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Abstract—Self-driving cars are anticipated to revolutionize 

future transportation due to their reliability, safety, and 

continuous learning capabilities. Researchers are actively 

engaged in developing autonomous driving systems, 

employing techniques like behavioral cloning and 

reinforcement learning. This study introduces a distinctive 

perspective by employing an end-to-end approach, using 

camera inputs to predict steering angles based on a model 

learned from human driving expertise. The model 

demonstrates rapid training and achieves over 90.1% 

accuracy in Mean Percentage of Prediction (MPP). In this 

context, the study aims to replicate driver behavior by 

applying transfer learning from a pre-trained VGG19 model 

with various activation functions. The proposed model is 

trained to analyze road images as input, predicting optimal 

steering adjustments. Evaluation encompasses a dataset from 

the ROS2 simulation environment, comparing results with 

several Convolutional Neural Networks (CNNs) models 

including Nvidia’s, MobileNet-V2, ResNet50, VGG16, and 

VGG19. The impact of activation functions like Exponential 

Linear Unit (ELU), Rectified Linear Unit (ReLU), and Leaky 

ReLU on the transfer learning model is also explored. This 

research contributes to advancing autonomous driving 

systems by addressing real-world driving complexities and 

facilitating their integration into everyday transportation. 

The novel approach of utilizing transfer learning and 

comprehensive evaluation underscores its significance in 

optimizing self-driving technology. 
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I. INTRODUCTION 

Autonomous vehicles are created as a solution to the 

significant number of vehicle accidents resulting from 

human mistakes, which make up 90% of all  

accidents [1, 2]. Although significant progress has been 

made in the field of autonomous vehicles, there is still 

ongoing research to improve the technology for predicting 

steering angle control. Self-driving cars have been 

introduced in several cities, including Mountain View, San 

Francisco, and Los Angeles. Many car manufacturers have 

pledged to begin large-scale production to meet the 

demands of commercial markets, with major companies 

such as Tesla, Ford, Toyota, General Motors, Google, and 

Mercedes investing heavily in self-driving cars [3]. The 

potential success of commercializing autonomous vehicles 

is immense, as it could lead to the prevention of millions of 

fatalities. The safety and overall performance of 

autonomous vehicles are heavily dependent on their ability 

to accurately predict steering angles.  

This involves the use of machine learning algorithms 

that process road images and adjust steering angles based 

on road markings, traffic signs, and other objects on the 

road to avoid obstacles [4−11]. Using supervised learning 

training data and input from image pixels, an artificial 

neural network model is trained to predict steering angles 

in autonomous driving, enabling autonomous steering 

angle predictions without human intervention [12]. In 

recent years, Convolutional Neural Networks (CNNs) can 

be used to process vectorized images for autonomous 

vehicle systems, and with the advancement of 

computational power, CNNs have shown promising results 

in image classification [13]. In addition to cameras, other 

sensors such as lidar, radar, proximity sensors, and infrared 

cameras are also used. The expected output from the CNN 

is the steering wheel angle. Therefore, accurate steering 

angle prediction is a critical component in autonomous 

vehicle control systems, as it directly affects the vehicle’s 

ability to navigate and respond to complex driving 

scenarios. By improving the accuracy of steering angle 

prediction, we can enhance the vehicle’s ability to stay 

within the designated lane, negotiate curves, and avoid 

obstacles, thereby reducing the risk of accidents. 

This research addresses the need for efficient training 

processes in the development of autonomous vehicles. The 

utilization of transfer learning techniques derived from the 

image network classification challenge allows us to 

leverage pre-existing knowledge and models, reducing the 

reliance on large amounts of labeled training data and 

significantly improving training efficiency. By 

incorporating transformation learning techniques within a 

ROS2 simulation environment, our objective is to enhance 

the accuracy and efficiency of the training process using a 

transfer deep learning model. The aim of this paper is to 

create a model that can predict the appropriate steering 

angle for a lane-keeping vehicle based on a given road 

image. By comparing the performance of our model with 
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others and incorporating multiple activation functions, we 

can demonstrate the optimality of our proposed approach. 

