. Moreover, these networks collect the event 

information and if the location of information is not known 

then the data becomes meaningless. Therefore, localization 

is considered as the important aspect of these networks. 

Initially, Global Positioning System (GPS) based localization 

was considered as solution for localization but these 

networks consist huge number of nodes which increases the 

cost of network deployment. GPS won’t deliver accurate 

localization outcomes in an indoor environment. In dense 

network, manually establishing location reference for each 

sensor node is also a tedious task. This creates a situation 

where the sensor nodes must locate themselves without any 

specialised hardware, such as GPS, or manual configuration. 

Utilizing localization methods, Wireless Sensor Networks 

(WSNs) may be deployed with reduced cost. Localization 

accuracy and complexity still remains the challenging issue 

for traditional methods. Therefore, in this work, we 

introduce optimization-based method where we consider 

antlion optimization as base method and incorporate 

particle swarm-based position and velocity update method 

to increase the localization performance. The experimental 

study shows that the average localization error is obtained 

as 0.06525 m, 0.08125 m, 0.1175 m, 0.3 m, and 0.575 m using 

proposed model, Cat Swarm Optimization (CSO), Penguins 

Search Optimization Algorithm (PeSOA), Particle Swarm 

Optimization (PSO), and Binary Particle Swarm 

Optimization (BPSO), respectively. 
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I. INTRODUCTION 

Current advancements and development in 

miniaturization of machine and communication 

technologies has led to emergence of micro-sensors. 

These micro sensors have revolutionized the 

contemporary communication strategies. In the view of 

this technological growth, the wireless sensor networks 

have gained huge attention from various domains of real-

time applications [1]. Nowadays, Internet of Things (IoT) 

is one of the fastest growing and promising technology in 

the field of information technology. The Wireless Sensor 

Network (WSN) is considered as the core technology of 

IoT [2, 3]. As IoTs play important role to create smart 

environment such as smart building [4], smart cities [5], 

smart transportation etc. However, WSN is a crucial 

component of this smart environment. It serves as a 

mediator between the outside world and intelligent 

systems. 

The number of Sensors Nodes (SN), which make up a 

WSN, can range from a few to hundreds of  

thousands [6, 7]. An SN can be as little as a dust particle 

or as large as a shoe. The cost of SNs varies from a few 

cents to hundreds of dollars depending on how 

complicated each node is. SNs perform several tasks, 

including monitoring and sensing, processing, 

information collecting, and communication [8]. They are 

utilised in a variety of monitoring applications due to 

their low cost and independence from human influence, 

including environmental monitoring [9, 10], health 

monitoring [11, 12], underground and underwater 

systems [13, 14], industrial equipment, and  

surveillance [15]. 

These applications demonstrate the AdHoc behaviour 

of the network but generally, these networks suffer from 

various challenges such as small size, deployment in 

hostile environment, limited battery life, less and smaller 

bandwidth, minimized communication range and 

transmission capabilities [16]. In order to deal with these 

issues, several methods have been discussed such which 
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include sensor node localization to know the location of 

nodes, routing is used for efficient data transmission from 

source to destination [17], security management considers 

preventing various attacks on the network, etc.  

WSN typically comprises of several sensor nodes 

placed throughout the monitoring region. These nodes 

can take measurements of the physical characteristics in 

their immediate environment, carry out basic 

computations and store the sensed information, and send 

information to the base station wirelessly. Sensing data 

must be integrated with location data in many WSN 

applications. Since these unknown nodes are dispersed at 

random throughout the monitoring area, it is vital to 

locate them beforehand. Since many applications require 

the knowledge of source positions and data without 

location content is frequently meaningless [18], node 

localization becomes a significant challenge for WSN. In 

this work, we focus on location estimation of sensor 

nodes to ensure the appropriate communication among 

nodes.  

Generally, the localization is a process to acquire the 

coordinate of some node (anchor nodes) with the help of 

Global Positioning System (GPS) or manual  

deployment [19]. Later, employing some specific 

approach to obtain the coordinate of other nodes 

(unknown nodes). This is a widely faced problem in 

sensor networks and numerous procedures have been 

presented to tackle the issue of localization. In this 

context, unknown sensor node equipped with the GPS is 

the easiest and reliable way to accomplish the localization 

task. However, the GPS installation leads to increasing 

the cost of the network. Moreover, the GPS systems do 

not provide adequate performance for indoor and 

complex sensor network deployment environments. Thus, 

GPS based localization is not considered as universal 

solution for sensor node localization. Similarly, manual 

deployment of these sensor nodes and storing the 

coordinate information is another solution but it is not 

considered as a practical solution for large scale networks 

and some of the monitoring areas are not accessible to 

human for deployment of sensor nodes.  

Generally, the localization schemes are classified in 

two main categories as range based and range-free 

localization where distance measurement is required for 

localization [20, 21]. According to the range-based 

methods, the distance between unknown and anchor node 

is estimated to estimate the location coordinates. On the 

other hand, the range free methods use the network 

density and network connectivity as the important 

parameter of whole network to estimate the localization 

of nodes. Therefore, the range-based localization provides 

better localization performance when compared with the 

range-free localization algorithms. Several methods have 

been discussed based on these methods such as Angle of 

Angle (AOA), Time of Arrival (TOA), and Received 

Signal Strength Indicator (RSSI) [22, 23]. 

