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Abstract—Glioblastoma (GBM) is the brain’s most common 

malignant primary tumor. Survival prediction is crucial for 

risk stratification and impacts all aspects of care. However, 

previous attempts at predicting survival outcomes have relied 

on clinical parameters that suffer from uneven capture in 

available data sets, limiting the precision of transferable 

survival predictions. In this study, we propose a novel method 

for overall survival prediction in GBM patients that 

combines deep learning and hand-crafted radiomic features 

using brain Magnetic Resonance Imaging (MRI) images. The 

proposed method involves three main steps: 3D brain tumor 

segmentation using the nnU-Net model, patient classification 

into long, short, and mid-survivors using the Dense-Net 

model on segmented tumor regions, and the combination of 

deep learning features with hand-crafted radiomic features 

and patient age information. Feature selection is performed 

using the Least Absolute Shrinkage and Selection Operator 

(LASSO) regression model and the DeepSurv is utilized for 

survival prediction. The proposed method was evaluated on 

the BraTS Benchmark 2020 training data sets using nested 

five-fold cross-validation. The resulting C-index values for 

the training, validation, and testing sets were 0.984, 0.821, 

and 0.821, respectively, outperforming the random survival 

forest method. Our findings suggest that the proposed 

method has the potential to serve as an imaging biomarker 

for predicting overall survival in GBM patients, with 

superior transferability compared to traditional machine 

learning-based methods.  
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I. INTRODUCTION 

Glioblastoma (GBM) is the brain’s most common 

malignant primary tumor [1], with a heterogeneous 

histological appearance and generally poor prognosis. The 

average survival time of a patient with GBM is 12−18 

months [2], with only 25% of GBM patients surviving 

more than one year and only 5% surviving more than five 

years. Patients diagnosed with GBM are typically 

managed with maximal safe resection followed by 

radiation therapy and chemotherapy. The ability to 

estimate prognosis is crucial for patients and physicians to 

select the most appropriate treatment plan, such that it is 

sufficiently aggressive to allow for tumor control while 

minimizing adverse long-term normal tissue 

changes  [3−5]. The goal of superior survival prediction is 

to appropriately de-escalate management when the 

prognosis is poor, emphasizing the patient`s quality of life 

and best supportive care and aggressively managing 

patients who may experience superior survival outcomes. 

Given that the Overall Survival (OS) time can vary 

significantly across individuals, survival prediction 

models could be employed to guide the treatment of GBM 

patients and are clinically crucial for customized treatment 

management. Previous attempts at predicting survival 

outcomes have relied on clinical parameters in the neuro-

oncology field, which are known to suffer from uneven 

capture in available data sets, impairing transferable 

survival precision. Age as a clinical feature has been the 

most consistent predictor of OS and is robustly captured in 

all data sets [6]. Given the above limitations and unmet 

needs in the neuro-oncology field, we propose a method 

for OS prediction that employs brain MRI images to 

classify patients, given that this is the most significant 

source of data generated in the clinic. The most 

consistently captured and thus currently publicly available 

MRI sequences are T1-, T2-, post-contrast T1-, and 

FLAIR-weighted MRI images. To maximally leverage 

MRI images as a data source in GBM, we employ a 

combination of deep learning and hand-crafted radiomic 

features on the sequences mentioned above, as they will 

sustain the basis of most prediction models for years to 

come. In this study, a novel method is proposed for overall 

survival prediction in GBM by using the combination of 

deep learning features, hand-crafted radiomic features, and 

patient age information, where deep learning features are 

extracted from a deep learning-based image classification 
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task on T1-, T2-, post-contrast T1-, and FLAIR-weighted 

MRI images. The proposed method consists of three steps: 

