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Abstract—Gastric Cancer (GC) diagnosis and prognosis 

present significant challenges in the clinical industry. To 

address the issue of low prediction accuracy resulting from 

imbalanced positive and negative GC cases, this study 

proposes a medical Decision Support System (DSS) based on 

supervised Machine Learning (ML) methods. Four ML 

models, including Naïve Bayes (NB), Logistic Regression 

(LR), and Multilayer Perceptron (MLP), were employed in 

this study. The impact of data imbalance on GC prediction 

was assessed through two procedures. Among the ML models, 

the MLP model demonstrated the best performance in 

weighted GC prediction, achieving a sensitivity of 0.930 and 

a Positive Predictive Value (PPV) of 0.932 for balanced 

predictions, and a sensitivity of 0.918 and a PPV of 0.908 for 

unbalanced predictions. The NB model showed promise in 

handling the data imbalance issue, achieving a sensitivity of 

0.722 and a PPV of 0.420 on the unbalanced dataset. 

Additionally, a DSS was developed specifically for the NB and 

LR models to improve prediction accuracy. The proposed 

method significantly improved the sensitivity of optimistic 

GC case prediction, with the Naïve Bayes model achieving a 

sensitivity of 0.936 and the Logistic Regression model 

achieving a sensitivity of 0.8306. These improvements 

enhance the reliability and efficiency of GC diagnostics, 

offering valuable decision support in healthcare. This 

research provides insights into addressing class imbalance in 

GC likelihood prediction and has potential implications for 

clinical practice. 
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I. INTRODUCTION 

Gastric cancer is a significant global health concern, 

requiring accurate diagnosis and prognosis for effective 

treatment [1]. According to the World Health Organization, 

there were an estimated 1.09 million new cases and 

768,793 deaths worldwide in 2022 (World Health 

Organization, 2022) [2]. In 2023, the American Cancer 

Society projects approximately 26,500 new cases of 

gastric cancer and around 11,130 related deaths in the 

United States [3]. Despite advancements in treatment 

options, accurate prediction of gastric cancer occurrence 

remains challenging. Machine Learning (ML) and 

Artificial Intelligence (AI) techniques have emerged as 

valuable tools in healthcare research, enabling the analysis 

of large datasets and the development of predictive models 

to improve gastric cancer prediction accuracy [3]. 

However, the prediction of gastric cancer likelihood is 

hindered by the imbalanced distribution of positive and 

negative cases in the available data [3−5]. The purpose of 

this study is to address the gaps and challenges in gastric 

cancer prediction using ML techniques. Specifically, this 

study aims to tackle the issue of class imbalance in training 

datasets, where the number of positive gastric cancer cases 

is considerably lower than the number of negative cases. 

This class imbalance often leads to reduced prediction 

accuracy for the minority class.  

Several studies have explored various approaches to 

address the class imbalance in gastric cancer prediction, 

including data sampling techniques [6]. However, there is 

a need to further investigate the reliability and confidence 

of ML-based predictions from a medical decision-making 

perspective [7, 8]. Incorporating high-confidence 

predictions into the decision-making process can provide 

valuable support to healthcare professionals and enhance 

the diagnostic process [9]. The significance of this research 

lies in its potential to improve gastric cancer prediction and 

subsequent decision-making [10]. By addressing the class 

imbalance issue and providing high-confidence ML-based 

predictions, this study can contribute to more accurate 

diagnostics, improved treatment planning, and better 

patient outcomes. Additionally, this research aims to 

bridge the gaps in the current literature by examining the 

medical decision-making perspective and providing 

insights into the reliability of ML predictions. The main 

developments in the research topic of gastric cancer 

prediction involve the application of ML and AI 

techniques to analyze large datasets and predict outcomes. 

Previous studies have explored data sampling techniques 

to address class imbalance, but there is a lack of research 
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focusing on the medical decision-making perspective and 

the reliability of ML-based predictions [11]. By 

investigating and addressing these gaps, this study aims to 

contribute to the existing body of knowledge and provide 

valuable insights for healthcare professionals. The 

findings of this research can have implications for 

improving gastric cancer prediction accuracy, enhancing 

treatment strategies, and ultimately reducing the mortality 

rate associated with this disease. 