On the other hand, anchor node movement-based 

methods are also introduced which are divided into static 

and dynamic anchor node localization. As discussed, 

these methods are based on the network connectivity 

therefore the static anchor node localization scheme 

require specific node density to ensure the connectivity. 

Similarly, the dynamic anchor node-based methods can 

help to reduce the need of static sensor nodes, reduce the 

operational cost of network, and improves the localization.  

The process of WSN localization refers to determine 

the spatial coordinates of the individual sensor nodes to 

carry out the communication efficiently. Therefore, 

localization plays an important role in improving the 

performance of WSN. Several motivations are present to 

obtain the efficient localization such as localization 

schemes helps to improve the tracking and monitoring. 

By knowing the exact location of each sensor node, it 

becomes possible to gather and analyze data with spatial 

context, enabling more accurate and targeted decision-

making. Similarly, it helps to optimize the deployment 

and utilization of sensor nodes. With the help of this 

precise location of sensor nodes helps network planners 

can strategically position them to achieve maximum 

coverage and connectivity with minimum redundancy. 

This leads to efficient utilization of network resources, 

such as battery power, bandwidth, and computational 

capabilities. On the other hand, the Localization aids in 

detecting and diagnosing faults or failures in a WSN. By 

knowing the expected locations of sensor nodes, 

deviations from their expected positions can indicate 

issues such as node failures, malicious attacks, or 

physical tampering. Localization data can be used to 

trigger appropriate recovery mechanisms or 

reconfigurations in the network to maintain its 

functionality and reliability. Moreover, it enables data 

fusion from multiple sensor nodes. When the precise 

location of each node is known, the collected sensor data 

can be combined based on their spatial relationships, 

leading to improved accuracy and reliability of the sensed 

information. Context-awareness is also enhanced as the 

location information can be used to correlate the sensed 

data with specific environmental conditions or events 

occurring in the physical space. 

Localization information assists in optimizing routing 

and communication protocols within a WSN. By 

considering the spatial relationships between nodes, 

routing decisions can be made based on factors such as 

energy consumption, hop count, or proximity to the sink 

node. This leads to more efficient data transmission, 

reduced latency, and improved overall network 

performance. 

Similarly, localization can enhance security and 

privacy in WSNs. By localizing the sensor nodes, it 

becomes easier to detect and prevent unauthorized node 

insertions or intrusions. Furthermore, location-based 

authentication mechanisms can be employed to enhance 

security in data transmission. Localization also helps in 

preserving privacy by allowing nodes to estimate their 

location without revealing it to other nodes in the network. 
Overall, WSN localization plays a crucial role in 

enhancing the efficiency, effectiveness, and reliability of 
wireless sensor networks across a wide range of 
applications, ultimately enabling better decision-making, 
and improving the overall performance of the network. 
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Generally, the localization accuracy of these models is 

affected due to angle and distance measurement. 

Moreover, signal variations due to switching of signal 

propagation environment and presence of obstructions. 

Along with these issues, degree of connectivity also has 

an impact on localization accuracy. The increasing degree 

of connectivity leads to increase the localization accuracy 

and vice versa. Similarly, the amount of energy consumed 

by nodes during localization is also considered as an 

important factor which depends on the computational 

complexity and message exchanged between nodes. 

Therefore, there is a trade-off in WSN localization in 

terms of coverage, localization accuracy, connectivity, 

and energy consumption. in this work, we consider these 

issues and focus on increasing the localization accuracy 

for WSNs.  

The main objectives of the proposed approach are 

listed as follows: 

• To present a localization error-based problem 

formulation model 

• To incorporate RSSI based path loss model to 

incorporate the hop error correction to minimize 

the ranging error 

• To present Antlion based optimization model and 

improve the elite operator with the help of particle 

swarm optimization.  

Rest of the article is organized as follows: Section II 

describes the details of existing localization schemes for 

WSNs, Section III presents proposed solution for range-

based localization, Section IV presents the experimental 

analysis and comparative study, Section V is concluding 

this paper. 

II. LITERATURE REVIEW 

This section presents the brief discussion about recent 

localization techniques for wireless sensor networks. This 

section includes range-based, range-free, static, and 

dynamic methods of localization. In a broader view, the 

localization algorithms are classified as distributed and 

centralized schemes. The centralized approaches perform 

all computations with the help of central entity however it 

increases the cost of communication of the network and 

poor localization accuracy [24]. These techniques are not 

suitable for low density networks. Therefore, less studies 

are present on this technique. 

On the other hand, the distributed localization 

algorithms perform all computation at the sensor node 

itself. Since only inter-node communication takes place 

here instead than in centralised schemes, therefore, there 

is less energy consumption. The distributed algorithms 

are classified as range based and range free  

methods [20, 21]. In range-based localization procedures, 

the location of a sensor node is estimated using 

trilateration or triangulation using estimates of the angles 

or distances between Bayesian Networks (BNs) and the 

sensor node. The TOA, Time Difference of Arrival 

(TDOA), and RSSI of beacons broadcast from BNs and 

the sensor node are used to calculate the distance 

estimates. However, the main drawback of these methods 

is the requirement of additional hardware to estimate the 

range or angle. Luomala et al. [24] considered outdoor 

scenarios for WSN localization and developed adaptive 

range-based method which uses trilateration and 

reference node selection methods. This method uses 

Geometry of Reference Triangle (GRT) to analyse the 

effect of ranging error. The GRT values are computed for 

3 combination of reference nodes, further, this value is 

used to identify the best node. Acoustic communication 

has a smaller bandwidth and longer propagation latency 

than radio transmission. This imposes further limitations 

on any localization algorithm. Therefore, Nain et al. [25] 

