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Abstract—Stroke happens when a clot blocks the blood 

supply to a region of the brain (ischemic stroke) or when an 

artery ruptures or spills blood (hemorrhagic stroke). 

Seeking medical care after a stroke may increase one’s 

chances of survival and reduce long-term brain damage. 

Neuroimaging helps determine who and how to treat, 

although it is costly, not always accessible, and may have 

contraindications. These constraints lead to these 

reperfusion treatments being underutilized. Using a blood 

biomarker panel capable of consistently differentiating 

between ischemic stroke and intracerebral hemorrhage 

might be very beneficial and straightforward to deploy. 

Therefore, this study describes a system to speed and 

improve stroke diagnosis. Using four machine learning 

algorithms: Support Vector Machine (SVM), Adaptive 

Neuro-Fuzzy Inference System (ANFIS), K-Nearest 

Neighbor (KNN), and Decision Tree (DT), we aim to find 

promising blood biomarker candidates for differential 

stroke diagnosis. A two-stage binary classifier model was 

created to classify the stroke group vs. the normal group 

and then categorize the instances allocated to the stroke 

group into ischemic and hemorrhagic groups. Our findings 

reveal that SVM is better than ANN, ANFIS, and DT for 

distinguishing strokes in Egyptian patients, according to our 

data. The most important blood features are Absolute (ABS) 

Neutro, Creatine Phosphokinase (CPK), Neutro/Neutrophils, 

and White Blood Cell (WBC) Count/Leukocytes laboratory 

tests that may serve as crucial and significant indications for 

stroke diagnosis. The selected characteristics and a two-

stage binary classifier discriminated with higher accuracy 

(Ischemic and hemorrhagic patients). This method for 

identifying and classifying brain strokes was accurate, easy 

to use, and cost-effective.  

Keywords—machine learning, blood biomarker, stroke, 

hemorrhagic, ischemic, identification and classification 

I. INTRODUCTION

Globally, stroke is the leading cause of disability and 

death. Over half of stroke survivors have a permanent 

disability [1]. The stroke must be diagnosed quickly in 

order to provide acute intervention within 3–6 h, which is 

the top limit of the treatment window for the greatest 

long-term results which leads that hospital design and 
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planning is of great importance. Emergency department 

relation with other departments of hospital especially 

radiology and/or laboratory is very critical to aid the early 

diagnosis even with normal conditions or in case of 

infection [2–4]. Ischemic Stroke (IS) and Hemorrhagic 

Stroke (HS) are the two primary subtypes of stroke. 

Ischemic Stroke (IS) is responsible for 85% of all cases. 

Ischemic stroke is caused by a blockage in a brain artery, 

whereas Hemorrhagic Stroke (HS) is the result of a brain 

hemorrhage. Both kinds can cause long-term harm that 

affects cognition and movement, as well as vision and 

communication. Patients with strokes are at high risk for 

long-term brain impairment, consequences (including 

disability), and even death [5].  When comparing brain 

strokes, medical treatments are problematic since there 

are no obvious borders between stroke types. In clinical 

practice, it is crucial to be able to distinguish between 

different kinds of strokes and to know when the stroke 

first occurred. Improving patient outcomes in acute stroke 

involves prompt and accurate identification of stroke and 

its subtypes. Many researches have been presented in 

COVID-19 based on blood biomarkers [6–8], and viral 

sequences [9, 10]. Other researchers tried to determine 

stroke non-invasively [11], or via exploring the protein 

functions [12].  

Even though the current imaging-based methods for 

detecting a stroke are quick, they are not very good at 

diagnosing the problem in a clinical setting. The major 

goal of neuroimaging in a patient with suspected 

ischemic stroke is to rule out the existence of other forms 

of central nervous system lesions and to discriminate 

between ischemic and hemorrhagic stroke [13]. 

Computed tomography CT scans are deemed 

adequately sensitive for identifying mass lesions, such as 

a brain mass or abscess, as well as detecting acute 

bleeding. However, CT scans may not be sensitive 

enough to identify an ischemic stroke, particularly if it is 

small, acute, or in the posterior fossa (i.e., brainstem and 

cerebellar regions) (i.e., brainstem and cerebellum areas). 

Computed tomography CT may be normal in individuals 

with a minor stroke, resulting in a poor sensitivity of 30%. 

In comparison, Magnetic Resonance Imaging (MRI) is 

more sensitive (sensitivity of >80%), but it can’t be used 

on restless patients (20–79% of all stroke patients) [14].  
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Although MRI scans have a higher resolution than CT 

scans, they are less accessible and more costly. 