(1) 3D brain tumor segmentation based on the popular 

nnU-Net model; (2) Patients are classified into three 

groups as long survivors (e.g., >900 days), short survivors 

(e.g., <300 days), and mid-survivors (between 300 and 900 

days) using the Dense-Net model on segmented brain 

tumor regions with deep learning features extracted 

through the last fully connected layer of the classification 

model [7]; (3) Four hundred hand-crafted radiomic 

features are calculated on three tumor subregions (edema, 

enhancing tumor and necrosis) by using the pyradiomics 

toolbox, which includes 14 shape features, 18 first-order 

statistics features, 22 Gray-Level Co-occurrence Matrix 

(GLCM) features, 16 Gray-Level Run Length Matrix 

(GLRLM) features, 16 Gray-Level Size Zone Matrix 

(GLSZM) features, and 14 Gray-Level Difference Matrix 

(GLDM) features, for a total of 100 hand-crafted radiomic 

features for each MRI modality image [8]. Deep learning 

features are combined with these hand-crafted radiomic 

features and patient age information. After feature 

selection using the Least Absolute Shrinkage and 

Selection Operator (LASSO) regression model, a Cox 

proportional hazards neural network (DeepSurv [9]) is 

utilized for survival prediction on the combination of 

features. Three models, one in each step, have been built 

accordingly. The proposed method has three advantages 

over the previously mentioned methods. (1) Imaging 

features are implicitly extracted from a DenseNet-based 

image classification task, combining fine details in high 

image resolution levels and deep abstract semantic 

information in low image resolution levels. These features 

represent the most significant patterns in classifying 

patients into long-, mid-, and short-term survival 

categories; (2) Operations of complicated feature 

dimension reduction are not required, only one step of the 

LASSO feature reduction is necessary; (3) Instead of using 

a linear Cox regression model [10] or a radiomics 

nomogram [11], a subsequent Cox proportional hazards-

based neural network model has been utilized for survival 

prediction with the combination of both deep learning 

features and hand-crafted radiomic features wherein the 

importance of each feature is weighted during the model 

training. 

II. LITERATURE REVIEW 

Multiple attempts have been made to design robust 

scoring systems predictive of outcomes in GBM [12, 13]. 

Mostly, these methods have relied on clinical parameters 

such as age, Karnofsky Performance Status (KPS), gender, 

and resection/methylation status. However, significant 

tumor heterogeneity, both in spatial and temporal space, 

limits the ability of these clinical prognostic factors to 

capture GBM characteristics fully, thus undermining 

robust survival prediction [14]. KPS, often poorly captured 

or not captured, varies over time, while the extent of 

resection is subject to interpretation. Methylation status is 

often unavailable and, in some publicly funded systems, 

only carried out in some patients (e.g., over the age of 65) 

and, as a result, is often missing [15]. Advanced Magnetic 

Resonance Imaging (MRI) techniques have shown 

benefits in initial diagnosis, treatment planning, and 

treatment response assessment and have been increasingly 

used as a non-invasive tool in survival prediction. MRI can 

provide distinctive imaging information independent of 

pathologic and clinical data [16]. Studies have shown a 

significant correlation between imaging phenotypes and 

genomic signatures. Thus, imaging phenotypes can serve 

as non-invasive biomarkers of cellular gene expression. 

Various statistical models have been developed to utilize 

MRI image features for survival prediction. Primarily, the 

MRI image features are extracted from segmented tumor 

regions [17, 18]. Feng et al. [19] developed a simple linear 

regression model for overall survival prediction using only 

nine radiomic features calculated from the brain tumor 

segmentation based on an ensemble of 3D U-Nets. Yousaf 

et al. [20] proposed a random forest classifier-based 

approach for survival prediction on the Brain Tumor 

Segmentation (BraTS) 2019 data. Radiomic features were 

extracted from the provided ground-truth segmentation 

masks, in which Haralick texture features were shown to 

be more significant for the survival prediction task. Baid 

et al. [21] also built a radiomic model based on a random 

forest for OS prediction in GBM. First-order, image 

intensity-based volume, shape-based geometry, and 

texture features, with 678 radiomic features, were 

extracted from three subregions of the brain tumor in T1-

contrast enhanced-weighted and Fluid-Attenuated 

Inversion Recovery (FLAIR) MRI images. Macyszyn  

et al. [22] proposed a Support Vector Machines-based 

approach to identify complex and reproducible imaging 

patterns predictive of overall survival and molecular 

subtype in GBM. The machine learning algorithm selected 

approximately sixty diverse features from conventional 

and advanced preoperative multiparametric MRI images to 

derive imaging predictors of patient survival. Asthana  

et al. [23] proposed a regression model to predict the 

survival rates of patients with high-grade brain tumors 

based on the information set extracted from a segmented 

brain tumor using the U-Net based semantic segmentation 

method. Tang et al. [24] presented the OS time prediction 

for glioblastoma using the multi-modal deep K-Nearest 

Neighbors (KNN) strategy. Each patient’s final overall OS 

time is determined by its K nearest patients with known OS 

time in a learned metric space. They claimed that, 

compared with the typical end-to-end prediction method, 

it is more robust to noise and data inconsistency. To 

overcome the lack of interpretability of radiomic features, 

Pálsson et al. [25] introduced novel MRI features 

computed from the whole-brain and tumor segmentation 

and fed into a random survival forest model to predict 

patient survival. The calculated features have a direct 

anatomical-functional interpretation via measuring the 

deformation caused by the brain tumor on the surrounding 

brain structures, which improves the performance of 

survival models for both overall and progression-free 

survival. The method applies to both pre-and post-

operative MRI. 