The successful implementation of an effective steering 

angle prediction model based on deep transfer learning has 

the potential to contribute to the widespread adoption of 

autonomous vehicles. This can revolutionize transportation 

systems, leading to enhanced safety and potentially saving 

countless lives by minimizing human errors on the road. 

The remainder of this paper is structured as follows: 

Section II provides a comprehensive examination of the 

related research. Section III and Section IV describe the 

data processing and proposed transfer deep learning model 

for steering angle prediction, including the data collection, 

model architecture, and evaluation metrics. Section V 

presents the experimental system and results along with a 

discussion. Finally, Section VI concludes the paper. 

II. RELATED WORK 

Pomerleau et al. [14] credited with pioneering research 

on autonomous vehicle navigation through the 

development of the Autonomous Land Vehicle in a Neural 

Network (ALVINN). This fully-connected neural network, 

while basic compared to modern models, provided a 

foundation for end-to-end autonomous navigation. 

Although the model was only capable of handling simple 

scenarios with few obstacles, it was a significant 

advancement in self-driving car technology. 

Research conducted by Testa et al. [15] at Nvidia 

centered on the creation of an autonomous vehicle through 

end-to-end learning. The approach that is taken involves 

training a Convolutional Neural Network (CNN) to directly 

correlate raw pixel data from a single front-facing camera 

to steering commands. The team’s findings revealed that 

this technique was remarkably precise, as the model learned 

how to drive on local roads with or without lane markings 

and highways with minimal human involvement. A few 

further studies were performed on the basic CNN network 

as shown in [16, 17], they used the LeNet network 

architecture, which complements the activation function 

and some convolution and fully connected layers to 

optimize performance. 

Recently, many deep learning models have been born 

and applied to replace the basic CNN to increase the 

accuracy of the predicted angle. To minimize the mean 

square error between the true and predicted steering angles, 

Gupta et al. [18] employed the MobileNetV2 model for 

lane-keeping. Du and Gao et al. [19] utilized transfer 

learning for dataset learning and implemented convolution 

layer modeling within the Long Short-Term Memory 

(LSTM) recurrent layer to develop their model. Several 

studies have utilized Recurrent Neural Networks 

(RNNs)  [20] to predict the next likely action of a 

pedestrian or driver based on road images captured at 

different time intervals, in order to navigate the vehicle in 

the correct direction. Some of these studies have used 

RNNs such as Long Short-Term Memory (LSTM) to 

predict steering angles based on historical driving data [21] 

or to predict trajectories based on past spatial-temporal 

features [22, 23]. Oussama and Mohamed [24] found that 

incorporating event cameras with ResNet 50 architecture 

can result in improved steering angle prediction. 

Meanwhile, Oussama et al. [25] developed two models, a 

CNN based on the VGG16 architecture as the transfer deep 

learning model, to address the steering angle problem. 

Reinforcement Learning (RL) involves the autonomous 

vehicle functioning as an intelligent agent that strives to 

maximize cumulative rewards by making correct driving 

decisions. Researchers of Refs. [26−29] have utilized RL 

for prediction purposes. However, one of the main 

obstacles to using RL is its difficulty in solving problems 

that have sparse reward signals, as noted in [30]. Table I 

summarizes the existing methods with their limitations. 

TABLE I. STEERING ANGLE PREDICTION APPROACHES 

Approach Method Limitation 

Pomerleau et al. 

[14] 

Pomerleau’s study focused on developing a neural network (NN) 
model to process input data from sensors and navigate the 

autonomous vehicle based on that. 

The model’s capability was limited to handling simple 
situations with minimal obstacles. This constraint restricts its 

applicability in complex and diverse traffic scenarios. 

Testa et al. [15] 

The methodology employed in this study utilized the CNN’s ability 
to extract relevant features from the raw pixel data, enabling the 

model to effectively learn the mapping between visual input and 

corresponding steering commands. 