Additionally, MRI scans cannot be conducted on 

individuals who have certain implanted devices (e.g., 

pacemakers) or who suffer from claustrophobia. If a 

patient is within the time window for acute stroke 

intervention, guidelines say to order an MRI scan if it can 

be done as quickly as a CT scan. If it can’t be done as 

quickly, CT is the preferred test because acute stroke 

treatments shouldn’t be put off until more detailed 

imaging is available if the patient’s history and physical 

exam are consistent with acute stroke. Also some studies 

have been conducted on Alzheimer which may have 

stroke effect [15, 16]. 

In addition to current imaging modalities, stroke 

management needs a new diagnostic approach with high 

speed, accurate detection, and cost-effective assays. An 

additional strategy for diagnosing acute stroke during the 

first hours is to find blood biomarkers. These markers 

represent the body’s reaction to the damage produced by 

various forms of stroke. Biomarkers include proteins, 

ribonucleic acids, lipids, and metabolites. Specific blood 

biomarkers capable of distinguishing ischemic stroke 

from hemorrhagic stroke and its imitators, recognizing 

major vascular blockage, and predicting stroke start time 

might speed diagnosis and boost eligibility for 

reperfusion therapy. A biomarker that could discriminate 

between hemorrhagic and ischemic strokes and the 

danger of recurrent bleeding would, in principle, allow 

the broad beginning of thrombolysis in the ambulance 

and preserve critical time and brain damage. 

Currently, blood biomarkers have low performance. 

Although biomarkers have the potential to improve stroke 

diagnosis and management, there is currently no marker 

that has demonstrated sufficient sensitivity, specificity, 

rapidity, precision, or cost-effectiveness to be used in 

routine stroke management, highlighting the need for 

additional research. To enhance biomarker performance, 

more standardization of clinical, laboratory and statistical 

methods across centers is required. 

In case-control studies comparing stroke patients to 

controls, the mean values of several biomarkers were 

significantly different. However, the range of values has 

substantial overlap, and when these biomarkers are 

evaluated in prospective research, they demonstrate 

minimal use. Several factors might explain this poor 

performance, some of which are attributable to the assays 

themselves and others to stroke as a clinical entity [17]. 

Given the diversity of ischemic stroke, a single biomarker 

may not be enough to capture the underlying complexity. 

Biomarkers have been explored for a variety of 

therapeutic uses (risk for the development of the disease; 

diagnosis; characterization of clinical severity; 

identifying ischemic penumbra; estimating the risk of 

progression or worsening; and outcome). Although 

several biomarkers have been linked to brain ischemia, 

they provide no extra information for the patient beyond 

what can be gleaned through clinical examination and 

neuroimaging. More complicated models, including 

simultaneous measurements of numerous biomarkers, 

were explored to solve these constraints. In several 

investigations, researchers examined up to 50 distinct 

biomarkers at the same time. Only a few biomarkers 

achieved a sensitivity and specificity of >90%. Even 

adding some basic demographic information, like age, 

gender, or the presence or absence of atrial fibrillation, 

did not affect performance [18]. 

Computer-aided methods and statistical analysis have 

increased the accuracy of the process and model. Since 

many of these tools depend on human participation or the 

creation of characteristics, they are computationally 

costly and lack generalizability. In contrast, machine 

learning algorithms may learn from hidden data and 

provide a high degree of adaptability. Nonetheless, they 

also have the issue of addressing handmade 

characteristics and being data specific. Therefore, it is 

necessary to build a strategy with several parameters to 

learn and acquire the essential aspects, reducing the 

amount of human work required. This study gives an 

overview of the current strategies for detecting ischemic 

and hemorrhagic strokes using statistical and machine 

learning approaches in the different modalities. A recent 

study [19] reviewed 177 research publications published 

between 2010 and 2021 to highlight the present state and 

problems of Computer-Assisted Diagnosis (CAD), 

Machine Learning (ML), and Deep Learning (DL) based 

algorithms for CT and MRI as primary modalities for 

stroke detection and lesion area segmentation [20]. The 

last part of that review paper talks about the current needs, 

preferred mode, and possible research topics in the field. 

A research paper [21] was done at six Catalan Stroke 

Centers. Patients suspected of having a stroke were 

included during the first 6 h of symptom onset, and blood 

samples were taken upon admission. Immunoassays were 

used to test a panel of 21 biomarkers chosen from prior 

findings and the literature. However, their results showed 

that the examined biomarkers are insufficient for a 

precise differential diagnosis of stroke. The logistic 

regression model for the comparison of stroke and stroke 

mimics did not include any biomarkers, but clinical 

factors were included with an accuracy of 80.8%. Also, 

the predictive accuracy was 80.6% when comparing 

ischemic versus hemorrhagic strokes. 