Unlike traditional machine learning approaches, neural 

network-based methods have recently attracted attention in 

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1462



 

survival analysis. Wang et al. [26] developed a fully 

connected neural network with two hidden layers for 

survival prediction. Seven features, including approximate 

surface areas of three tumor sub-regions, the ratios of the 

volume of each tumor sub-region to the size of the whole 

brain, and patient age information, were employed as 

inputs to the neural network to produce the survival days 

prediction. Banerjee et al. [27] designed a radiomic model 

of similar Multi-Layer Perception (MLP) for predicting 

overall survival. Thirty-three semantic and fifty agnostic 

features from segmented brain tumor regions were 

extracted and provided as input to the MLP to indicate the 

number of survival days.  

Among these survival prediction methods, radiomic 

feature generation is a critical step. However, one common 

problem is that most radiomic features are explicitly 

calculated or handcrafted. These handcrafted radiomic 

features may include first-order intensity distribution of 

voxels in brain tumor subregions, shape-based geometry 

features, and second-order texture features like gray level 

co-occurrence matrix, gray level run length matrix, gray 

level dependence matrix, gray level size zone matrix, and 

neighboring gray-tone difference matrix. Although the 

number of handcrafted features generated in this manner 

can reach tens of thousands, they are mainly superficial 

and low-order imaging features, which may not represent 

deep, abstract semantic characteristics imaging features of 

brain tumors [10]. In addition, if the number of radiomic 

features is too high, a complicated step of feature selection 

or feature vector dimension reduction is typically required. 

Sun et al. [28] applied a decision tree regression model 

with gradient boosting to rank the importance of each 

feature. The optimal number of features is determined 

through cross-validation. Fourteen out of 4,524 radiomic 

features are finally selected and fed to a random forest 

model to predict the survival of a patient with GBM. In 

Osman’s method [29],  a set of 147 radiomic features were 

extracted from segmented tumor sub-regions on 

conventional multi-modality MRI images, followed by 

LASSO Cox regression applied to obtain the coefficients 

of each radiomic feature. A radiomic signature with 9 

features was constructed and then trained/tested on eight 

machine learning classification models for stratifying 

GBM patients based on survival. In Baid’s method [21], to 

reduce the number of radiomic features, Spearman’s 

correlation coefficient was calculated for each pair of 

radiomic features. The features with high Spearman’s 

correlation were discarded. The features were further 

reduced by excluding all variables with statistically 

insignificant relationships with survival groups. 

To overcome the drawbacks of superficial and low-

order imaging features in radiomics, Lao et al. [10] 

proposed a deep learning-based radiomics model for 

survival prediction in GBM. A total of 98,304 deep 

features were extracted from a Convolutional Neural 

Network (CNN) via transfer learning. These features were 

combined with 1403 handcrafted features calculated from 

multi-modality MRI images to form the radiomic features. 

However, the approach still required a complicated four-

step feature selection procedure. The final radiomic 

nomogram having only six radiomics features was 

constructed on the validation data set and combined with 

the clinical risk factors, such as age and KPS, based on a 

multivariate cox regression model for survival prediction. 

In summary, in this study, the goal of the proposed method 

for OS prediction in GBM is to combine deep learning 

features, hand-crafted radiomic features, and patient age 

information, employing T1-, T2-, post-contrast T1-, and 

FLAIR-weighted MRI images. 

III. MATERIALS AND METHODS 

The fundamental steps in the proposed method: (1) 3D 

brain tumor segmentation; (2) Deep learning feature 

extraction via image classification, and (3) Cox 

proportional hazards neural networks, as well as the data 

sets utilized in this study, are explained in detail in below 

sections. The overall diagram of the proposed method is 

shown in Fig. 1. 