considered the localization problem for underwater 

scenario because traditional algorithms suffer from 

latency and localization error issue. However, some 

methods focused on incorporating the optimization 

strategy but proliferation in energy depletion and 

computational complexity degrade the overall 

performance. Moreover, the existing schemes lead to 

increasing the localization latency and error therefore, 

authors suggested to incorporate optimization strategies 

and introduced a new fitness function while considering 

the number of hops, ToA distance estimation error and 

delay.  

Sabbella et al. [26] focused on developing the energy 

efficient localization and adopted Meta heuristic Krill 

Herd inspired optimization approach to estimate the 

location of non-anchors by using mobile anchor nodes. 

This optimization approach considers crossover and 

mutation operators to analyse the behaviour of mobile 

anchor nodes. The location is estimated based on the 

foraging motion of anchor nod, random diffusion of all 

sensor nodes and movement generated by thee all sensor 

nodes in the neighbourhood range. Similarly, Rabhi 

et  al.  [27] introduced Fruit Fly Optimization for 

Localization (FOA-L). According to this method, the 

localization process is initialized where random direction 

and distance values are assigned to the group of flies. The 

fitness function considers the highest smell value using 

fitness function to identify the location of target node. 

Phoemphon et al. [28] discussed that range-based 

methods are based on the distance measurement where 

RSSI converts the signal into distance. However, the 

obstacle between nodes affects the direct communication, 

therefore, multihop relay-based schemes need to be 

considered for distance estimation. Moreover, authors 

suggested to apply clustering.  
Chuku et al. [29] reported the advantages of RSSI 

approach for distance estimation to localize the sensor 
nodes. However, the localization performance is affected 
due to impediments caused by natural and man-made 
hindrances which lead to signal attenuation and 
localization error. Thus, authors introduced a novel 
approach to detect the outlier in distance measurement to 
minimize the error. This method uses spatial correlation 
analysis to obtain the location which is supported by 
majority of beacon signals. The outlier detection method 
uses a simple clustering method which only considers the 
most effective candidate location and finally, mean shift 
clustering is applied for outlier detection.  

Zhang et al. [30] suggest an enhanced RSSI- Least 

Square Support Vector Regression in order to maximize 
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the location estimate accuracy and to reduce the 

localization cost. The experimental outcome of this 

method demonstrates the proposed technique reduce the 

localization cost and ensures the localization reliability. 

Yu et al. [31] introduced a new algorithm-triangle 

centroid localization strategy which is based on the 

weighted feature points along with RSSI based 

measurements are also incorporated to obtain the better 

localization. Researchers are particularly focused on two 

positioning-related problems: the accuracy of the RSSI 

value and the localization algorithm’s optimization. 

Similarly, Mahapatra et al. [32] focused on RSSI based 

method and presented a localization approach. Along 

with this, authors incorporated average filter and 

Gaussian filter to estimate the distance for localization 

where trilateration and least square methods were used to 

obtain the final coordinates. Ding et al. [33] also adopted 

RSSI method to estimate the location for unknown node. 

This work reported that the larger difference between 

actual and real distance affects the localization accuracy. 

Therefore, authors presented a ZigBee based mechanism 

for location estimation. Further, maximum likelihood and 

Mini-Max positioning methods are also incorporated to 

ensure that the distance estimated by RSSI is less than 

10  m or not.  

By employing RSSI measurement in WSNs based on 

ZigBee, Zhang et al. [30] suggest a unique method of 

device-free human detection. The effectiveness of the 

suggested detection method is demonstrated by 

simulation results [30]. Many improved DV-Hop 

algorithms use the RSSI measuring method. By 

employing RSSI measurement in WSNs based on ZigBee, 

Wang et al. [34] suggest a unique method of device-free 

human detection. The effectiveness of the suggested 

detection method is demonstrated by simulation results 

[34]. Many improved DV-Hop algorithms use the RSSI 

measuring method, such as proposed in [35], where the 

authors suggest a localization method based on RSSI and 

an improved artificial immune algorithm. In their study, 

they apply a correction coefficient using the RSSI data 

provided by the node in order to update the Hop Count 

value. Then, an improved artificial immune technique 

was also implemented which uses Gaussian mutation in 

position estimation [36]. 

Optimization based methods are also widely adopted in 

this field. Dao et al. [37] presented antlion optimization 

where fitness function is designed based on the distance 

estimation of sensor nodes. Further, the obtained 

solutions are updated based on the node density and 

communication range of nodes. Singh et al. [38] 

developed Particle Swarm Optimization (PSO) based 

node positioning method and improve the performance of 

DV-Hop. Shayokh et al. [39] also adopted optimization 

method and presented chicken swarm optimization 

scheme. Below given table summarizes the challenges 

faced by these methods (see Table I). 