To the best of our knowledge, there were no machine 

learning approaches that have been used in combination 

with common laboratory blood tests to differentiate 

stroke patients, and there was no mention of ordinary 

blood test datasets either in relevant papers. In this study, 

we aim to investigate the accuracy and performance of 

four soft computing techniques (Adaptive Neuro-Fuzzy 

Inference System (ANFIS), Support Vector Machine 

(SVM), K-Nearest Neighbor (KNN), and Decision Tree 

(DT)) for differentiating between the stroke group and the 

normal group, and then categorize the instances allocated 

to the stroke group into ischemic and hemorrhagic groups. 

The proposed study introduced an efficient and robust 

system model based on low-cost blood samples to assist 

pathologists in diagnosing ischemic and hemorrhagic 

stroke accurately. The study depends on machine learning 

techniques because of the number of collected cases.  
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II. MATERIALS AND METHODS 

A. Sample Collection  

Patients enrolled in the study were all collected from 

the one hospital with different building having one 

Hospital Information System (HIS) considering the same 

types of medical equipment and all the patients had been 

physically checked and diagnosed via specialists. The full 

medical laboratory tests and brain imaging were recorded 

for each patient according to the hospital protocol 

(considering the same parameters in imaging modality 

together with same laboratory limits). This was cross-

sectional research that included 410 people separated into 

three groups. The group of ischemic stroke patients is 

(n  = 145), the Hemorrhagic stroke group is (n = 64), and 

the control group is (n = 201). Around 50% of the sample 

was male and had an average age of 45 years. The details 

of these cases are indicated in Table I.  The performed 

workflow is indicated in Fig. 1, where Table II 

summarizes the types of blood sample tests used for this 

study. 

TABLE I. DATASET DETAILS USED IN THIS STUDY  

Stroke Male Female Total 

Ischemic stroke 87 58 145 

Hemorrhagic stroke 30 34 64 

Normal 109 92 201 

Total 226 184 410 

 

 

Fig. 1. A graphical representation of the procedure followed in this 

study. 

TABLE II. THE TYPES OF BLOOD TESTS USED IN THIS STUDY 

No Lab test abb.  Blood test Name 

1 WBC Count White Blood Cells 

2 ANC Absolute Neutrophil Count  

3 Neutro neutropenia 

4 EOS Eosinophils and Eosinophil Count Test 

5 CR Protein C-Reactive Protein (CRP) test 

6 Creatinine Creatinine levels in blood and/or urine 

7 ABS BASO Absolute Basophils count 

8 MCHC Mean Corpuscular Hemoglobin Concentration 

9 Glucose R Random glucose test 

10 Urea Blood Urea Nitrogen Test 

11 K Potassium serum Blood Test 

12 CPK Creatine Phosphokinase test 

13 CKMB Creatine Kinase-MB 

14 Lymphocytes Lymphocytes levels 

15 Prothrombin Prothrombin Time (PT) test  

16 HCT ESR The erythrocyte sedimentation rate 

17 RBC Count red blood cells 

18 HGB Hemoglobin Test 

19 HCI Hydrochloric acid (hydrogen chloride) 

20 MCV Mean Corpuscular Volume 

21 MCH mean corpuscular hemoglobin 

22 RDW Red Cell Distribution Width 

23 Platelet count Platelet count 

24 MPV mean platelet volume 

25 ABS LYMPH absolute lymphocyte 

26 ABS MONO Absolute (ABS) Monocytes 

27 ABS EOS Eosinophil count - absolute 

28 MONO Monocytes 

29 CHOL Cholesterol Levels 

30 HDL HDL cholesterol levels 

31 LDL LDL cholesterol levels 

32 Albumin Albumin Blood Test 

33 Alkaline phos Alkaline Phosphatase 

34 ALT (SGPT) Alanine Aminotransferase 

35 Bilirubin Bilirubin Test 

36 TP Total protein test 

37 Globulin Globulin Test 

38 Ratio INR Prothrombin (international normalized ratio) 

39 CL Chloride test 

40 CO2 Amount of carbon dioxide in the blood serum 

B. Data Preprocessing 

The process of identifying, recognizing, and correcting 

faults in input data in order to reduce the influence of 

input data inaccuracies on subsequent studies is known as 

data preprocessing [22]. Some researchers have explored 

laboratory tests to be biomarkers for diagnosis, 

Management and treatment [23–25], for mortality 

Prediction Model [26], and as strok indicator [27]. The 

obtained laboratory datasets are often arranged as records 

containing dependent and independent data pairs and 

need preprocessing. In a dataset, data may be missing for 

one of two reasons: it may have never existed, or it may 

have been erased due to being deemed defective for some 

reason. The feature vectors that have many missing data 

points (>80%) were removed from the dataset. Using 

median imputation, missing values in continuous 

predictor variables were replaced. Moreover, the sparse 

laboratory data were also removed. We obtained fourteen 

filtered blood features out of forty that were included in 

our basic machine learning methods. Fig. 2 indicates the 

recommended workflow to diagnose the patients.  

