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Abstract—Reliable and precise predictive modelling of signal 

losses along the communications paths and channels of 

propagated radio frequency waves is fundamental to the 

proper design, modelling, operation, and management of 

mobile broadband cellular networks. As such, the 

identification and tuning-based estimation of the signal 

propagation loss parameters has advanced into a recurrent 

task in the field of radio frequency and telecommunication 

engineering. Amongst the critical challenges known with 

identification and predictive estimation signal propagation 

loss parameters, the generic model-empirical data tuning 

approach is very vital, yet a most often disregarded and 

tough optimization problem. Here, a robust and fast 

computation capacity of Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) algorithm Quasi-Newton (QN) method based on the 

BFGS algorithm is presented for precise identification and 

optimization of generic log-distance propagation loss model 

parameters. The proposed QN based BFGS algorithm has 

been implemented for prognostic analysis of three sets of 

real-time signal propagation loss data obtained over a Long 

Term Evolution (LTE) mobile broadband network. When 

compared with the most popular Levenberg–

Marquardt (LM), QN, and Gradient Descent (GD) methods, 

the proposed method achieved the 30–46% precision 

accuracies over other methods using three different 

statistical indicators, particularly in two study locations. The 

indicators are root mean square error, correlation coefficient 

and mean absolute error. The awesome precision 

performance of the proposed method can be explored to 

overcome premature convergence and poor predictive fitting 

issues often experienced in the identification and tuning-

based estimation of the signal propagation loss parameters 

during or after cellular network planning processes.  
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I. INTRODUCTION 

Over the past decades, the demand and growth of 

cellular mobile communication technology has been 

undergoing different evolutionary phases and deployment 

in tandem with ever-increasing multimedia user demands. 

As a result, the earlier analogue voice and digital voice 

communication-based communication technologies that 

were rolled out in 80’s and 90’s has long been further 

developed for enhanced mobile broadband 

communication since the year 2000 with Third Generation 

(3G) as the main technology, to the present Fourth 

Generation Long Term Evolution (4G-LTE) and Fifth 

Generation New Radio (5G-NR) broadband systems, all 

which have been empowered with robust wireless internet 

access.  

Generally, before the official deployment or after the 

commercial rollout of any typical cellular-based 

communication technology, there exist the crucial 

planning and optimization phases, where inefficient radio 

microwave propagation modelling and antenna 

configuration engineering both play important roles. 

Particularly, effective radio-microwave propagation 

predictive modelling and path loss calculation play leading 

roles in the proper eNode antenna location placement, 

precise cell coverage area computation, proper intercell 

interference analysis and correct assignment of the 

transmission frequencies. Thus, there is a crucial need to 

fine-tune an existing model or come up with a new one 

that can provide a precise cell coverage area computation 

and enhance spatial signal prediction accuracy, 

particularly in terrestrial radio propagation terrain where 

various clutter obstructions and environmental conditions 

are dominant has become very imperative. 

But, the frequently asked question that is often difficult 

to answer is how to conduct a predictive propagation loss 

modelling and obtain the desired maximum accuracy.  

In the remaining sections of the paper, the concise 

literature review, research methodology and the 
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implementation flowchart which reveals how the 

propagation loss data acquisition is first and the proposed 

QN method based on BFGS algorithm, including the 

popular LM, GN and GD methods are unveiled in 

Sections  I and III. Sections IV and V provide the graphical 

results, the discussion and the conclusion of the paper. 

II. LITERATURE REVIEW 

In literature, numerous techniques and efforts abound 

that have been utilized by several researchers toward 

carrying out effective predictive propagation loss 

modelling, but not without one or two limitations. The 

least absolute deviation algorithm has been applied to tune 

and identify of Ericsson propagation model toward a 

realistic estimation of propagation losses in cellular 

networks [1]. The authors realized up to 40% root mean 

square error reduction in the targeted urban environment. 

Nathaniel [2–5], Castro et al. [6], Castro-Hernandez 

et al. [7] employed the ordinary least square method to 

estimate and tune the Hata, Erceg and COST-231 model 

offset parameters to fit in their acquired measured loss data 

using a representative urban environment.  

The least-square recursive algorithm and Minimax 

least-square algorithm are engaged in [8, 9] regression to 

calibrate the Okumura-Hata model and Ericson model for 

enhanced propagation loss estimation in Code Division 

Multiple Access (CDMA) networks. The general problem 

with all these least absolute deviations, least-square 

recursive algorithm, and Minimax least-square algorithm 

methods is their poor predictive modeling and handling of 

high stochastic propagation loss datasets [10]. The 

problems with above previous approaches suggest a 

crucial need for a more robust and better propagation loss 

model that has the capacity to predict pathloss in cell-

cluster terrestrial terrain accurately. 