TABLE I. HIGHLIGHTING RELATED WORK OF PREVIOUS LOCALIZATION SCHEMES 

Article Challenges 

Luomala and Hakala [24] The algorithm works for certain localization scenarios therefore adaptability is a major challenge in this work 

Nain et al. [25] 
This method uses CSO and PSO based optimization strategies to obtain the optimal number of hops from anchor 

nodes. However, poor convergence of PSO affects the optimization performance. 

Phoemphon et al. [28] This approach suffers from scalability and robustness to dynamic environments 

Chuku et al. [29] 
Limited accuracy of RSSI, moreover, RSSI-based localization schemes often require calibration and training 

phases to establish a relationship between RSSI values and distances. 

Zhang et al. [30] Localization accuracy and robustness to noise interference and the main challenging issue for this research 

Yu et al. [31] 
susceptible to errors caused by non-line-of-sight conditions, Dependency on Network Density and sensitivity to 

signal variations 

Mahapatra and Shet [32] This method achieves desired performance for indoor environments 

 

III. METHODOLOGY 

This section presents the proposed solution for WSN 

localization by using RSSI based distance estimation 

method. The first phase of this section describes the 

traditional method of distance estimation where least 

square based models are used to measure the distance 

between sensor nodes. Based on this, we find the ranging 

error parameter which affects the localization accuracy. 

Here, our main aim is to minimize the ranging error 

therefore, we adopt RSSI based measurement which 

measures the distance based on the signal strength. 

However, the traditional distance measurement model 

miscalculates the hop distance which leads to increase the 

error of average distance. To handle this issue, we use 

average hop distance model to consider the appropriate 

distance between nodes. Later, we incorporate ALO 

optimization and improve its position update process by 

combining PSO model in it.  

Generally, the traditional algorithms use least square 

method to estimate the distance and this information is 

used further to estimate the node positions. The obtained 

cumulative error is used for measuring the localization 

accuracy. The localization error for any obtained 

coordinates can be expressed as: 

 

{
 
 

 
 𝑑1 = √(𝑥1 − 𝑥)

2 + (𝑦1 − 𝑦)
2

𝑑2 = √(𝑥2 − 𝑥)
2 + (𝑦2 − 𝑦)

2

⋮

𝑑𝑛 = √(𝑥𝑛 − 𝑥)
2 + (𝑦𝑛 − 𝑦)

2

 (1) 

where (𝑥, 𝑦) represents the location of unknown sensor 

nodes in the considered network area,(𝑥𝑖 , 𝑦𝑖) represents 

the coordinates of reference nodes, 𝑑  is the distance 

between reference node and unknown node deployed in 

the given region. The relation between reference and 

unknown node can be represented as: 

 A   X = b (2) 
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where 𝐴  denotes the matrix of least square, which is 

expressed as: 

 𝐴 = −2 × [

(𝑥1 − 𝑥𝑛) (𝑦1 − 𝑦𝑛)

(𝑥2 − 𝑥𝑛) (𝑦2 − 𝑦𝑛)
⋮ ⋮

(𝑥𝑛−1 − 𝑥𝑛) (𝑦𝑛−1 − 𝑦𝑛)

] (3) 

Similarly, 𝑋  is a vector which denotes the 𝑥  and𝑦 

coordinates of the nodes, given as: 

 𝑋 = [
𝑥
𝑦] (4) 

Similarly, 𝑏 is the coefficient matrix which is denoted 

as: 

 𝑏 =

[
 
 
 

𝑥1
2 − 𝑥𝑛

2 + 𝑦1
2 − 𝑦𝑛

2 − 𝑑1
2 + 𝑑𝑛

2

𝑥2
2 − 𝑥𝑛

2 + 𝑦2
2 − 𝑦𝑛

2 − 𝑑2
2 + 𝑑𝑛

2

⋮
𝑥𝑛−1
2 − 𝑥𝑛

2 + 𝑦𝑛−1
2 − 𝑦𝑛

2 − 𝑑𝑛−1
2 + 𝑑𝑛

2]
 
 
 
 (5) 

However, these localization theories are constructed 

under the ideal conditions but real-time scenarios suffer 

from various aforementioned challenges such as incorrect 

distance measurement, and obstacles etc. let us consider 

that 𝑁  is a vector with dimensions, thus, the linear 

equation can be expressed as Specifically, to increase the 

accuracy, the error 𝑁 must be minimized. The 𝑋 can be 

given as: 

 𝑋 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏 (6) 

In order to reduce the complexity in distance 

calculation, the node localization problem can be 

expressed in the form of constrained optimization 

problem and therefore, distance measurement can be 

updated as: 

 

{
 

 
𝑑1
2 = (𝑥 − 𝑥1)

2 + (𝑦 − 𝑦1)
2

𝑑2
2 = (𝑥 − 𝑥2)

2 + (𝑦 − 𝑦2)
2

⋮
𝑑𝑛
2 = (𝑥 − 𝑥𝑛)

2 + (𝑦 − 𝑦𝑛)
2

 (7) 

Based on this, the distance error measurement between 

nodes is modeled as: 

 |𝑟𝑖 − 𝑑𝑖| < 𝜖𝑖 (8) 

where 𝜖 denotes the error variable for ranging node 𝑟𝑖 and 

the actual distance between reference node and unknown 

node is expressed as: 

 

{
 

 
𝑑1
2 − 𝜖1

2 ≤ (𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 ≤ 𝑑1
2 + 𝜖1

2

𝑑2
2 − 𝜖2

2 ≤ (𝑥 − 𝑥2)
2 + (𝑦 − 𝑦2)