The two studies, referred to as “Our Study 1” and 

“Study 2: Prediction Model for Gastric Cancer via Class 

Balancing Techniques,” focus on the prediction of gastric 

cancer using machine learning techniques while 

addressing the challenge of class imbalance in training 

datasets. In Our Study 1, a medical decision support 

system is developed based on supervised machine learning 

models, including Naïve Bayes, Logistic Regression, and 

Multilayer Perceptron. The study evaluates the impact of 

data imbalance on gastric cancer prediction and highlights 

the effectiveness of the MLP model for weighted 

predictions. Additionally, the Naïve Bayes model shows 

promise in handling data imbalance. The proposed 

decision support system offers valuable insights for 

improving gastric cancer prediction accuracy. 

In Study 2, “Prediction Model for Gastric Cancer via 

Class Balancing Techniques,” the emphasis is on 

addressing class imbalance through class-balancing 

techniques before applying supervised learning strategies. 

Various classifiers, including Naive Bayes, Bayesian 

Network, Random Forest, and Decision Tree (C4.5), are 

utilized. The study evaluates the performance of these 

classifiers after employing oversampling, undersampling, 

and a hybrid approach. Notably, the classifiers created 

using the hybrid balancing method demonstrate the best 

performance, particularly the Bayesian Network model, 

which exhibits superior overall performance in terms of 

accuracy metrics such as the false positive rate and area 

under the ROC curve. 

The findings of these studies have practical implications 

for gastric cancer prediction and decision-making in 

healthcare. The MLP and Naïve Bayes models proposed in 

Study 1 can be considered for developing decision support 

systems in clinical settings. These models have shown 

promising performance in accurately predicting gastric 

cancer cases and handling data imbalance. On the other 

hand, Study 2, “Prediction Model for Gastric Cancer via 

Class Balancing Techniques” emphasizes the 

effectiveness of the hybrid balancing method and the 

superiority of the Bayesian Network model in achieving 

accurate predictions. These findings highlight the 

importance of addressing class imbalance and utilizing 

appropriate machine-learning models and techniques to 

improve prediction accuracy. However, it is important to 

consider the limitations and specific context of each study, 

such as the characteristics of the datasets used, the sample 

size, and any assumptions made during the modeling 

process. Future research should further explore these 

aspects and conduct comparative studies to validate and 

generalize the findings. By doing so, the accuracy and 

reliability of machine learning-based gastric cancer 

prediction can be enhanced, ultimately leading to 

improved outcomes in clinical practice. 

This paper makes significant contributions in 

addressing the problem of low prediction accuracy caused 

by an imbalanced distribution of positive and negative 

gastric cancer cases. The key contributions of this study 

are as follows: 

• Evaluation of ML Model Performance: The study 

systematically evaluates the performance of various 

ML models in handling the class imbalance issue. 

Comparing and analyzing the results, it provides 

insights into the effectiveness of different ML 

approaches for gastric cancer likelihood prediction. 

• Assessment of Data Imbalance Impact: The research 

investigates the impact of data imbalance on the 

accuracy of gastric cancer prediction. By examining 

the challenges and limitations posed by imbalanced 

datasets, the study sheds light on the importance of 

addressing this issue for reliable predictions. 

• Development of an Effective Approach: This paper 

proposes an effective approach to improve the 

accuracy of ML-based decision-making processes. By 

implementing specific techniques or algorithms to 

tackle the data imbalance problem, the study enhances 

the prediction accuracy and offers a practical solution 

for improving gastric cancer diagnostics. 

These contributions advance the field of gastric cancer 

prediction by providing insights into ML model 

performance, highlighting the impact of data imbalance, 

and offering an effective approach to enhance prediction 

accuracy. The findings of this study have implications for 

improving clinical decision support systems and ultimately 

contribute to the advancement of gastric cancer diagnostics 

and prognosis. 