The CNN-based end-to-end learning method heavily relies on 
the quality and diversity of the training data. Variations in 

lighting conditions, weather, road types, and traffic situations 

may pose challenges to the model’s generalization capability. 

Gupta et al. [18] 

The approach taken in the study is to utilize the MobileNetV2 model 
for lane-keeping, which involves predicting steering angles based on 

the input data. This approach aims to minimize the mean square error 

between the predicted and true steering angles. 

The study’s limitation is its narrow focus on lane keeping and 
the relatively low accuracy of the estimated steering angle. It 

does not account for more complex driving situations and 

unpredictable obstacles. 

Gao et al. [21] 

Transfer learning was employed to develop their model, where 
convolution layers were incorporated within the LSTM recurrent 

layer. RNNs, specifically LSTM, were utilized to predict 

pedestrian/driver actions and steering angles based on road images. 

The study’s main limitation is its focus on a specific 

environment, limiting the applicability of the model to diverse 
and rapidly changing traffic situations. 

Oussama et al. 
[24] and 

Sokipriala [25] 

These two deep convolutional network models, ResNet50 and 
VGG16, have been proposed for steering angle estimation based on 

the transfer deep learning model. 

These methods have not achieved high accuracy, which is 
crucial for ensuring traffic safety. The simulation system also 

does not consider the dynamics of the vehicle model. 

Abdur et al. 

[26−28] 

Reinforcement Learning (RL) involves the functioning of the 

autonomous vehicle as an intelligent agent, aiming to maximize 

cumulative rewards through the execution of correct driving 
decisions. 

The main limitation of RL is the difficulty it faces in solving 

problems characterized by sparse reward signals. 
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To address these limitations, we recommend employing 

the enhanced VGG19 model to construct a predictive 

steering angle model for autonomous vehicles. Image data 

will be gathered and augmented to diversify the dataset, 

facilitating the resolution of various scenarios. Leveraging 

the improved VGG19 model, characterized by high 

accuracy, we will identify a suitable activation function for 

the steering angle prediction task. We will then use the 

transfer learning method, where the VGG19 model will be 

trained on the large dataset first and save the weights, and 

then we will train on our dataset. After training to increase 

the accuracy, the model will be applied to the donkey car in 

the ROS2 simulation environment to evaluate the accuracy. 

In addition, we will also compare with the methods just 

listed above such as CNN of Nvidia, MobileNet-V2, 

ResNet50, and VGG16 with various Activation Functions. 

III. DATA PROCESSING 

A. Data Collection 

The Donkey self-driving car is built in the Gazebo-ROS2 

3D simulation environment. We employ a driving wheel 

joystick to keep the lane and operate the car, which has a 

steering angle limit of 0 to 180. The car has a front-facing 

camera that captures images, and the ROS2 controller 

records the joystick’s steering angle and the camera’s 

images as training data at a rate of 30 frames per second. In 

this study, the dataset includes 11,000 images that continue 

to be collected along with the steering angle from human 

perception (https://www.kaggle.com/datasets/ngochoangtr

an1992/steering-angle-prediction). Fig. 1 shows the 

method of collection and distribution of the dataset for the 

steering angle prediction (image_size=1024600). 

 

 
(a) 

 
(b) 

Fig. 1. The method of collection (a) and distribution (b) of the dataset for 

the steering angle prediction with 9,000 training images and 2,000 testing 
images. 

The utilization of behavioral cloning was necessary 

because it is not feasible to manually encode every 

conceivable driving scenario. Consequently, we resorted to 

employing behavioral cloning which involves replicating 

the driving behavior of a human driver using a 

Gazebo/ROS2 donkey car simulator to gather training data. 

The aim of this approach is to facilitate the learning of our 

model in terms of how to drive autonomously. 

B. Data Augmentation and Normalization 

1) Randomly zoom 

Zoom is a data augmentation technique used in machine 

learning to increase the amount of training data available 

for a model. We applied this method to randomly zoom 

images from 100% to 125% in our dataset. Fig. 2 shows the 

image with the zoom technique. 