2 ≤ 𝑑2
2 + 𝜖2

2

…
𝑑𝑛
2 − 𝜖𝑛

2 ≤ (𝑥 − 𝑥𝑛)
2 + (𝑦 − 𝑦2)

2 ≤ 𝑑2
2 + 𝜖2

2

 (9) 

Here, we consider ranging error (𝑓𝑖) [36] which is 

computed between unknown and reference node. This is 

given as: 

 𝑓𝑖(𝑥, 𝑦) = ∑ √(𝑥 − 𝑥1)
2 + (𝑦 − 𝑦1)

2 − 𝑑𝑖
2𝑛

𝑖=1   (10) 

The small value of 𝑓(𝑥, 𝑦) denotes that the coordinate 

values are closer to the actual cost.  

During the localization process, each sensor node 

obtains a certain number of hop between two nodes by 

applying distance vector routing. Here, we focus on 

determining the average hop distance because distance 

measurement plays important role in localization process. 

The average distance is computed as: 

 𝐷 =
∑ √(𝑥−𝑥1)

2+(𝑦−𝑦1)
2

𝑖≠𝑗

∑ 𝐻𝑜𝑝 𝐶𝑜𝑢𝑛𝑡𝑖≠𝑗
 (11) 

Here,(𝑥𝑖 , 𝑦𝑖) and (𝑥𝑗 , 𝑦𝑗) are the coordinates of beacon 

node 𝑖and 𝑗. As a correction value, the estimated average 

hop distance is broadcast to the network. Further, when 

the node to be measured receives three or more beacon 

nodes, then the coordinates of nodes are estimated with 

the help of trilateral, triangulation or maximum likelihood 

methods. Generally, the traditional methods face hop 

error problem. This process of hop error problem, every 

hop in the communication range of beacon nodes is 

considered as a hop even if has different range. This can 

lead to huge error cumulatively. Belo given Fig. 1 shows 

the example of this error. 

 

 

Fig. 1. Example of hop error problem. 

In Fig. 1, node O and node P are the beacon nodes 

whereas node Q and R are the unknown nodes. Due to the 

error, the OP, OQ, and OR are considered as one hop 

whereas the actual hops are OP, OQ, and OR with 

different length.  

In order to deal with these issues, we incorporate RSSI 

based measurement. This is a logarithmic path loss model 

and it is also considered as function of distance. 

Moreover, it is useful in describe the characteristics of 

signal attenuation. The path loss model for this can be 

explained as follows: 

 𝑃𝐿(𝑑)𝑑𝐵 = 𝑃𝐿(𝑑0) + 10 𝑛 log (
𝑑

𝑑0
) + 𝑎   (12) 

Here 𝑑  is the distance between sender and receiver 

node, 𝑑0 is the reference distance, 𝑃𝐿(𝑑) is path loss at 

distance𝑑, 𝑃𝐿(𝑑0) is the path loss distance at distance𝑑0, 

and 𝑎  is the random variable subjected to Gaussian 

distribution. The RSSI model is used to minimize the hop 

error. In this approach, we compare the RSSI value of 

unknown node and RSSI value when distance between 

beacon and unknown node is known. In this way, the hop 

values are updated by adding the current hop values to the 

previous hops. With the help of this, we obtain a 

correction coefficient𝜔, expressed as: 
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 𝜔 = 
𝑅𝑆𝑆𝐼𝑖

𝑅𝑆𝑆𝐼𝑟
   (13) 

Similarly, the final hop is updated as: 

 𝐻𝑜𝑝𝑙𝑖𝑠𝑡 = 𝐻𝑜𝑝𝑙𝑖𝑠𝑡𝑖−1 +
𝑅𝑆𝑆𝐼𝑖

𝑅𝑆𝑆𝐼𝑟
  (14) 

Step 1. Initialize variables: 

• RSSI_threshold: Threshold value to filter out weak 

RSSI signals 

• RSSI_distances: Array to store RSSI-distance pairs 

• Coordinates: Array to store coordinates of sensor 

nodes 

Step 2. For each sensor node in the network: 

• Measure the RSSI value from the target node. 

• If the RSSI value is below the RSSI_threshold, skip 

to the next node. 

• Calculate the estimated distance based on the RSSI 

value (using a calibration model). 

• Store the RSSI-distance pair in the RSSI_distances 

array. 

Step 3. Select a subset of nearby sensor nodes (e.g., K-

nearest neighbors) based on the estimated distances. 

Step 4. apply antlion optimization to identify the best 

sensor node based on the distance.  

Step5. Apply a localization algorithm (e.g., trilateration) 

using the RSSI-distance pairs and the coordinates of the 

selected sensor nodes to estimate the target node’s 

location. 

Step 6. Output the estimated coordinates of the target 

node. 

The larger RSSI values denote that the node to be 

measured is close to beacon node. Thus, it minimizes the 

hop error problem and reduces the error. Random nature 

of sensor nodes and deployment affects the overall 

localization process. Therefore, several researchers have 

suggested to adopt optimization strategies. However, 

these optimization schemes suffer from local optimal 

solution, slow convergence, and computational cost. 

Therefore, we adopt the Ant Lion Optimization for 

localization [37].  