This paper consists of three main sections. Section II 

provides a comprehensive literature review, highlighting 

relevant studies and existing research in the field. In 

Section III, the proposed Medical Decision Support 

System (DSS) model is presented, detailing its 

components and functionality. Section IV showcases the 

experimental results, providing a detailed analysis and 

comparisons of the different ML models employed. 

Finally, in Section V, the research is concluded, 

summarizing the key findings and discussing the 

implications of the study. 

II. LITERATURE REVIEW 

Nowadays, artificial intelligence and machine learning 

are widely used and considered effective ways to analyze 

big data, which can play important roles in predicting the 

occurrence of gastric cancer [12−14]. Machine Learning 

(ML) algorithms have the ability to learn from large 

volumes of past data, predict outcomes for future data, and 

classify data into different categories, thus aiding decision-

making in situations involving large-scale data 

analysis  [15, 16]. This section provides a comprehensive 

overview of studies that support the background and 

hypothesis of this research, highlighting the current trends 

and progress in the field. The following studies have been 

reviewed as shown in Table I. 
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TABLE I. LITERATURE REVIEW AND RESEARCH GAP SUMMARY 

Study Objective Methods Finding Research Gap 

Ming et al. [17] 

Compare breast 

cancer prediction 

performance 

Compared ML 

models and 

BCRAT 

ML models showed improved 

prediction accuracy compared to 

BCRAT 

Not mentioned in the passage 

Stark et al. [18] 
Predict breast 

cancer risk 

Used ML models 

on personal health 

data 

ML models (neural network, logistic 

regression, linear discriminant 

analysis) outperformed BCRAT 

Not mentioned in the passage 

Rajendran et al. [19] 
Address class 

imbalance issue 

Used 

oversampling, 

undersampling, 

hybrid methods 

Hybrid balancing method (SMOTE + 

Spread Subsample) facilitated fair 

predictive models 

Previous studies did not examine 

approaches to address class imbalance 

issue from a medical decision-support 

Yin et al. [20] 
Address class 

imbalance issue 

Compared ML 

classifiers on 

balanced and 

unbalanced 

datasets 

Balanced dataset performed better for 

all ML models compared to 

unbalanced dataset 

Previous studies did not examine 

approaches to address class imbalance 

issue from a medical decision-support 

perspective 

Current Study 

Address class 

imbalance and 

provide 

confidence 

Used ensemble 

approach with 

Naive Bayes and 

Logistic 

Regression 

Proposed approach aimed to provide 

high-confidence ML predictions for 

more reliable and efficient diagnostics 

Research gap is addressed by 

proposing an ensemble approach that 

provides confidence measures for ML 

predictions and filters cases requiring 

further review by domain experts 

 

Liu et al. [17] investigated the utility of ML algorithms, 

including logistic regression, random forest, and gradient 

boosting, in predicting lymph node metastasis in gastric 

cancer. The findings revealed that ML models could 

accurately predict lymph node involvement, aiding in 

treatment decision-making and patient management. 

Zhou et al. [18] developed an ML-based prognostic 

model for gastric cancer patients using gene expression 

data. The model integrated multiple ML algorithms, such 

as random forest and gradient boosting, to predict patient 

survival outcomes. The results demonstrated the potential 

of ML in personalized prognostic prediction for gastric 

cancer patients. 

Previous studies have examined the performance of 

various ML models in predicting the likelihood of gastric 

cancer while considering the issue of class imbalance in 

the data. Class imbalance refers to the considerably low 

percentage of positive gastric cancer cases in historical 

diagnosis data, which can lead to lower prediction 

accuracy for smaller categories with fewer cases compared 

to larger categories [6]. This study addressed this issue by 

utilizing various data sampling techniques to create more 

balanced data distributions. They applied ML methods, 

including Naïve Bayes, Bayesian Network, Random 

Forest, and Decision Tree, on the National Health Service 

(NHS) dataset after employing oversampling, under-

sampling, and a hybrid balancing method. The hybrid 

method, which combined Synthetic Minority Over-

sampling TEchnique (SMOTE) and Spread Subsample, 

resulted in a uniform distribution of cases across two 

classes, leading to the development of fair predictive 

models. 