But Isabona et al. [11–13] engaged the non-linear and 

numerical based Levenberg-Marquardt (LM) method in 

comparison with Gauss-Newton (GN) algorithm for 

empirical-based empirical predictive propagation Loss 

estimation and tuning. This was done to further tune and 

adapts the classical theoretical log-distance models for 

optimal signal attenuation loss data they obtained from 

stochastic microcellular LTE spatial radio communication 

channels. The different results revealed that the applied 

Levenberg-Marquardt method yielded the most precise 

correlation accuracy on the measured propagation losses 

compared to using the GN method. A supervised learning 

approach based on batch Gradient Descent (GD) has been 

applied to predict signal quality and the authors achieved 

0.9 correlation accuracy [14]. 

A number of numerical analysis and their performance 

capacities is reviewed in details [15, 16]. 

These various literatures simply reveals that the 

Gradient-Newton algorithms are arguably the most 

popular class of nonlinear numerical optimization 

methods, used widely in numerical applications not just in 

machine learning.  

Though the aforementioned LM, GN, and GD 

numerical methods remained the most commonly used 

classes of nonlinear optimization methods, however their 

precision are prone to parameter evaporation. Also, if the 

initial guess parameters of these methods are far from 

reality, their precision performance would be poor. 

Moreover, the LM, GN, and GD methods usually have 

global convergent limitation issues sometimes, since their 

solutions via residual function or error minimization rely 

upon their initial starting points [17, 18].  

Thus, the limited performance of the above existing 

models presents a considerable gap in the literature, and 

the need to fill this gap is not out of place. 

This study proposes and applies the Quasi-Newton 

Method based on BFGS algorithm for the identification 

and optimization of generic log-distance propagation loss 

model parameters for a typical built-up terrain in Nigeria. 

This paper key contribution includes: 
• We acquire site specific spatial signal data and 

applied to obtain the desired measured propagation 
loss values. 

• We proposed an adaptive Quasi-Newton method 
based on the BFGS algorithm over the commonly 
used LM, GN, and GD methods.  

• We successfully applied the proposed adaptive 
Quasi-Newton method based on the BFGS 
algorithm for optimal generic propagation loss 
model parameter identification and optimization. 

• We compared the proposed adaptive Quasi-Newton 
method based on the BFGS algorithm with other 
classical method using different statistical 
indicators. 

III. METHODOLOGY 

Parameter identification is a special process of 

identifying a model’s parametric values from the observed 

empirical data via least square error tuning. Numerical 

optimization technique remained key techniques to 

solving system parameter model tuning and identification 

problems. The iterative formation and implementation of 

most numerical optimization process involves accurate 

selection of their initial estimates. This in turn have 

controlling effect on their performance and precision 

results; hence on the entire resultant quality of the 

identified or tuned system model.  

 

 
Figure 1. Flowchart of GN-based BFGS Algorithm for Propagation 

Loss model Parameter Identification. 

In this section, we introduce the Quasi-Newton (QN) 

numerical method based on the Broyden, Fletcher, 

Goldfarb and Shanno (BFGS) algorithm [13], for the 

identification and optimization of generic log-distance 
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model parameters. The empirical propagation loss data 

used for the parametric tuning and identification of the 

log-distance propagation model parameters were obtained 

from an all-inclusive signal measurement campaign 

conducted over LTE mobile broadband networks and the 

networks transmits at 2.6 GHz in 10MHz frequency band. 

The implementation flowchart of proposed QN based 

BFGS algorithm is shown in Fig. 1. 

A. RSRP Data Collection and Propagation Loss 

Calculation 

 

 
(a) 

 
(b) 

Figure 2. The general phone-based TEMS pocket (a) login structure and 

(b) user measurement interface. 