The ALO is a nature inspired approach used in 

optimization tasks. This approach works based on the 

behavior of Antlion for their food hunting process. This 

optimization is performed into five different steps which 

are as follows: random walk of ants, trap building, 

entrapping ants in the formed trap, prey catching and 

rebuilding traps. The initial positions of ant and Antlion 

are given below as 𝑀𝐴𝑛𝑡and 𝑀𝑎𝑛𝑡𝑙𝑖𝑜𝑛, respectively 

 𝑀𝐴𝑛𝑡 = [

𝐴11 𝐴12 … 𝐴1𝑑
𝐴21 𝐴22 … 𝐴2𝑑
… … … …
𝐴𝑛1 𝐴𝑛2 … 𝐴𝑛𝑑

] (15) 

 𝑀𝐴𝑛𝑡𝑙𝑖𝑜𝑛 = [

𝐴𝐿11 𝐴𝐿12 … 𝐴𝐿1𝑑
𝐴𝐿21 𝐴𝐿22 … 𝐴𝐿2𝑑
… … … …
𝐴𝐿𝑛1 𝐴𝐿𝑛2 … 𝐴𝐿𝑛𝑑

] (16)  

For the given Ants and Antlions, the objective function 

during optimization is given as follows: 

 𝑀𝑂𝐴 = [

𝑓([𝐴11, 𝐴12, . . , 𝐴1𝑑])

𝑓([𝐴21, 𝐴22, . . , 𝐴2𝑑])
…

𝑓([𝐴𝑛1, 𝐴𝑛2, . . , 𝐴𝑛𝑑])

] (17)  

 𝑀𝑂𝐴𝐿 = [

𝑓([𝐴𝐿11, 𝐴𝐿12, . . , 𝐴𝐿1𝑑])

𝑓([𝐴𝐿21, 𝐴𝐿22, . . , 𝐴𝐿2𝑑])
…

𝑓([𝐴𝐿𝑛1, 𝐴𝐿𝑛2, . . , 𝐴𝐿𝑛𝑑])

] (18) 

Based on these parameters, the different stages of ALO 

are given as follows: 

Random Walk of Ant: In each step of optimization 

process, ants are allowed to update their positions. A 

random walk function for ants can be defined as: 
 

𝑋(𝑡) = [0, 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑠(𝑡1) − 1), 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑠(𝑡2)
− 1), . . , 𝑐𝑢𝑚𝑠𝑢𝑚(2𝑠(𝑡𝑛) − 1)] 
Xit=(Xit-ai)×(di-cit)/(dit-ai)              (19)  

 

where 𝑠 is the stochastic function which is expressed as. 

 𝑠(𝑡) =  {
1 𝑖𝑓 𝑟𝑎𝑛𝑑 > 0.5
0 𝑖𝑓 𝑟𝑎𝑛𝑑 ≤  0.5

 (20) 

Here, consume is used for cumulative sum, 𝑡  is the 

present iteration, 𝑛  denotes the maximum number of 

iterations, and 𝑟𝑎𝑛𝑑  is a random number generator, 

generating random number in the interval of [0,1]. In 

each search space, a certain boundary is assigned which 

keeps the random walk of ants in the defined search space. 

This is obtained by using min-max normalization before 

updating the positions of ants: 

 𝑋𝑖
𝑡 =

(𝑋𝐼
𝑡−𝑎𝑖)×(𝑑𝑖−𝑐𝑖

𝑡)

(𝑑𝑖
𝑡−𝑎𝑖) 

+ 𝑐𝑖 (21) 

where 𝑎𝑖  denotes the minimum value of random, 𝑑𝑖 
denotes the maximum of random walk, 𝑐𝑖

𝑡 represents the 

least value and 𝑑𝑖
𝑡  denotes the maximum values at 𝑡𝑡ℎ 

iteration. 

Trapping: The aforementioned random walk of ants is 

affected due to traps of Antlions, which is expressed as: 

 𝑐𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡 + 𝑐𝑡 

 𝑑𝑖
𝑡 = 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡 + 𝑑𝑡 (22) 

This shows the random walk of ants follow the hyper 

spherewhich is defined by the vector 𝑐and 𝑑 , 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 

denotes the position of 𝑗𝑡ℎ Antlion at 𝑡𝑡ℎ iteration.  

Trap building: In order to filter the Antlion for 

catching the ants, this method uses a roulette wheel in 

ALO which uses fitness function during optimization 

process. 

Ants sliding towards Antlion: Once the ants are in 

the trap of Antlion, the Antlions shoot the sandoutward 

from the center of pit. This leads to sliding down of 

trapped ants and radius of hyperspace also decreases.  

Prey catching: After reaching to the final stage of pit, 

the Antlion catches the ant and updates its position as 

follows:  
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 𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗
𝑡 = 𝐴𝑛𝑡𝑖

𝑡 𝑖𝑓 𝑓(𝐴𝑛𝑡𝑖
𝑡) > 𝑓(𝐴𝑛𝑡𝑙𝑖𝑜𝑛𝑗

𝑡)  (23) 

Elitism: it is considered as an important characteristic 

in optimization process which is helpful in maintaining 

the best solution in any given stage of optimization. In 

ALO, every ant follows random walk around the selected 

Antlion and elite. This is expressed as:  

 𝐴𝑛𝑡𝑖
𝑡 =

𝑅𝐴
𝑡 +𝑅𝐸

𝑡

2
 (24) 

where 𝑅𝐴 the random is walk around Antlion and 𝑅𝐸  is 

the random walk around the elite 𝐸 

However, the dynamic nature of sensor nodes affects 

the local and global optimal solutions. Therefore, we 

incorporate particle swarm optimization strategy to 

increase the stability in achieving the optimal solution. 