In supervised learning, the dataset consists of (x, y) 

pairs, where x is a vector of input characteristics and y is 

the target output. Before usage in ML models, categorical 

variables were encoded. The processed data is further 
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separated into two categories: training and testing. The 

training datasets are used to train machine learning 

models. The test data is used to assess how successfully 

your model has been learned. In our study, 70% of our 

data is utilized for training, while 30% is preserved for 

testing. Here, four ML models will be applied and trained 

under two subsequent stages using ordinary laboratory 

blood tests. First, identifying the patients with stroke 

from other controls in which the models were trained on 

147 samples as a positive cohort and 141 samples as a 

negative cohort. In the second stage, the models were 

trained on 102 samples as Ischemic Stroke (IS) and 45 

samples as Hemorrhagic Stroke (HS). For preparation 

and analysis, open-source Python libraries were used. 

C. Model Development 

As it was unknown which machine learning algorithms 

would perform best, we chose four common machine 

learning models with distinct algorithms to increase the 

probability of good discriminative performance: Adaptive 

Neuro-Fuzzy Inference System (ANFIS), Support Vector 

Machine (SVM), K-Nearest Neighbor (KNN), and 

Decision Tree (DT). Each approach was developed using 

the open-source Python libraries. In the present research, 

all the fourteen filtered blood features were included in 

our basic machine learning methods: ANFIS, SVM, KNN, 

and DT. In this section, the different methods of 

supervised learning are reviewed. 

1) Adaptive Neuro-Fuzzy Inference System (ANFIS)  

ANFIS is a subclass of ANN that embodies the trade-

off between ANN and fuzzy logic systems, combining 

smoothness provided by fuzzy control interpolation with 

adaptability provided by ANN back-propagation. ANFIS 

combines the advantages of ANN and fuzzy logic in a 

single implementation [28]. The ANFIS technique was 

employed in this study as implemented in Matlab’s Fuzzy 

Logic toolbox, with a Sugeno-type Fuzzy Inference 

System (FIS) and Gaussian functions used to describe the 

fuzzy sets as membership functions. To model the 

training data, a hybrid learning algorithm was developed 

by integrating least-squares and back-propagation 

gradient descent techniques. ANFIS was ran 100 times 

for the sake of this research. 

The architecture of the ANFIS model used in this 

research consists of an input layer, three hidden layers, 

and an output layer. The input layer contained fourteen 

input variables representing the 14 reduced blood features. 

The developed model’s output variable was one binary 

neuron representing the “Normal” or “Stroke” case in the 

first stage and “ischemic “or “hemorrhagic” stroke in the 

second stage. ANFIS system consists of five phases: 

Fuzzification Phase is the first phase. Herein, node i 

in this phase is a square node and is shown in Eq. (1). 

 

𝑂𝑖
1= 𝜇𝐴𝑖    (𝑥),    𝑓𝑜𝑟 𝑖 = 1, 2                         (1) 

where x is the input to the ith node,  𝜇𝐴𝑖 (𝑥) is the fuzzy 

Membership Function (MF). In this paper, the following 

Triangular MF is used. 

Triangular (𝑥; 𝑎, 𝑏, 𝑐) = 

{
 
 
 

 
 
 
0             𝑥 ≤ 𝑎
𝑥−𝑎

𝑏−𝑎
    𝑎 ≤ 𝑥 ≤ 𝑏

𝑐−𝑥

𝑐−𝑏
    𝑏 ≤ 𝑥 ≤ 𝑐

0              𝑐 ≤ 𝑥  
   

 

where (𝑥; 𝑎, 𝑏, 𝑐) is the parameter set that changes the 

shapes of the MFs. Parameters are the predictor in this 

layer. 

Product Phase: The second phase in the ANFIS 

network is the rule layer where the membership functions 

are the input values, and each node multiplies the input 

and provides an output that reflects the rule’s firing 

strength by multiplication. This layer’s output is given in 

Eq. (2): 

𝑂𝑖
2
 = 𝑤𝑖 = 𝜇𝐴𝑖 (𝑥) * 𝜇𝐵𝑖 (𝑦),     𝑓𝑜𝑟 𝑖 = 1, 2      (2) 

Normalized phase: Here the ith node is calculated by 

the ratio of the ith rules firing strength to the sum of the   

rule’s firing strengths. 