A. Data 

The publicly available data set BraTS 2020 has been 

used in the study, which includes 293 High-Grade Gliomas 

(HGG/GBM) and 76 Low-Grade Gliomas (LGG) 

patients  [30, 31] with a pathologically confirmed 

diagnosis and available overall survival. The clinical 

characteristics of GBM patients in BraTS 2020 are shown 

in Table I. All these data are preoperative, with a native 

T1-weighted scan (T1), a native T2-weighted scan (T2), a 

post-contrast T1 weighted scan (T1-Gd), and a T2 Fluid 

Attenuated Inversion Recovery weighted scan (T2-

FLAIR) and were acquired with different clinical protocols 

using various scanners from different institutions. All 

images in the BraTS 2020 dataset have been segmented 

manually by one to four raters, following expert 

neuroradiologists’ approval of the annotation protocol and 

neuro-radiologist annotations. These annotations were 

taken as ground truths for model training and testing. 

Annotations comprise the post-contrast enhancing tumor, 

the peritumoral edema, the necrotic, and the non-

enhancing tumor core. All images have been co-registered 

to the same anatomical reference using a rigid transform-

based program implemented in ITK [32].  In addition, all 

images have been skull-stripped and interpolated to 1×1×1 

mm3 voxel resolution. The overall survival data, defined in 

days, are included in a Comma-Separated Value (.csv) file 

corresponding to 236 BraTS 2020 imaging data pseudo-

identifiers. The .csv file also includes the age of patients, 

as well as the resection status. into allow for increased 

homogeneity, in this study, only subjects with resection 

status of Gross Total Resection (GTR) were evaluated 

(119 subjects), as described in the BraTS 2020 data set 

website. 
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Figure 1. The diagram of the proposed method includes three steps: image segmentation via the nnU-net, deep imaging feature extraction, and 

survival prediction. 

TABLE I. CLINICAL CHARACTERISTICS OF GBM PATIENTS IN BRATS 

2020 

Clinical characteristics  

No. of patients 236 

No. of patients with GTR 119 

Age Ranges (years) 18.98−86.65 

Age Median (years) 61.47 

OS Ranges (days) 5−1767 

OS median (days) 371 

 

B. Brain Tumor Segmentation 

Thanks to the annual Multi-modal (BraTS challenge at 

the conference of the MICCAI since 2013. [31], methods 

of brain tumor segmentation in multi-modal MRI images 

have demonstrated a promising performance, particularly 

after the introduction of CNNbased deep learning 

techniques in the field of medical image segmentation [33]. 

The U-Net and its variants are the most popular methods 

among the winners of the annual BraTS challenge [34]. 

This study adopted a state-of-the-art nnU-Net (“no new U-

Net”), a deep learning framework with automated self-

configuration for brain tumor segmentation [7].  

To configure a deep learning-based image segmentation 

method, we typically manually select a set of 

hyperparameters, and network architecture configurations 

are carried out with an iterative trial and error process in 

the model training and performance monitoring of the 

model on a validation set. When employing the automated 

configuration by nnU-Net, dataset properties such as 
imaging modality, image sizes, voxel spacings, class ratios, 

etc., are summarized in a “dataset fingerprint”. A set of 

heuristic rules operates on this fingerprint to infer the data-

dependent hyper-parameters of the pipeline. These are 

complemented by some fixed parameters, which do not 

require adaptation. Up to three architectures, a 2D U-Net, 

a 3D U-Net on full image resolutions, and a cascade 3D 

U−Net is trained based on these pipeline fingerprints in a 

5−fold cross-validation. Finally, nnU-Net automatically 

selects the optimal ensemble of these architectures and 

performs postprocessing if required. An example of brain 

tumor segmentation of one patient is illustrated in Fig. 2. 

 

 

Figure 2. The brain tumor segmentation was illustrated using the nnU-Net method on a GBM patient. (a). T1-Gd. (b). T1. (c). T2.  (d). T2-FLAIR. (e). 

Tumor segmentation result (yellow color on edema, green on tumor core, and blue on enhancing tumor). 
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C. Imaging Feature Extraction via Image Classification 

We implicitly extract imaging features through image 

classification to alleviate the cumbersome procedure of 

hand-crafted feature extraction and feature dimension 

reduction. All patients are classified into three groups in 

terms of their survival days, short-survivors (<300 days), 

long-survivors (>900 days), and mid-survivors (between 

300 and 900 days), as suggested by Baid et al. [21]. A 

survivor classification model based on the densely 

connected convolution neural networks (DenseNet) [35] 

was built for deep imaging feature extraction. The 

flowchart of the procedure is shown below in Fig. 1(b). 