The PSO follows velocity update and position update of 

particles to find the solution. The velocity and position 

update can be expressed as: 

𝑣𝑖
𝑡+1 = 𝑤𝑣𝑖

𝑡 + 𝑐1𝑟𝑎𝑛𝑑()(𝑝𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡)  + 𝑐1𝑟𝑎𝑛𝑑() (𝑔𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑖

𝑡) 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑣𝑖
𝑡+1 (25) 

where 𝑥𝑖
𝑡 is the current position, 𝑣𝑖

𝑡 is the current velocity 

of 𝑖𝑡ℎ  particle at 𝑡𝑡ℎ  iteration, 𝑐1  and 𝑐2  are the constant 

denoted as acceleration coefficient which are used to 

monitor the impact of 𝑝𝑏𝑒𝑠𝑡 and 𝑟𝑎𝑛𝑑() is the random 

number generator which generates random number in 

range [0,1] and 𝜔  is the inertial weight which is 

nonnegative and less than 1. This process of velocity 

update is incorporated in elitism operation of ALO and 

improved operator can be expressed as: 

𝐴𝑛𝑡𝑖
𝑡 = 𝜔

𝑅𝐴
𝑡+𝑅𝐸

𝑡

2
+ 𝑐1𝑟𝑎𝑛𝑑()(𝑅𝐴

𝑡 − 𝑒𝑙𝑖𝑡𝑒) + 𝑐2𝑟𝑎𝑛𝑑()(𝑅𝐸
𝑡 − 𝑒𝑙𝑖𝑡𝑒)(26) 

Thus, the combined ALO-PSO considers the local and 

global best solutions to find the best position of node. 

Below given table shows the algorithm for antlion 

optimization for WSN localization. 

Step 1. Initialize variables: 

• Population: Set of Antlions representing potential 

solutions 

• N: Number of Antlions in the population 

• MaxIterations: Maximum number of iterations 

• D: Number of dimensions (coordinates) for the 

target node’s location 

• Bounds: Bounds for each dimension  

Step 2. Randomly initialize the positions of Antlions 

within the given bounds. 

Step 3. For each Antlion, evaluate its fitness based on 

localization accuracy. 

Step4. Set the 𝑏𝑒𝑠𝑡_𝑎𝑛𝑡𝑙𝑖𝑜𝑛  as the Antlion with the 

highest fitness. 

Step 5. Randomly initialize the positions of Antlions 

within the given bounds. 

Step 6. For each Antlion, evaluate its fitness based on 

localization accuracy. 

Step 7. Set the 𝑏𝑒𝑠𝑡_𝑎𝑛𝑡𝑙𝑖𝑜𝑛 as the Antlion with the 

highest fitness. 

Step 8. Repeat the following steps until the maximum 

number of iterations is reached: 

• For each Antlion in the population: 

• Perform local search around the current position to 

improve the solution. 

• Update the fitness of the Antlion based on the 

improved localization accuracy. 

• Sort the Antlions in descending order based on their 

fitness. 

• Update the 𝑏𝑒𝑠𝑡_𝑎𝑛𝑡𝑙𝑖𝑜𝑛  if a new Antlion with 

higher fitness is found. 

• Perform global update to adjust the positions of 

Antlions towards the 𝑏𝑒𝑠𝑡_𝑎𝑛𝑡𝑙𝑖𝑜𝑛. 

• Apply bounds enforcement to ensure the Antlions’ 

positions are within the defined bounds. 

Step 9. Output the coordinates of the 𝑏𝑒𝑠𝑡_𝑎𝑛𝑡𝑙𝑖𝑜𝑛 as 

the estimated location of the target node. 

IV. RESULT AND DISCUSSION 

This segment presents the detailed discussion about 

outcome of proposed approach of sensor node 

localization. The obtained performance is compared with 

the state-of-art schemes to prove the robustness of 

proposed approach in terms of localization accuracy for 

varied simulation scenarios. This approach is 

implemented by using MATLAB simulation tool. We 

measure the performance in various terms such as: 

• Localization error versus transmission range: in this 

parameter, we vary the range of transmission of the 

nodes and find the localization error. Generally, 

increasing the transmission range reduces the 

localization error.  

• Anchor nodes versus error: here, we vary the 

number of anchor nodes and measure the error in 

localization. Moreover, we measured the average 

localization error and computation time for varied 

anchor nodes.  

Finally, we compared the performance with existing 

techniques such as Particle Swarm Optimization (PSO), 

Binary Particle Swarm Optimization (BPSO), Cat Swarm 

Optimization (CSO), and Penguins Search Optimization 

Algorithm (PeSOA). Table II shows the considered 

parameter for simulation.  