 

 

Fig. 2. Original and Zoomed image. 

2) Randomly pan 

Pan is a technique to shift the image along the x and y 

axes with random displacement values. The images in our 

dataset will then be randomly selected and shifted left, right, 

up, and down a random value. Fig. 3 shows the Pan 

technique. 

 

 

Fig. 3. Original and Panned image. 

3) Randomly adjust brightness 

To ensure that the vehicle can steer properly in adverse 

conditions such as poor weather or shadows that were not 

present in the training dataset, Fig. 4 shows the brightness 

technique. 

 

 

Fig. 4. Original and Brightness adjusted image. 

4) Randomly blur 

It involves applying a blur filter to an image, which can 

help to reduce noise and smooth out any irregularities or 

sharp edges. This technique can help to create new training 

data that is more robust and better able to handle noise or 

other types of distortion that may be present in real-world 

situations. Fig. 5 shows the Blur technique. 
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Fig. 5. Original and Blurred image. 

5) Randomly flip 

It involves flipping an image horizontally or vertically to 

create a mirror image. This technique can help to create 

more training data and improve the performance of a model 

by reducing the effects of bias caused by the orientation of 

objects in the images. In this paper, we randomly flipped 

the photo horizontally. The angle value after flipping will 

be calculated according to the following Eq. (1). Fig. 6 

shows the Flip technique. 
 

𝑆𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝐴𝑛𝑔𝑙𝑒𝐹𝑙𝑖𝑝𝑝𝑒𝑑 = 1800 − 𝑆𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝐴𝑛𝑔𝑙𝑒 (1) 
 

 

Fig. 6. Original and Flipped image. 

6) Normalization 

Normalization is a data preprocessing technique that is 

commonly used before training a machine learning model. 

This is done to ensure that each input feature contributes 

equally to the model and to prevent any one feature from 

dominating the others. We have utilized a technique that 

involves converting the data from RGB to YUV color space, 

and then resizing the images to a standardized size of 

224224. According to the results of Ref. [15], the YUV 

color space gives more accurate predictive results. Fig. 7 

shows the Normalization technique. Fig. 8 shows the data 

statistics after the data augmentation process. Steering 

angle data is more evenly distributed before augmentation 

data. 

 

Fig. 7. Original and Normalized image. 

 

Fig. 8. Data statistics after the data augmentation process. 

IV. TRANSFER DEEP LEARNING MODELS 

A. Steering Angle Prediction System Architecture Based 

on Deep Transfer Learning VGG19 Model 

Our proposed model for steering angle estimation is 

based on the VGG19 CNN architecture [31−34]. It is an 

extension of the VGG16 model, incorporating three 

additional convolutional layers at the end. The final 

classification layer of the pre-trained model was replaced 

with a series of dense layers, including one Flatten layer, 

one Dropout layer, and three Dense layers, as illustrated in 

Fig. 9. The architecture and parameters of our steering 

angle prediction model, which utilizes transfer learning 

with VGG19, are depicted in Fig. 10. To improve the 

accuracy of our approach, we employ transfer learning by 

leveraging pre-trained weights from models trained on 

related tasks, such as the ImageNet challenge for image 

recognition. By utilizing these pre-trained weights, our 

model benefits from important learned features from a large 

dataset. During training, the focus is primarily on training 

the dense layers, while keeping the pre-trained weights 

fixed. 

 

 
(a)   (b)   (c)   (d)   (e) 

Fig. 9. The structure of the proposed fully connected layer in our model incorporates. (a) Nvidia-CNN, (b) MobileNet-v2, (c) ResNet50, (d) VGG16, 
and (e) VGG19 models. 
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Fig. 10. Steering angle prediction model architecture based on VGG19. 