The architecture of the DenseNet takes the multi-modal 

image volumes of segmented brain tumor regions from 

Section III: B as inputs. The output includes classes from 

the softmax layer and imaging features from the last fully 

connected layer. In this study, we focus on the extracted 

imaging features that play the most significant role in 

classifying GBM patients into different survival groups. 

Four dense blocks are adopted in the architecture, which 

has 121 layers in total. In any dense block, each layer 

obtains additional features from all preceding layers and 

passes on its feature maps to all subsequent layers via 

concatenation operations. As a result, each layer has access 

to all the preceding feature-maps in its dense block and, 

therefore, can access the whole network’s “collective 

feature knowledge. The network design has a strong 

gradient flow since the error signal can be more directly 

propagated to earlier layers. This is a kind of implicit deep 

supervision, as earlier layers can get direct supervision 

from the final classification layer. More diversified features 

are generated, with richer patterns for better classification. 

The transition layers between adjacent dense blocks include 

both convolution and pooling layers and are used to down-

sample the feature-map size. The size of the final output 

imaging features is set as 1024 in the study. 

D. Survival Prediction 

Unlike in the BraTS challenge, where patient survival 

days are predicted and evaluated, we focus on predicting 

the probability of an event (risk of death) happening at a 

particular time. The Cox Proportional Hazard (CPH) is a 

linear regression model most widely used in survival 

studies of cancer patients. The CPH model is used to 

predict the risk (hazard) of an outcome (death) based on 

multiple prognostic variables [36]. The hazard at time t for 

an individual with covariates x is assumed to be 

(𝑡|𝑥) = 𝜆0(𝑡)𝑒ℎ(𝑥)                            (1) 

In the model, 𝜆0(𝑡) is a baseline hazard function, and 

𝑒ℎ(𝑥) , is the relative risk, a proportionate increase or 

reduction in risk associated with the set of covariates x. 

The log-risk function ℎ(𝑥)  is estimated by a linear 

function ℎ̂𝛽(𝑥) =  𝛽𝑇𝑥. To perform the CPH regression, 

parameters β are adjusted to optimize the cox partial 

likelihood, which is the product of the probability at each 

event time 𝑡𝑖 until the event has occurred to individual 𝑖, 
given the set of individuals still at risk at time 𝑡𝑖. The cox 

partial likelihood is defined as  

𝐿(𝛽) = ∏
𝑒

ℎ̂𝛽(𝑥𝑖)

∑ 𝑒
ℎ̂𝛽(𝑥𝑗)

𝑗𝜖𝑅(𝑡𝑖)

𝑖:𝑒𝑖=1                           (2) 

where the values 𝑡𝑖 , 𝑒𝑖, and 𝑥𝑖 are the respective event time, 

event indicator, and baseline data for the 𝑖𝑡ℎobservation. 

The risk set 𝑅(𝑡𝑖) is the set of patients still at risk of failure 

the event at time 𝑡𝑖 [9]. 

However, it might be too simplistic to assume that the 

log-risk function ℎ(𝑥)  is a linear combination of 

covariates x, and it may not be appropriate in many 

applications. 

The survival function is derived from the predicted 

hazard function as 

𝑆(𝑡) = exp {− ∫ 𝜆(𝑡|𝑥)𝑑𝑥
𝑡

0
}                        (3) 

In this study, the DeepSurv, a neural network-based Cox 

proportional hazard model. Ref. [9] was utilized to 

estimate a nonlinear log-risk function  ℎ̂𝜃(𝑥) . The 

architecture of the DeepSurv is shown in Fig. 1(c), which 

is essentially a multi-layer perceptron. The Cox 

proportional hazard neural network input includes 

extracted deep learning features from Section III: C. hand-

crafted radiomic features, and patient age information. 