𝑂𝑖
3 = 𝑤𝑖 =

𝑤𝑖

𝑤1+𝑤2
    ,       for i =  1, 2            (3) 

where 𝑤𝑖 is referred to the normalized firing strength. 

De-fuzzy phase: The nodes in this layer are marked 

with a square, and they use the Eq. (4) to figure out the 

weighted output of each linear function. The output is 

calculated in this layer as the summation of all incoming 

signals. 

𝑂𝑖
4 = 𝑤𝑡𝑓𝑖 = 𝑤𝑡( 𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖)                  (4) 

where 𝑤𝑖 is the output of layer 3, and {𝑝𝑖, 𝑞𝑖, and 𝑟𝑖) are 

the Sugeno inference system’s linear combination 

coefficients. these parameters are mentioned as the 

consequent parameters. 

Output phase: The single node in this step collects the 

total output  

𝑂𝑖
5 = ∑ 𝑤𝑡𝑖 𝑓𝑖 = ∑

𝑤𝑖𝑓𝑖

𝑤𝑖
𝑖  = 𝑓𝑜𝑢𝑡                    (5) 

For estimating the premise and consequent parameters, 

ANFIS employs a hybrid learning technique. The 

technique of the hybrid learning algorithm estimates the 

subsequent parameters in a forward pass and the premise 

parameters in a backward pass. During the forward phase, 

the information propagates to Phase 4, when it is 

optimized using a least square regression approach. In the 

backward phase, error signals flow backward, and a 

Gradient Descent (GD) algorithm updates the premise 

parameters. Typically, this error measure is defined as the 

sum of the squared differences between measured and 

modeled values, and its value is reduced to a desirable 

level. The ANFIS output can be written as: 

𝑓𝑜𝑢𝑡 = (𝑤1𝑥)𝑝1 + (𝑤1𝑦)𝑞1 + (𝑤1)𝑟1 + (𝑤2𝑥)𝑝2 +

(𝑤2𝑦)𝑞2 + (𝑤2)𝑟2                                 (6) 
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2) Support Vector Machine (SVM) 

The Support Vector Machine (SVM) was developed by 

Vapnik [29]. It is a supervised learning approach from the 

area of machine learning theory and structural risk 

reduction that is suitable for both classification and 

regression. SVM utilizes training data to determine the 

maximum margin hyperplane that best divides data into 

groups or classes. The separation hyperplane is chosen 

such that it is the farthest away from the closest training 

data points of any class. The SVM’s primary principle is 

to utilize a kernel function to project data in lower 

dimensional feature space (that may be nonlinearly 

separable) into points in a higher dimension space. The 

polynomial, Gaussian radial basis, and exponential Radial 

basis are examples of the kernels that are used in SVM to 

compute scores for each subject in a nonlinear issue. The 

data is then separated into classes (e.g., patient/normal) 

using an ideal hyperplane and the structural risk reduction 

principle [29].  

The steps to perform SVM classifier: 

1. Determine the class function from which the 

decision boundary will be selected. For linear 

SVM, the linear hyperplane equation is as follows: 

𝑤 · 𝑥 + 𝑏 = 0 

2. Define the margin that consists of the minimum 

distance between a candidate’s decision border 

and each class’s point. 

𝑓(𝑥) = {
+1       𝑖𝑓  𝑤 · 𝑥 + 𝑏 ≥ 0
−1       𝑖𝑓  𝑤 · 𝑥 + 𝑏 < 0,   

 

where 𝑤  and b denote the vector (weight) of the 

regression coefficients and the intercept (bias) term, 

respectively. 

3. Select the class’s decision boundary (often the 

hyperplane) in Step (1). 

4. Determine the effectiveness of the selected 

decision boundary on the training set. 

5. Compute the predicted performance of 

categorization on the new data point. 

3) K-Nearest Neighbors (KNN)  

K-Nearest Neighbors (KNN) is a method for 

supervised classification. It classifies items by 

determining the distance between their unique feature 

values. It is non-parametric since it makes no 

assumptions about the distribution of the data, and it is 

also known as a lazy learning technique. It produces 

models without any training data points required. KNN 

utilizes existing data and classifies new data points using 

similarity metrics (e.g., the Euclidean distance, 

Manhattan distance, Cosine distance, or Hamming 

distance function) [30]. Classification is determined if a 

majority of k similar samples or the sample’s nearest 

neighbors in the feature space belong to a certain 

category, then the sample must also belong to that 

category. KNNs are suitable for both classification and 

regression. In general, KNN may be executed with ease 

by following these steps: 

1. Compute the distance metric between the new 

data and each sample from the training set. 