With the aid of ASCOM field investigation tools which 

include a phone-based Test Mobile System (TEMS) 

pocket, Laptop, and Dongle, accompanied with Global 

Positioning System (GPS) and compass, all of which when 

connected together have the power to probe and measure 

service quality parameters and performance automatically 

in logfiles, were engaged to measure the Reference Signal 

Received Power (RSRP) data. The TEMS pocket user 

login structure and measurements Interface are shown in 

Fig. 2. The measurements were performed in and around 

three LTE eNodeB transmitters, with the two located in 

built-up areas and the last one in open areas of Lokoja, 

Nigeria. The investigated 4G LTE transmitters’ heights 

range between (28–32 m), transmitting at 2.6 GHz. The 

measured real-time RSRP data was processed and 

analyzed in an excel spreadsheet, Mapinfo, and MATLAB 

user interface. In our investigation, the measured real-time 

RSRP is employed to calculate the signal propagation 

losses, PL using Eqs. (1) and (2): 

 𝑃𝐿[𝑑𝐵] = 𝑃𝑡𝑜𝑡 − 𝑅𝑆𝑅𝑃   (1) 

 𝑃𝑡𝑜𝑡 = 𝑔𝑡 + 𝑃𝑡 + 𝑔𝑟 − 𝑓𝑙 − 𝑐𝑙  (2) 

with 𝑓𝑙 , 𝑐𝑙  , 𝑔𝑟, 𝑔𝑡, 𝑃𝑡 and 𝑃𝑡𝑜𝑡 expressing the feeder losses, 

connector losses, receiver gain, antenna gain, transmit 

power, and the total radiated power of the eNodeBs. 

B. Proposed Quasi-Newton Method Based on BFGS 

Algorithm 

In non-linear regression optimization problems, the 

parameters of the targeted model are sourced in order for 

them to be adaptively fitted into the real-time empirical 

observations. This can be achieved via the minimization 

of the mean squared function or errors.  

Thus, if 𝑌 = (𝑥𝑖 , 𝑦𝑖) represents the empirical 

observations and 𝑌𝑓 = 𝑓(𝑥𝑖 , 𝛾) defines the target log-

distance model function, the mean squared function can be 

defined as: 

𝛾 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛𝛾 𝑆 (𝛾)=∑ [𝑦𝑖 − 𝑓(𝑥𝑖 , 𝛾)]
𝑛
𝑖=1

2
       (3) 

𝑓(𝑥𝑖 , 𝛾) = 𝛾1 + 𝛾2 + 𝛾3𝑙𝑜𝑔10(𝑥𝑖) i=1,2, …, n      (4) 

where  𝛾1, 𝛾2and𝛾3define the parameters of the targeted 

log-distance model, 𝑌𝑓. 

Iteratively, 𝛾1, 𝛾2 and 𝛾3 can be determined using the 

numerical optimization techniques. In this paper, we 

engaged the Quasi-Newton numerical method and it is 

given by: 

 𝑄𝑁 = 𝛼𝐻−1𝐽𝑇(𝐸)  (5) 

where 𝐸(𝛾) = 𝑆 (𝛾)  and 𝐻−1  defines the approximate 

inverse, Hessian; the residual error and the Jacobian 

matrix can be expressed using: 

 𝐸(𝛾) = 𝑦𝑖 − 𝑓(𝑥𝑖 , 𝛾) = (𝑌 − 𝑌𝑓)  (6) 

 𝐽𝑇 =
𝜕𝐸(𝛾)

𝜕𝛾
 (7) 

The QN iterative update is given by: 

 𝛾𝑧+1 = 𝛾𝑧 − 𝛼𝑧𝐻𝑧𝐽
𝑇𝐸(𝛾) (8) 

 𝐻𝑧+1 = 𝑉𝑧
𝑇𝐻𝑧𝑉𝑧 + 𝑞𝑧𝑠𝑧

𝑇𝑠𝑧
𝐻𝑧𝐾𝑧

𝑇

𝑞𝑧
𝑇𝑠𝑧

   (9) 

 𝑠𝑧 = 𝛾𝑧+1 − 𝛾𝑧  (10) 

 𝑞𝑧 = 𝐽
𝑇(𝛾𝑧+1) − 𝐽

𝑇(𝛾𝑧) (11) 

 𝑞𝑧 =
1

𝑞𝑧
𝑇𝑠𝑧

 (12) 

 𝑉𝑧𝑉𝑧
𝑇 = 1𝑧 + 𝑞𝑧𝑠𝑧

𝑇𝑠𝑧  (13) 

C. The BFGS Algorithm 

To implement the QN method, we employ the BFGS 

algorithm. The BFGS algorithm is updated iteratively, 

until a convergence stability condition is reached, thus 

leading to desired optimal solutions for all 𝛾 parameters. 

At every single iteration z, the QN based BFGS algorithm 

calculate the approximate Hessian 𝐻𝑧 and the Jacobian 

matrix𝐽at the point 𝛾𝑧 . The 𝛼𝑧  indicate the learning rate, 

which provides a regulation or control at every step size. 