Each hidden layer consists of a fully connected layer, a 

non-linear activation function, and a dropout layer to avoid 

over-fitting in model training. The output layer has a single 

node with a linear combination of the hidden features from 

the previous hidden layer, producing the output of the 

predicted log-risk hazard function  ℎ̂𝜃(𝑥). The objective 

function for this network is set as the average negative log 

partial likelihood from the CPH regression model defined 

in Eq. (2), with an additional regularization, except that the 

linear function ℎ̂𝛽(𝑥) is replaced by a nonlinear log-risk 

function ℎ̂𝜃(𝑥): 

𝑙(𝜃) = −
1

𝑁𝑒=1
∑ ( ℎ̂𝜃(𝑥𝑖) − log ∑ 𝑒ℎ̂𝜃(𝑥𝑗)

𝑗𝜖𝑅(𝑡𝑖)  ) +𝑖:𝑒𝑖=1

𝜆  ‖𝜃‖2
2,                                          (4) 

where 𝜆  is the 𝑙2  regularization parameter, 𝑁𝑒=1 is the 

number of patients with an observable event 𝑒𝑖, and 𝑅(𝑡𝑖) 

is the set of patients that have not experienced the event at 

time 𝑡𝑖. 

IV. RESULT AND DISCUSSION 

For brain tumor segmentation, the implementation of 

nnU-Net (GitHub−MIC−DKFZ/nnUNet) in python has 

been utilized, which is an automated configuration method 

based on the PyTorch framework and covers the whole 

segmentation pipeline, including preprocessing, network 

architecture, training, and postprocessing. The 

segmentation model was trained on the BraTS 2020 

dataset with 369 patients in five-fold cross-validation, 

which allows the nnU-Net to determine the optimal 

ensemble of three U-Net models and whether post-

processing is required.  

A modification of the implementation of 3D DenseNet-

based image classification on the Monai framework 

(GitHub—Project-MONAI/MONAI: AI Toolkit for 

Healthcare Imaging) was employed to classify all patients 
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into three different survival groups. There was a total of 

119 subjects with GTR. The data were divided into 

training (80%) and validation (20%). This step aims to 

identify the imaging features that play a key role in patient 

classification. The epoch training number is set as 1000, 

and the growth rate k = 32, which determines how many 

feature maps generated in each layer of a dense block is 

concatenated to the global state of the network. 

The DeepSurv implementation was based on the pycox 

package. (GitHub—havakv/pycox: Survival analysis with 

PyTorch). The neural network architecture was a simple 

Vanilla MLP with three hidden layers with 60, 20, and 3 

nodes in each layer, respectively. Batch normalization was 

utilized for reducing data noise and model training 

stabilization. The dropout rate was set as 0.1 among the 

hidden layers. 

The concordance index (C-index) was used to measure 

the survival prediction accuracy. The C-index is a 

commonly used metric in survival prediction that 

compares the survival time recorded in a dataset to the 

predicted patient death time ranking. A score C-index of 

0.5 is expected from random prediction, and 1.0 is 

expected if two rankings are in perfect concordance. The 

Random Survival Forest (RSF) method [37] for survival 

prediction was implemented based on the package of 

pysurvival (https://www.pysurvival.io/) for comparing the 

performance with the DeepSurv. To demonstrate the 

effectiveness of extracted imaging features from deep 

learning, we calculated four hundred hand-crafted 

radiomic features proposed by using the pyradiomics 

toolbox, [8] which include 14 shape features, 18 first-order 

statistics features, 22 gray-level co-occurrence matrix 

(GLCM) features, 16 gray-level run length matrix 

(GLRLM) features, 16 gray-level size zone matrix 

(GLSZM) features, and 14 gray-level difference matrix 

(GLDM) features, in total 100 radiomic features for each 

MRI modality image. These 400 hand-crafted radiomic 

features are integrated with the 1024 deep-learning 

features and patient age characteristics. After using the 

LASSO feature selection, 120 features are left and taken 

as the inputs to feed into both models of the DeepSurv and 

the RSF. The performances of these two models are 

evaluated by using nested five-fold cross-validation. All 

data are divided into 64% training, 16% validation, and 

20% testing sets. The C-index values on the training, 

validation, and testing sets are listed in Table II. We also 

calculated the C-index values for the two models with 

separate image features and patient age characteristics for 

comparison purposes. 

TABLE II. THE MEAN C-INDEX VALUES FOR THE TWO MODELS ON 

TRAINING, VALIDATION, AND TESTING SETS, USING HAND-CRAFTED 

RADIOMIC FEATURES, DEEP LEARNING FEATURES, AND THEIR 

COMBINATION 

Model 
Image 

features used 

Training 

data 

Validation 

data 

Testing 

data 

DeepSurv 

Hand-crafted 0.9752 0.5872 0.5360 

Deep learning 0.9813 0.8130 0.8168 

Combination 0.9839 0.8210 0.8211 

RSF 

Hand-crafted 0.7398 0.6087 0.5626 

Deep learning 0.7978 0.7659 0.7738 

Combination 0.8166 0.7823 0.7847 

To demonstrate if the feature reduction technique is 

helpful in the proposed method for survival prediction, we 

calculated the C-index values for the two models using all 

deep learning features, hand-crafted radiomic features, and 

patient age information on the same data sets without the 

LASSO feature selection. The mean C-index values are 

listed in Table III.   