Specifically, the model will be presented as follows, we 

will first initialize the VGG19 model with an input shape 

of (224, 224, 3) and use pre-trained weights 

(weights=ImageNet). Next, we freeze the layers of the base 

model to prevent them from being trained. Then, we add a 

new fully connected output layer with a single neuron 

(Predicted steering angle). This process involves taking the 

output of the base model and passing it through 

transformation layers. Specifically, we use the Flatten layer 

to flatten the output, the Dropout layer to randomly drop 

some connections to prevent overfitting, and the Dense 

layers to create fully connected layers with the 

corresponding number of neurons. Finally, we use the 

Adam optimizer with a learning rate of 0.001 to update the 

weights during training. The model is compiled with a 

Mean Squared Error (MSE) loss function and the accuracy 

metric. The backend math in the VGG19 algorithm 

involves specific mathematical operations such as 

convolution, pooling, activation functions, flattening, 

dropout, and computations related to fully connected layers 

(Dense). These operations are performed within the layers 

and optimized using the Adam optimization algorithm. 

By leveraging the knowledge gained from pre-trained 

models, our approach enables faster learning and higher 

accuracy without the need for extensive training time and 

resources from scratch. To evaluate the performance of our 

method, we combine transfer learning models, including 

Nvidia-CNN, MobileNet-v2, ResNet50, VGG16, and 

VGG19, with the newly designed fully connected layers. 

Table II provides details of the redesigned layers and the 

number of parameters in each network. 

TABLE II. PARAMETERS OF MODELS 

Network Depth 
Parameters 

(Millions) 

Trainable 

params 

(Millions) 

Input 

Size 

Nvidia-CNN 13 2.9 2.9 224224 

MobileNet-V2 159 8.5 6.2 224224 

ResNet50 56 33.6 10 224224 

VGG16 22 17.2 2.5 224224 

VGG19 25 22.5 2.5 224224 

 

B. Testing with Activation Functions 

We use the three most common activation functions, 

Exponential Linear Unit (ELU), Rectified Linear Unit 

(ReLU), and Leak ReLU to evaluate the accuracy of the 

above transfer learning network models. ELU, ReLU, and 

Leaky ReLU have commonly used activation functions in 

deep learning. ELU has faster learning than traditional 

activation functions, can prevent vanishing gradient 

problems, and produce negative output values. However, it 

is computationally more expensive than ReLU and may 

produce NaN values. ReLU is computationally efficient 

and works well in deep neural networks. However, it may 

cause the dying ReLU problem and only produces non-

negative output values. Leaky ReLU addresses the dying 

ReLU problem, and is computationally efficient, but may 

produce inconsistent outputs when the slope value is not 

optimized and only produces non-negative output values. 

The equations of the above three functions are shown in 

Eqs. (2)−(4). 

 𝐸𝐿𝑈 = {
𝑥 , 𝑖𝑓 𝑥 ≥ 0 

𝛿(𝑒𝑥 − 1) , 𝑖𝑓 𝑥 < 0 
 (2) 

 𝑅𝑒𝐿𝑈 = {
 0 , 𝑖𝑓 𝑥 < 0 
𝑥 , 𝑖𝑓 𝑥 ≥ 0

 (3) 

 𝐿𝑒𝑎𝑘𝑦 𝑅𝑒𝐿𝑈 = { 
𝑥 , 𝑖𝑓 𝑥 > 0 

0.01𝑥 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 (4) 

where x is the steering angle; 𝛿 is a positive constant. 

The choice of activation function depends on the specific 

task and performance requirements. ELU is a good choice 

when accuracy is crucial. ReLU is efficient and useful for 

deep networks. Leaky ReLU is ideal for tackling the dying 

ReLU problem. Ultimately, the chosen activation function 

must match the task’s requirements. The comparison 

results will be presented in the next section. 

C. Evaluation Metrics 

1) Loss function 

To accurately predict the steering angle, we solved it as 

a regression problem. To evaluate the difference between 

the predicted steering angle and the true steering angle, we 

use the Mean Square Error (MSE) as the loss function (5). 

Since MSE calculates the squared difference, it is highly 

effective in adapting any variation between the predicted 

steering angle and the true steering angle. 