2. Locate the k training sample that is closest to the 

new data. 

3. Sort by the distance to the new data in decreasing 

order and choose the top k results. 

4. Assign the new information to the predominant 

class. 

Even though KNN doesn’t make any assumptions, the 

data must be clean of outliers and samples with unclear 

categorization. In addition, the sizes of the classes should 

be approximately comparable to reduce bias when an 

unknown sample is assigned to a class. The simplest 

value of k is 1, however, it may be desirable to employ 

other numbers. If altering k-values results in changes to 

an object’s categorization, the second option is not safe. 

In a more sophisticated version of this method, voting 

techniques other than the simple majority may be used, 

which may be advantageous if, for instance, the classes in 

the training set have vastly different variances. 

4) Decision Tree (DT) 

A decision tree employs a treelike graph to illustrate a 

flow-chart-like structure with a “root.” Each tree node 

represents an attribute or group of attributes. The last 

node is a “leaf” that represents a class label. Both 

nominal and numerical input features are acceptable for 

decision trees. Decision trees are a non-parametric 

method; therefore, they don’t make any assumptions 

about how space is distributed or how the classifier is 

built. There are several methods to create a decision tree 

from a dataset, depending on which characteristics to use 

for each node and what criteria to apply for splitting. The 

issue is to choose the best accessible qualities for each 

tree branch. “Best” optimizes information gain for that 

phase, hence the algorithm picks it. Information theory 

equations based on entropy are used to minimize entropy. 

In information theory, entropy measures randomness, not 

disorder. All-same items have a low entropy, whereas 

random items have high entropy. Minimizing entropy 

helps create decision trees. 

𝐸(𝑆) =∑−𝑝𝑖 log2 𝑝𝑖

𝑐

𝑖=1

 

where E(S) is the entropy of a dataset collection, c is the 

number of classes in the system, and pi is the percentage 

of instances that belong to class i. 

D. System Evaluation 

The criteria used to evaluate the machine learning 

model are crucial because they dictate how machine 

learning algorithm performance is assessed and compared. 

A confusion matrix is a table pattern that may be used to 

visualize the performance of a classification model. The 

performance of a classification model is evaluated using a 

N matrix, where N is the number of target classes. The 

matrix compares the actual target values to the 

classification model’s forecast [31]. A two-by-two 

confusion matrix for binary or two-class classification has 

four outcomes: True Positive (TP), True Negative (TN), 

False Positive (FP), and False Negative (FN). TP is the 

outcome when the model properly predicts the positive 
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class, while TN is the outcome when the model correctly 

predicts the negative class. FP and FN, on the other hand, 

are the inverse for TP and TN. The findings of the 

confusion matrix are used to create a variety of 

measurements. The most common criteria for measuring 

classification model performance are accuracy-focused, 

however, there are several alternative assessment 

measures available. In our study, the model’s 

performance was assessed using measures such as 

Classification Accuracy (CA), Area under the Curve 

(AUC), F1-score, precision P, and recall R. Here, the 

performance of each of the four classifiers was evaluated 

and compared to assess the superior model in our two-

stage binary classifier problem. 

1) Accuracy 

Accuracy is one of the most often used measures for 

evaluating classification performance; it is defined as the 

number of correct predictions provided by the model 

across all types of predictions. The benefit of accuracy is 

that it is simple to calculate with less complexity and 

simple for humans to grasp. When the target variable 

classes in the data are almost balanced, it suggests that 

the measurement approach is effective. However, apart 

from being unable to discriminate between the kind of 

errors it produces (FP vs FN), accuracy would not operate 

well if the data were skewed or unbalanced, and the use 

of additional assessment metrics should be explored [31]. 

𝐶𝐴 = 
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛
 

2) Sensitivity 

Sensitivity, also known as the true positive rate, 

measures how successfully a classification system 

categorizes data points as positive. In some fields, 

sensitivity is usually combined with specificity to assess 

the prediction performance of a classification model or a 

diagnostic test. In binary classification, for example, 

sensitivity measures the proportion of positive instances 

obtained, while specificity measures the fraction of 

negative examples obtained. Sensitivity is defined as 

follows. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
 

3) Specificity 

Specificity, also known as true negative rate, measures 

how successfully a classification system categorizes data 

points as negative. The following is a definition of 

specificity: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑛

𝑇𝑛 + 𝐹𝑝
  

4) Precision 

Precision is the ratio of real positives to the total 

number of positives that a model predicts. In general, it 

verifies the accuracy of the forecasts. Precision is an 

excellent metric to use when the cost of a False Positive 

is significant when employing a classification model. 