The DeepSurv method outperformed the RSF method 

(Table II) except when hand-crafted radiomic features 

were employed. This is consistent with similar findings in 

the literature [28, 38] wherein traditional machine learning 

methods have shown promising results while deep 

learning proved unstable in survival prediction when 

employing hand-crafted radiomic features. DeepSurv and 

RSF methods with deep learning features performed better 

than the corresponding methods with hand-crafted 

radiomic features. The methods with combination image 

features performed better than those with separate image 

features (hand-crafted or deep learning features). 

TABLE III. THE MEAN C-INDEX VALUES FOR THE TWO MODELS 

WITHOUT LASSO FEATURE REDUCTION ON TRAINING, VALIDATION, 

AND TESTING SETS, USING HAND-CRAFTED RADIOMIC FEATURES, DEEP 

LEARNING FEATURES, AND THEIR COMBINATION 

Model 
Image 

features 

Training 

data 

Validation 

data 

Testing 

data 

DeepSurv 

Hand-crafted 0.9698 0.5311 0.5039 

Deep learning 0.9707 0.7744 0.7592 

Combination 0.9724 0.7829 0.7727 

RSF 

Hand-crafted 0.7309 0.5838 0.5598 

Deep learning 0.8123 0.7864 0.7853 

Combination 0.8115 0.7919 0.7782 

 

It is noteworthy that in the absence of the LASSO 

feature reduction (Table III), the RSF method continued to 

perform well for each of the three image features sets, 

across all training, validation, and testing datasets as 

compared to DeepSurv (Table III) which exhibits poorer 

C-index values in the absences on LASSO. The decline in 

performance likely reflects decreased stability secondary 

to an increasing number of image features in the absence 

of the LASSO feature reduction technique.  

 

Figure 3. Predicted survival probability over time for three patients in 

the validation data set. 

In addition to predicting the log-risk hazard 

function  ℎ̂𝜃(𝑥)  using the DeepSurv model, we also 
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implemented the survival probability prediction, as 

defined as Eq. (2). Fig. 3 shows the percent survival 

probability over time for three random patients in the 

validation data set. The abscissa represents the estimated 

survival time of a subject. The baseline hazard function 

𝜆0(𝑡) is estimated via Breslow approximation [39].  

Early attempts to employ neural networks for survival 

analysis date back to 1995 by Farragi and Simon [40]. A 

feed-forward neural network was built with only a single 

hidden layer, which was taken as a nonlinear extension of 

the Cox proportional hazards model to model the 

relationship between primary covariates and the 

corresponding hazard risk function. However, their 

performance had improved compared to the traditional 

CPH method. Recently, with the development of deep 

learning techniques and GPU computational capabilities, 

more sophisticated neural networks for survival analysis 

have improved over the CPH model when dealing with 

real-world non-linear data. One representative method is 

the DeepSurv as an addition to Faraggi-Simon’s 

architecture with multiple hidden layers. Another similar 

method ( DeepHit) was developed to process  survival data 

with competing risks [41].  

Suter et al. [42] compared the deep learning technique 

with the classical regression method for survival 

prediction of patients with high-grade brain tumors. Two 

CNN-based architectures were built, one for direct 

survival days regression and the other for extracting deep 

features which are combined with radiomics, shape, and 

atlas features, where the top 30 features are selected and 

fed into a Support Vector Classifier (SVC) for survival 

regression. Two CNNs show unstable results on BraTS 

2018 data. In addition, in the second CNN architecture, a 

feature reduction technique was utilized to choose the top 

30 features out of 1353 extracted features; however, none 

of the 120 deep features from the CNN architecture were 

retained. This may have been caused by the simple CNN 

architectures, which have only two/three convolutional 

layers and lack of capability to extract deeper and higher-

order imaging features. Furthermore, both CNN 

architectures output the predicted survival in days. The 

model parameter selection in optimization was challenging 

since the accuracy performance was unstable. In a similar 

method proposed by Lao et al. [10] the final six features 

were picked out using the LASSO technique employing 

both 1403 handcrafted features and 98,304 deep features, 

all originating from a pre-trained CNN via transfer 

learning. In our analysis, both the DeepSurv and the 

traditional machine learning RSF methods based on deep 

learning features have shown promising results and 

outperformed the methods using hand-crafted features. 