 𝑀𝑆𝐸(𝑥, 𝑦) =  
1

𝑁
 ∑ (𝑥𝑖 −  𝑦𝑖)2𝑁

𝑖=1  (5) 

where 𝑥𝑖 and 𝑦𝑖  are the predicted and true steering angles  

2) Accuracy 

The output prediction result of this research is an angular 

value within the range of 0 to 180 degrees. Therefore, we 

established an accuracy function to assess the precision of 

different models. This function determines the percentage 

of accuracy by measuring the total predicted angular 

deviation against the total correct angle on each epoch. The 

accuracy equation is shown in Eq. (6).  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑒𝑝𝑜𝑐ℎ =  100 −
|∑ (𝑥𝑖−𝑦𝑖)𝑁

𝑖=1 |

∑ (𝑦𝑖)𝑁
𝑖=1

 100 (6) 
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where epoch is a number of times the entire data is trained. 

N is the total of trained data. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

The virtual world is built and designed with 

Gazebe/ROS2 software as shown in Fig. 11. The simulation 

world contains the donkey car, a map with two lanes used 

for training mode and used for testing the self-driving mode. 

The control of the donkey car is carried out by human 

expertise via joystick control. The images obtained are then 

saved and used to train the proposed models. The training 

was performed using a dataset of 11,000 images on a 

computer equipped with Ubuntu 20.04, an Intel i7 3.4 GHz 

CPU, an Nvidia GTX 1650-8GB GPU, and 32 GB RAM. 

Our algorithm was implemented in Python 3.10, utilizing 

the Tensorflow 2.12.0 and Keras 2.12.0 libraries. 

 

 

Fig. 11. Virtual world built on Gazebo/ROS2. 

Upon completing the construction of our models, we 

performed an experiment to evaluate the accuracy of our 

proposed model for predicting steering angle, compared to 

other existing models. Our training parameter included a 

learning rate of 0.001 and 20 epochs, using the Adam 

optimizer for the loss function [19]. The error value was 

evaluated based on the MSE (5) loss function. In terms of 

training time, the models underwent 20 epochs with the 

following durations: Nvidia-CNN took 2,822 s, 

MobileNetV2 required 2,970 s, ResNet50 took 3,465 s, 

VGG16 consumed 5,519 s, and the proposed method using 

VGG19 took the longest time at 6,813 s. 

Our comparison results between the proposed VGG19’s 

steering angle prediction ability and other models are 

illustrated with data augmentation in Figs. 12 and 13. 

Fig.  12 shows the minimum loss values for each model, 

where Nvidia-CNN has a minimum loss value of 237.2, 

MobileNet-v2 has a value of 217.3, ResNet50 has a value 

of 646.9, VGG16 has a value of 227.2, and our suggested 

VGG19 had a value of 151.8. In Fig. 13, the corresponding 

percentage accuracy calculated using the numerical Eq. (6) 

is presented, where Nvidia-CNN is 84.5%, MobileNet-v2 

is 87%, ResNet50 is 74.2%, VGG16 is 85.3%, VGG19 is 

90.1%. 

 

 

Fig. 12. Comparisons of loss value between Nvidia-CNN, MobileNet-
v2 RasNet50, VGG16, and proposed VGG19. 

 

Fig. 13. Comparisons of accuracy value between Nvidia-CNN, 
MobileNet-v2 RasNet50, VGG16, and proposed VGG19. 

The VGG19, being a profoundly deep convolutional 

neural network, surpasses other models like Nvidia-CNN, 

ResNet50, MobileNet-v2, and VGG16 in terms of sheer 

depth. These layers allow VGG19 to apprehend and dissect 

intricate data patterns and features comprehensively. The 

model’s impressive depth equates to an exceptional 

capacity for feature extraction, albeit at the cost of 

increased computational complexity. As demonstrated, 

when we combined VGG19 with a redesigned fully 

connected set, the accuracy of our proposed model was 

higher than other methods. This will enhance the car’s 

ability to adhere to the lane, as it learns from human 

knowledge in driving the vehicle. 