Precision, like specificity, does not assess whether a 

binary classification’s negative example is genuinely 

negative. According to [17] the definition of accuracy is 

provided below: 

𝑃 =  
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
  

5) Recall 

The recall is a statistic often used to pick the optimal 

model when the cost of false negatives is significant. In 

contrast to accuracy, specificity does not evaluate 

whether a negative example in a binary classification is 

genuinely negative. 

𝑅 =  
𝑇𝑝

𝑇𝑝 + 𝐹𝑛
  

6) F1-score 

F1-score, often called F-measure, is a statistic that 

measures the harmonic mean of Recall and Precision 

values. It determines how many patterns in a certain class 

have been accurately detected. F1-score is preferable to 

accuracy when a balance between precision and recall is 

required and when class distribution is unbalanced. This 

suggests that a classifier with a high F1-score has both 

high accuracy and recall. In practice, there is typically a 

trade-off between precision and recall, such as increasing 

recall at the expense of precision by making the classifier 

more likely to make positive predictions and increasing 

precision at the expense of recall by making it less likely 

to make positive predictions The F1-score of a classifier 

is calculated as follows: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 ·  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑒𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

Specificity is the capacity of a biomarker to exclude 

the illness when it is not present. Sensitivity is the ability 

of a biomarker to identify the existence of a disease when 

the disease is present. 

7) The Area under the ROC Curve (AUC) 

Receiver Operating Characteristic (ROC) is the 

fundamental tool used in ROC analysis to address a 

variety of issues, including: 

• Deciding a decision threshold that minimizes the 

mistake rate or misclassification cost for a certain 

class and the cost distribution. 

• Locating a zone where one classifier performs 

better than another. 

• Identifying places where classifiers perform less 

well than expected. 

• Obtaining class posterior estimates that are 

calibrated. 

The Area under the ROC Curve (AUC) is an essential 

and often used ROC curve-related ranking statistic. It was 

used to improve a learning model and to evaluate various 

learning algorithms. The AUC values reflected the 

overall ranking performance of a classifier. The AUC 

may be calculated for a binary issue as follows: 

𝐴𝑈𝐶 =
𝑆0 − 𝑛0(𝑛0 + 1)/2

𝑛0 𝑛1
 

where 𝑆0 is the sum of all the ranked positive (Class 0) 

examples, 𝑛0  is the number of positive (Class 0) 
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examples, and 𝑛1  is the number of negatives (Class 1) 

examples. Both in theory and practice, it has been shown 

that the AUC is a better way to measure classifier 

performance and find the best solution during 

classification training than the accuracy metric. 

III. RESULTS AND DISCUSSION 

Several image-based ML algorithms for stroke 

diagnosis have already been explored  in the literature, 

and they have greatly improved the workflow of acute 

ischemic stroke patients. Most of these ML techniques 

aided in speedy stroke diagnosis and triaging, based on 

feature identification and segmentation.  However, the 

reliable differential diagnosis for strokes is still difficult 

since it depends on so many patients’ specific as well as 

clinical aspects. In addition, it is costly and not always 

accessible. 

In our experiment, we utilized a collected dataset of 

blood ordinary tests to identify and classify patients with 

different stroke groups using different machine learning 

algorithms. ML models were applied and trained, under 

two subsequent stages. From the collected blood dataset, 

141 blood samples without symptoms or abnormalities in 

the brain and 147 blood samples with abnormalities in the 

brain are extracted for this study. In the second stage, the 

models were trained on 102 samples as Ischemic Stroke 

(IS) and 45 samples as Hemorrhagic Stroke (HS). Python 

is utilized as an implementation tool to model the 

proposed brain stroke detection and classification 

technique for SVM, KNN, and DT. While Matlab’s 

Fuzzy Logic toolbox is used to implement ANFIS model.  

 

 

Fig. 2. A tress graphic indicates the patient tracking. 

In the SVM algorithms, the Gaussian Kernel function’s 

trade-off constant C is set at C = 0.1 and the parameter σ 

of the Gaussian Kernel function was set to 0.02 in the 

SVM algorithms. In the KNN algorithm, the number of 

nearest neighbors was set to 5. The metric parameter was 

Euclidean distance, and the weights were uniform 

weights in which each neighborhood’s scores are equally 

weighted. In the binary DT, the parameters are set and 

designed with a minimum number of splits equal to two 

(i.e., two child nodes) in the leaves and a maximum tree 

depth of 100 levels. 