The strength of this novel method is that in the procedure 

of deep imaging feature extraction, an elegant neural 

network architecture DenseNet has been utilized, and deep 

features are extracted through the task of survivor 

classification instead of the survival prediction in days. 

DenseNet was specially developed to improve accuracy 

caused by the vanishing gradient in very deep neural 

networks due to the long distance between input and output 

layers. It has been shown to have better feature use 

efficiency, outperforming the popular ResNet architecture 

with fewer parameters [35]. With the combination of both 

deep learning features and hand-crafted radiomic features, 

both DeepSurv and RSF methods outperform the methods 

with separate image features. Recently, transformers have 

attracted significant attention in medical image 

segmentation and classification [43, 44]. However, for 

brain tumor segmentation in MRI images, the nnU-Net is 

still a standard for comparison, enforcing the novelty of 

this study [45]. We note that the nnU-Net method won the 

MICCAI BraTS challenge 2020 and two extensions of 

nnU-Net  ranked 1st and 3rd in the MICCAI BraTS 

challenge 2021 [46, 47]. Of note, Swin UNRTR, Swin 

Transformers for semantic segmentation of brain tumors 

in MRI images, published in 2022, only ranked 7th in the 

MICCAI BraTS challenge 2021 validation phase [48]. It 

should also be noted that for the MICCAI BraTS challenge 

2023, ground truth labels are created by the fusion of nnU-

Net results with those from earlier two methods: DeepScan 

and DeepMedic, with additional manual refinement by 

neuro-radiologists [49]. In the future, we will consider 

more advanced transformer-based image segmentation 

methods over the nnU-Net method, to investigate if there 

is any further performance improvement. 

Future directions also include testing the replacement of 

the DenseNet architecture in the proposed method to 

improve survival prediction since the Self-attention 

mechanism in the transformers may result in superior 

image feature extraction.  

Typically, the number of features often exceeds the 

number of training samples in machine learning. Feature 

selection is necessary for traditional machine learning 

methods to improve model interpretability, speed up 

computation, and improve model performance on unseen 

data. However, most feature selection methods are 

restricted to the linear estimation functions such as LASSO. 

Yamada et al. proposed a fully embedded feature selection 

method named Stochastic Gates (STG) for nonlinear 

functions by introducing the stochastic gates to the input 

layer of a neural network [50]. This method has 

outperformed other commonly used methods in predictive 

performance and feature selection in synthetic and real-life 

datasets. In future studies, it will be worth investigating a 

replacement of the DeepSurv with the STG to improve 

performance in survival prediction. 

Limitations of our study include only utilizing patient 

age information as a clinical feature. Additional clinical 

features such as chemotherapy status, tumor histology, 

tumor site, and KPS need to be further combined with 

imaging features for survival prediction acknowledging 

limitations in both capture and accuracy of these features. 

In addition, in this study, only subjects with resection 

status of Gross Total Resection (GTR) were included to 

allow for testing of the novel method in a robust, more 

homogenous data set. We suspect that variable source 

documentation and interpretation of what constitutes 

Subtotal Resection (STR) or biopsy and how these relate 

to survival will add further complexity to survival 

prediction in the context of MRI images and in-depth 

analysis of all types of resection status will be required to 
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advance survival prediction in this space. Several studies 

have also demonstrated that incorporating MRI radiomics, 

clinical factors and genomics in traditional machine 

learning approaches can improve survival prediction [51, 

52]. In a similar manner studies will need to be carried out 

using deep learning techniques based on integration of 

MRI radiomics, genetic and clinical risk factors to produce 

more effective and reliable survival prediction. 

V. CONCLUSION 

In this paper, we presented a survival prediction 

approach in GBM patients that employs a combination of 

deep learning features, hand-crafted radiomic features in 

MRI images, and patient age information. The deep 

learning features were extracted through the DenseNet-

based model to classify patients into short, medium, and 

long survivors. We demonstrated that the proposed method 

performed better than the traditional machine learning 

based survival prediction method RSF. The method has the 

potential to be an imaging biomarker for prediction of the 

overall survival in patients with GBM facilitating care, 

decision making, and improving the outcomes of patients 

with GBM. 
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