Figs. 14 and 15 show a comparison of the proposed 

model activity before and after augmentation data, which 

accounts for 30% of the complete dataset consisting of 

11,000. It is observed that after augmentation data during 

training and validation, the result of Loss is lower. It is 

noteworthy that the ELU activation function was employed 

in Figs. 12−15. 

The results for the prediction of steering angle using the 

VGG19 model are presented in Fig. 16. It is evident that the 

accuracy of the angle prediction is around 90%. 
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Fig. 14. Training and Validation loss of VGG19 model without 
augmentation data. 

 

Fig. 15. Training and Validation loss of VGG19 model with 
augmentation data. 

 

   

   

Fig. 16. Prediction results of steering angle using the VGG19 model. 

 

Fig. 17. Validation Loss value of VGG19 for different activation 

functions. 

To identify the most appropriate activation function for 

the task of predicting the steering angle for lane-following 

vehicles, we performed tests using ELU, ReLU, and Leaky 

ReLU functions. The findings are depicted in Fig. 17, 

which shows the Validation Loss value of VGG19 for 

different activation functions. The results indicate that the 

ELU function produced the lowest Validation Loss value 

of 130.7, whereas ReLU and Leaky ReLU functions 

resulted in Validation Loss values of 152.2 and 151.57, 

respectively. Consequently, the ELU function is the most 

suitable choice for generating accurate predictions. Table 

III displays the Validation Loss outcomes for the models. 

TABLE III. VALIDATION LOSS OF MODELS FOR DIFFERENT 

ACTIVATION FUNCTIONS 

Network 
Nvidia-

CNN 

MobileNet-

V2 

ResNet

50 

VGG 

16 

VGG 

19 

ELU 167.5 156.3 635.3 160.4 130.7 

ReLU 193.2 172.4 723.5 186.3 152.2 

Leaky-ReLU 190.8 170.7 722.3 184.2 151.5 

 

The proposed model’s accuracy has been compared, and 

it has been observed that the accuracy has improved by over 

10%. 

Additionally, the most appropriate activation function 

has been identified for predicting the steering angle based 
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on human perception. The vehicle has undergone 

experimental testing in a simulated environment, and it has 

been found that it produces the same level of accuracy as 

predicted. In our future research direction, we intend to 

explore scenarios where the vehicle needs to estimate 

steering angles while considering acceleration, deceleration, 

and avoiding other vehicles on the road. This will involve 

tackling problems related to lane changes, trajectory 

estimation, and integrating object detection methods using 

3D lidar sensors to determine the positions of objects on the 

road. 

VI. CONCLUSION 

The issue of predicting the steering angle of autonomous 

vehicles has always been a fascinating subject and has 

attracted a lot of research interest. One of the main 

challenges is training deep learning models to accurately 

predict the steering angle in various traffic conditions. 

Developing an effective model requires more data and 

training time. To address this challenge, we conducted 

research on the VGG19 model and reconfigured it by 

integrating fully connected layers for predicting 

autonomous driving angles. Our redesigned VGG19 model 

incorporates three additional layers of CNN, which 

enhances its accuracy. In order to enhance the performance 

of the model even further, we implemented the ELU 

activation function along with the Adam optimization 

algorithm, which adjusts the learning rate and loss function 

Mean Squared Error (MSE). We also implemented the 

dropout function to reduce the number of duplicate 

parameters, thus avoiding overfitting. Furthermore, we 

utilized image augmentation techniques, which involved 

generating more images for the training dataset. This 

approach made the model more versatile and resulted in 

better prediction results when compared to the previous 

model. However, we acknowledge that our paper is limited 

by the fact that the predicted steering angle relies on 

individual images, while in actual driving scenarios, images 

in a sequence from the camera are interrelated. 

Recognizing this shortcoming, we intend to conduct further 

research in the future to incorporate models capable of 

capturing temporal dependencies, resulting in more 

accurate predictions. 
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