Most previous studies have shown better prediction 

performance of ML models on artificially created balanced 

datasets compared to naturally observed unbalanced 

datasets [18, 19]. However, applying these findings to real-

world decision-making for predicting the likelihood of 

gastric cancer can be challenging due to the scarcity of 

positive gastric cancer cases in population health datasets. 

Additionally, from a medical decision-making perspective, 

the reliability and confidence of the ML predictions are 

crucial factors. Healthcare professionals typically 

incorporate ML predictions with manual analysis of 

diagnostic data to ensure accurate decisions [18, 19]. 

Therefore, a machine learning-based decision support 

system that provides confidence or reliability measures for 

predictions can effectively support healthcare 

professionals in incorporating ML predictions into the 

decision-making process. For example, a stronger 

prediction (with a high confidence measure) by the ML 

model may indicate that the diagnostic data strongly 

supports the predicted outcome, while a weaker prediction 

(with a low confidence measure) may necessitate more 

detailed manual analysis. 

The present methodology in this study has limitations 

that highlight areas for improvement and alternative 

approaches that could be considered. 

One limitation of the study is the utilization of a limited 

set of ML models in the methodology. Exploring 

alternative ML models, such as Support Vector Machines, 

Random Forests, or Deep Learning models, could provide 

different perspectives and potentially enhance the 

performance of gastric cancer prediction in this study. 

Another limitation is the approach used to address class 

imbalance in the dataset. Exploring advanced sampling 

techniques, such as SMOTER (SMOTE with Edited 

Nearest Neighbor) or adaptive sampling methods, could be 

beneficial in this study [20]. These techniques can be 

explored to generate balanced datasets and mitigate the 

impact of class imbalance on the predictive models. The 

absence of external validation is a significant limitation in 

this study. Incorporating validation on independent 

datasets from diverse populations would strengthen the 

methodology employed here. External validation provides 

an assessment of the generalizability and robustness of the 

proposed approach, enhancing its credibility and 

applicability in this study. 

The methodology could benefit from the integration of 

ensemble methods in this study. Leveraging the strengths 

of multiple ML models through ensemble approaches, 
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such as Random Forests, Gradient Boosting, or Stacking, 

could improve prediction accuracy in this study. Ensemble 

methods combine the predictions of multiple models to 

generate more reliable gastric cancer predictions. 

Considering the advancements in deep learning, the 

integration of deep learning techniques should be 

discussed in this study. Models like Convolutional Neural 

Networks (CNNs) and Recurrent Neural Networks 

(RNNs) have shown promising results in medical 

prediction tasks. Exploring the benefits of these models, 

specifically designed for image or sequential data analysis, 

could contribute to the advancement of gastric cancer 

prediction in this study [21]. The interpretability of 

predictive models in healthcare is essential, and it can be 

further addressed in this study. Incorporating explainable 

AI techniques, such as feature importance analysis, 

SHapley Additive exPlanations (SHAP) values, or 

attention mechanisms, would enhance the interpretability 

of predictions in this study. This would improve the 

trustworthiness and acceptance of the methodology by 

healthcare professionals involved in this study. By 

addressing these limitations and considering alternative 

approaches, the proposed methodology in this study can be 

strengthened and contribute to the field of gastric cancer 

prediction [22].  

In this ensemble approach, the stacking technique is 

employed to combine the predictions of two ML models, 

Naïve Bayes and Logistic Regression, to provide high-

confidence and low-confidence predictions. During the 

training phase of this proposed method, the available data 

is divided into a training set and a validation set [23, 24]. 

The Naïve Bayes model and the Logistic Regression 

model are trained using the training set independently. 

Predictions are then made on the validation set using both 

models. In the meta-model training phase, the predictions 

from the base models (Naïve Bayes and Logistic 

Regression) are combined with the original features as 

input. A meta-model, such as another Logistic Regression 

model or a suitable alternative, is trained using the 

combined predictions as input and the target variable 

labels as the output. The meta-model is trained using the 

validation set. In the prediction phase, the predictions from 

the Naïve Bayes and Logistic Regression models are 

combined. These combined predictions are used as input 

for the trained meta-model to generate the final prediction. 