Assessing the performance of stroke vs. normal models 

was done by scoring the entire test sets with each model 

separately. Our findings demonstrate that SVM showed 

the best performance in discriminating between normal 

and stroke classes, achieving 100% in all performance 

metrics; as shown in Table III. The classification findings 

in terms of AUC, accuracy, F1-measure, precision, and 

recall of the first stage models were described in Table III. 

In the second stage classifiers, Table IV shows how well 

stroke groups (Ischemic vs. hemorrhagic) can be 

classified using all available ML methods and the 

fourteen based features. 

TABLE III. COMPARISON OF PERFORMANCE PARAMETERS (STROKE VS. 

NORMAL) 

Rank Model AUC CA F1 Precision Recall 

1 SVM 1.0 1.0 0.990 0.990 0.990 

2 ANFIS 0.985 0.983 0.983 0.983 0.983 

3 KNN 0.998 0.970 0.970 0.970 0.970 

4 
Decision 

Tree 
0.975 0.985 0.985 0.985 0.985 

TABLE IV. COMPARISON OF PERFORMANCE PARAMETERS (ISCHEMIC 

VS. HEMORRHAGIC STROKE) 

Rank Model AUC CA F1 Precision Recall 

1 SVM 0.991 0.991 0.991 0.991 0.991 

2 ANFIS 0.97 0.967 0.970 0.970 0.97 

3 KNN 0.98 0.982 0.982 0.983 0.982 

4 Decision Tree 0.991 0.991 0.991 0.991 0.991 

 

Table V ranks the features based on their association 

with a target variable, using appropriate internal scores 

(such as information gain, gain ratio, and chi-square) and 

ML model.  The ranked five features; CPK, ABS Neutro, 

Neutro/Neutrophils, CKMB, and White Blood Cell 

(WBC) Count/Leukocytesare are efficient in 

discriminating between normal and stroke classes, 

achieving 100% accuracy. Additionally, Table VI ranked 

(descending sequence/order for parameter importance) 

the features according to how important they are in the 

classification models of Ischemic and Hemorrhagic 

stroke. Fig. 3 indicates the average, minimum and 

maximum limits of normal range and collected data for 

the most important parameters. 

 

TABLE V. RANKING OF FEATURES IN CLASSIFICATION OF STROKE VS. STROKE 

Rank Features Info. gain Gain ratio Gini ANOVA χ² ReliefF 

1 CPK 0.524 0.262 0.259 146.61 88.96 0.391 

2 ABS Neutro 0.434 0.217 0.224 62.40 78.59 0.219 

3 Neutro/Neutrophils 0.231 0.115 0.109 1.337 9.92 0.115 

4 CKMB 0.158 0.079 0.075 34.45 18.59 0.103 

5 WBC Count / Leukocytes 0.154 0.077 0.061 25.51 20.49 0.087 
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TABLE VI. RANKING OF FEATURES IN THE CLASSIFICATION OF ISCHEMIC VS. HEMORRHAGIC STROKE 

Rank Feature Info. gain Gain ratio Gini ANOVA χ² ReliefF 

1 ABS Neutro 0.876 0.438 0.452 1000.2 70.74 0.54 

2 Neutro/Neutrophils 0.518 0.259 0.288 50.57 47.917 0.233 

3 CPK 0.524 0.262 0.265 106.52 50.89 0.196 

4 WBC Count / Leukocytes 0.378 0.189 0.208 48.24 22.0 0.127 

 

 

Fig. 3. Normal and abnormal ranges of most common parameters for stroke differentiation.  

IV. CONCLUSION  

Improving patient outcomes in the acute phase of 

stroke needs prompt and accurate identification of stroke 

and its subtypes. The authors of this article used ML 

approaches to identify and classify stroke types using 

common laboratory blood tests. The ML approaches are 

validated in this study for classifying and predicting 

stroke subtypes, as well as obtaining blood feature 

reduction benefits. As a result, during real system 

operation, the suggested models employ just four features 

of the 14 stroke scale parameters, to offer quicker and 

more accurate service assistance. The best-ranked 

laboratory tests that varied considerably between the 

ischemic and hemorrhagic groups are (ABS Neutro, CPK, 

Neutro/Neutrophils, and WBC Count/Leukocytes). Our 

findings reveal that the SVM model is superior to KNN, 

ANFIS, and DT approaches for differentiating strokes in 

patients. However, future studies might expand on these 

results by examining if improved predictions can be made 

by utilizing a wider data set. Finally, the proposed study 

introduced an efficient and robust system model based on 

low-cost blood samples to assist pathologists in 

diagnosing ischemic and hemorrhagic stroke accurately. 
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