TABLE II. SIMULATION PARAMETER 

Simulation Parameter Considered Parameter 

Network area  100100 m2 

Number of anchor nodes 10, 20, 30, and 40 

Maximum number of iterations 150 

Transmission range 25−40 

Initial energy 0.5J 

Radio elec energy 50nJ/bit 

Radio propagation Free space 

fs  10 pJ/bit/m 

mp  0.0015 pJ/bit/m4 

 

According to this experiment, we deployed nodes 

randomly in the 100100 m2 area where 10−40 nodes are 

deployed as anchor nodes. Initially we set the 

transmission range as 25 which is considered as default 

for the other simulations. However, we have varied 
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transmission range as 25−40 m. we have considered 

energy parameters but these parameters are not used 

during localization because our main aim is to improve 

the localization performance.  

A. Localization Error vs Transmission Range 

In this section we present the comparative study for 

varied transmission range. Below given figure shows the 

localization error performance.  

The average localization error is obtained as 

0.06525 m, 0.08125 m, 0.1175 m, 0.3 m, and 0.575 m 

using proposed model, CSO [39], PeSOA [39], PSO [38] 

and BPSO [39], respectively. This experiment shows that 

the increasing the transmission range reduces the 

localization error because of its coverage maximization. 

Moreover, the proposed approach reduces the hop error 

which cumulative decrease the localization error. 

Increasing the transmission range can potentially reduce 

the localization error in certain scenarios. The 

relationship between transmission range and localization 

error depends on various factors and considerations, some 

of the important factors are as follows: 

• Signal Strength and Quality: Increasing the 

transmission range can improve the signal strength 

and quality at greater distances. With a stronger and 

more reliable signal, the accuracy of localization 

techniques that rely on signal strength, such as RSSI 

(Received Signal Strength Indicator), can improve. 

This can lead to a reduction in localization error. 

• System Geometry: The arrangement of reference 

points and the localized device’s geometry can 

impact the localization accuracy. Sometimes 

increasing the transmission range helps to resolve 

this issue, especially in complex environments or 

when there are limited reference points. 

• Increased transmission range helps to consider more 

number of relay node thus increases the reliability 

by collecting the various information about network. 
 

 

Fig. 2. Localization error performance. 

Fig. 2 shows a comparative performance for varied 

number of anchor nodes. As we increase the number of 

nodes, the localization rises. The proposed approach 

achieves an average performance as 0.0625, whereas 

CSO [39], PeSOA [4], PSO [38], and BPSO [39] 

achieves the average localization error as 0.09, 0.1075, 

0.3725, and 0.555, respectively. According to this 

experiment, the increased number of anchor nodes reduce 

the localization error because it leads to improve the 

communication in the presence of appropriate amount of 

data (see Fig. 3).  

 

 

Fig. 3. Number of anchor nodes versus localization error performance. 

B. Localization Error vs Anchor Nodes 

Similarly, we have compared the localization error 

performance for varied ratio of anchor nodes where we 

have considered the communication range as 30 m and 

number of nodes are 200. Fig. 4 shows a comparative 

study for varied anchor nodes. The obtained performance 

is compared with existing techniques such as DV-

Hop  [40], enhanced PSO [40], weighted DV-Hop [40], 

and DANS D-Hop [40].  

In this experiment, we obtain the average localization 

error as 0.121, 0.361, 0.286, 0.163, and 0.1422 using 

aforementioned techniques respectively. However, the 

network arrangement with anchor node ratio 0.3 and 0.4 

achieves similar performance due to similar configuration 

and network density. Moreover, the DANSD-Hop follows 

the dynamic anchor node process and it doesn’t rely on 

centralized infrastructure for localization similar to 

proposed approach. Moreover, the proposed approach is 

also based on finding the optimal node set by employing 

ALO whereas the DANS D-Hop simply uses the hop-

count information to improve the localization accuracy 

without optimizing the hop-count.Though, average 

performance shows significant reduction in localization 

error. Further, we measure the computational time 

required to obtain the node localization (see Table III).  

 

 

Fig. 4. Localization error performance for varied ratio of anchor nodes. 
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TABLE III. COMPARATIVE PERFORMANCE FOR THIS EXPERIMENT 

Algorithm Time taken (150 iterations) 

PSO [38] 874.24 

BPSO 649.293 

PeSOA 409.6816 

CSO 255.0341 

Proposed Approach 156.0834 

 

The proposed approach consumes 156.0834 s for 150 

iterations to complete the localization process which is 

comparatively very low when compared with other 

techniques. This is achieved due to the faster convergence 

and proposed fitness function.  

V. CONCLUSION 

The increasing demand of wireless sensor networks 

has gained huge attention in real-time applications such 

as monitoring, tracking, surveillance etc. However, these 

networks collect the information when there is any event 

or activity. The collected information is transmitted to the 

destination node. However, combining the localization 

with even is extremely important otherwise the data 

becomes meaningless. In order to overcome these issues, 

researchers have focused on localization schemes to find 

the coordinates on the sensor nodes. Several methods are 

introduced during last decade such as centralized and 

distributed localization where range based and range free 

algorithms are widely adopted for daily life scenarios. 

However, range-based localization systems provide better 

accuracy but computational complexity, localization error 

and resource consumption in localization remains a 

challenging task. In this work, we present a novel 

localization scheme which considers antlion optimization 

strategy for error minimization. Further, we incorporate 

PSO based velocity and position update method to 

improve the localization accuracy. The outcome of 

proposed approach is compared with other existing 

schemes where proposed approach outperforms when 

compared with state-of-art optimization-based 

localization techniques.  
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