The QN-BFGS based implementation procedure is given 

in Algorithm 1: 
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Algorithm 1: BFGS 

1.  Procedure BFGS 

2.     choose starting guess parameters 𝛾0, and 𝐻0 > 0  

3.     𝑧⃪  0,1,2, …,  
4.      while true do 

5.      compute the QN search direction  𝐻𝑧𝐽
𝑇𝑓(𝛾𝑧)   

6.     choose step-size that 𝛼𝑧 > 0      

7.     compute  𝛾𝑧+1 = 𝛾𝑧 + 𝛼𝑧𝐻𝑧𝐽
𝑇(𝛾𝑧) 

8.     𝑧⃪  𝑧⃪ + 1 

9.   end if 

10. end procedure  

D. The Levenberg-Marguardt Gauss-Newton (GN) and 

Gradient Descent (GD) Methods 

For comparative analysis and benchmarking purposes, 

the popular Levenberg-Marguardt (LM), Gauss-Newton 

(GN) and Gradient Descent (GD) are also engaged to 

determine the 𝛾  parameters in the least square error 

reduction sense. In terms of Jacobian matrix, LM, GN and 

GD iteration updates can be defined using the expressions 

in Eqs. (14)–(16): 

 𝛾𝑧+1 = 𝛾𝑧 − (𝐽𝑧𝐽𝑧
𝑇+𝐼𝜔)−1𝐽𝑧

𝑇(𝐸)  (14) 

 𝛾𝑧+1 = 𝛾𝑧 − (𝐽𝑧𝐽𝑧
𝑇)−1𝐽𝑧

𝑇(𝐸) (15) 

 𝛾𝑧+1 = 𝛾𝑧 − 𝐽
𝑇(𝐸)  (16) 

where 𝜔 and 𝐼 denote the LM damping factor and identity 

matrix. 

IV. RESULT AND DISCUSSION 

In this section, the resultant impact of the proposed QN 

numerical optimization based on the BFGS algorithm is 

applied to identify and optimize the generic log-distance 

model parameters in correspondence with the measured 

propagation loss data. By means of the GN method with 

the BFGS algorithm, the log-distance model cost function 

is iteratively minimized via the generation sequence of 

inverse Hessian matrix approximations. For comparative 

analysis and bench marking purposes, the popular LM, 

GN, GD method are also engaged to determine the γ 

parameters in the least square sense as mentioned earlier.  

To quantitatively examine the precision accuracy of the 

QN method over other popular ones, the Root Mean 

Square Error, Correlation coefficient, and the Mean 

Square error, all which are abbreviated as Root Mean 

Square Error (RMSE), R, and MAE, respectively, are 

engaged. 

Figs. 3–5 display the RMSE predictive precision 

performances of the QN, LM, GN, and GD methods on 

measured propagation loss acquired in one open area and 

two built-up areas of Lokoja town. From the figures, the 

applied QN-based BFGS method achieved the most 

preferred precision accuracies of 3.05 dB, 3.46 dB and 

4.62 dB in the three locations. This is followed by LM and 

GD which attained 3.06 dB, 3.02 dB, 6.99 dB and 3.15 dB, 

6.44 dB and 6.97 dB, respectively. The worst is the GN 

method which achieved highest RMSE values of 3.14 dB, 

7.72 dB, and 9.95 dB, respectively in the same study 

locations. The poorest precision performance of the GN 

method may be due the inability of its Jacobian matrix to 

correctly approximate the log-distance model error 

function of Eq. (2). 
 

 

Figure 3. RMSE predictive precision performances of the QN, LM, GN, 

and the GD methods in Location 1. 

 

Figure 4. RMSE predictive precision performances of the QN, LM, GN, 

and the GD methods in Location 2. 

 

Figure 5. RMSE predictive precision performances of the QN, LM, GN, 

and the GD methods in Location 3. 

But more importantly, the best precision results 

achieved with the proposed QN-based BFGS method may 

clearly indicate that it has the ability to deal with stochastic 

propagation loss data preferably than others.  It may also 

point out that the QN-based BFGS method has better 

global convergent capacity during log-distance model 

error function minimization, irrespective of initial chosen 

starting guess parameters. The LM also achieves some 
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levels of good prediction performance, which is blend of 

GD and GN methods. 

Here, we employ the correlation coefficient fit, R to also 

measure the strength of prediction performance accuracies 

of the QN, LM, GN, and the GD methods. The closer the 

R value is to 1, the healthier the strength of correction fit. 

Figs. 6–8 display the correction fit performances of the QN, 

LM, GN, and the GD methods on measured propagation 

loss acquired one open area and two built-up areas of 

Lokoja town. Again, from the figures, the applied QN-

based BFGS method achieved most preferred R accuracy 

of 0.999 values, particularly in locations 1 and 2. This is 

again followed by LM and GN in the same study locations. 
 

 

Figure 6: Correlation predictive precision performances of the GN, LM, 

GN, and the GD methods in Location 1. 

 

Figure 7. Correlation predictive precision performances of the QN, LM, 

GN, and the GD methods in Location 2. 

 

Figure 8. Correlation predictive precision performances of the GN, LM, 

GN, and the GD methods in Location 3. 

 

Figure 9. Residual error spread with QN, LM, GN, and the GD methods 

in Location 1. 

 

Figure 10. Residual error spread with QN, LM, GN, and the GD 

methods in Location 2. 

 

Figure 11. Residual error spread with QN, LM, GN, and the GD 

methods in Location 3. 

Furthermore, Figs. 9–11 are plotted to reveal the 

propagation prediction absolute error spreads along 

measurement points using the QN method in 

correspondence with aforementioned popular ones. A 

lower error spreads with the QN over others shows that it 

yielded the best prediction accuracies. To quantify the 

levels with each method, we use the Mean Absolute Error 

(MAE) values. Like with the RMSE indicator, the applied 

QN-based BFGS method achieves most preferred 

precision MAE accuracies of 2.41 dB, 2.89 dB and 
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3.47  dB in the three locations. This is followed by LM and 

GD which attained 2.41 dB, 4. 98 dB, 6.40 dB, and 

2.42  dB, 5. 24 dB, 6.37 dB, respectively. The worst is the 

GN method which achieved highest MAE values of 22.47 

dB, 5.52 dB, and 8.15 dB, respectively in the same study 

locations. In summary, we can see that the proposed 

method achieved up to 30–46% precision accuracies over 

other methods, with RMSE and MAE in one open and 

built-up areas. 

Table I shows are the identified 𝛾1 , 𝛾2 , and 𝛾3 
parameters of the generic log-distance model of Eq. (2), 

using the QN, LM, GN, and GD methods, respectively. 

TABLE I. THE IDENTIFIED 𝛾 PARAMETERS OF THE GENERIC LOG-

DISTANCE MODEL, USING THE QN, LM, GN, AND GD METHODS 

Locations Parameters GN LM GD QN 

1 

𝜸𝟏 8.410 8.41 9.51 11.87 

𝜸𝟐 25.48 25.48 25.15 24.46 

𝜸𝟑 23.10 23.10 23.10 23.10 

2 

𝜸𝟏 −28.58 −28.58 −20.81 6.310 

𝜸𝟐 15.71 15.710 13.44 5.490 

𝜸𝟑 49.97 49.97 49.97 49.97 

3 

𝜸𝟏 −25.90 −25.90 −19.69 5.110 

𝜸𝟐 10.48 10.48 8.660 1.400 

𝜸𝟑 50.90 50.90 50.90 50.90 

V. CONCLUSION 

Effective radio-microwave propagation predictive 

modelling and path loss calculation play leading roles in 

the proper eNode antenna location placement, precise cell 

coverage area computation, proper intercell interference 

analysis and correct assignment of the transmission 

frequencies in cellular communications. 

In this paper, the Quasi-Newton Method based on 

BFGS algorithm has been proposed for robust 

identification and optimization of generic log-distance 

propagation loss model parameters. Particularly, we have 

engaged the proposed Quasi-Newton Method based on 

BFGS algorithm for robust identification and optimization 

of generic log-distance propagation loss model parameters, 

in correspondence with the field data taken typical open 

and built-up terrains in Nigeria.  

We also compared the proposed adaptive Quasi-

Newton method based on the BFGS algorithm with other 

classical methods using different statistical indicators. In 

terms of RMSE in the three locations, the applied QN-

based BFGS method achieves most preferred precision 

accuracies, then followed by LM and GD, and the worst is 

the GN method. The poorest precision performance of the 

GN method may be due the inability of its Jacobian matrix 

to correctly approximate the log-distance model error 

function.  

The best precision results achieved with the proposed 

QN-based BFGS method over aforementioned popular 

ones may clearly indicate that it has the ability to deal with 

stochastic propagation loss data preferably than others.  

More importantly, it may also point out that the GN-based 

BFGLS method has better global convergent capacity 

during log-distance model error function minimization, 

irrespective of initial chosen starting guesses. The LM also 

achieved some levels of good prediction performance, 

which is blend of GD and GN methods. 
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