To achieve high-confidence and low-confidence 

predictions, a threshold is set on the predicted probabilities. 

Predictions with probabilities above the threshold are 

considered high-confidence predictions, while those below 

the threshold are categorized as low-confidence 

predictions. The threshold can be adjusted based on the 

desired level of confidence. By utilizing this stacking 

ensemble technique in the proposed method, the ensemble 

model can leverage the strengths of both the Naïve Bayes 

and Logistic Regression models and potentially enhance 

the overall performance by combining their predictions. 

The inclusion of a meta-model further improves the 

prediction accuracy and enables the generation of high-

confidence and low-confidence predictions based on the 

chosen threshold. 

However, previous studies have not extensively 

explored approaches to address class imbalance issues in 

gastric cancer likelihood prediction from a medical 

decision-support perspective [6]. This study aims to bridge 

the research gap in gastric cancer likelihood prediction. 

The approach taken in this study distinguishes itself by 

addressing the broader issue of gastric cancer likelihood 

prediction, compared to previous studies that focused on 

specific aspects such as prognostic prediction or lymph 

node metastasis. An ensemble approach is proposed, using 

two ML models, Naïve Bayes and Logistic Regression, to 

provide high-confidence and low-confidence predictions. 

The approach considers the class imbalance issue, 

incorporates confidence measures for ML predictions, and 

emphasizes the collaboration between ML models and 

domain experts. By doing so, the study aims to develop a 

more comprehensive and reliable decision support system 

for gastric cancer prediction, with the objective of 

enhancing patient management and treatment decision-

making. 

III. MATERIALS AND METHODS 

This study aimed to predict the likelihood of gastric 

cancer using machine-learning models. The research 

objective was to develop an approach that addresses the 

challenge of imbalanced data and provides confidence 

measures for predictions, allowing for more reliable and 

efficient diagnostics. The study utilized the National 

Health Service (NHS) hospital dataset as the primary data 

source.  

The study employed a retrospective observational 

design, involving preprocessing the original NHS dataset. 

Cases with unknown gastric cancer history were removed, 

and relevant variables for analysis were selected. Two 

machine-learning models, Naive Bayes and Logistic 

Regression, were used in an ensemble approach to predict 

the “gastric_cancer_history” variable. The performance of 

the models was evaluated based on prediction accuracy 

and confidence measures. The primary data source for this 

study was the NHS hospital dataset, which contained 

1,255,789 records observed over a 12-year period from 

2009 to 2021. The dataset included 40 variables 

representing various clinical information about the patients. 

The “gastric_cancer_history” variable, indicating previous 

gastric cancer diagnosis, was the main variable of interest 

for prediction. The study followed a rigorous approach to 

address the imbalanced distribution of positive and 

negative gastric cancer cases in the dataset and proposed 

an ensemble model with confidence measures to aid in 

decision-making. Table II describes the attributes, 

including their description and type, involved in gastric 

cancer prediction. There are 11 attributes that contribute to 

gastric cancer prediction, with one attribute serving as the 

output indicating the presence of gastric cancer in a patient. 

A. Naive Bayes 

The naive Bayes classifier uses information from the 

training dataset to approximate the maximum posterior 

probability for each output y, given an input x, based on 

Bayes’ theorem [25]. Once the algorithm has hypotheses, 
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it can use them for decision-making, mainly classification. 

Bayes’ theorem calculates the posterior probability of an 

event (y) based on the occurrence of another event (x), as 

shown in as in Eqs. (1) and (2). 

 𝑃(𝑦|𝑥) =
𝑝(𝑦)𝑝(𝑥|𝑦)

𝑝(𝑥)
 (1) 

The naive Bayes classifier is not only based on Bayes’ 

theorem but also assumes that attributes are conditionally 

independent given the class, which means that each 

predictor (x) on a given class (c) is independent, as seen in 

Eq. (2). 

 𝑃(𝑥) = ∏ 𝑝(𝑐𝑖)𝑝(𝑥|𝑐𝑖)
𝑘
𝑖=1  (2)  

where 𝑘 is the number of classes and 𝑐𝑖 is the 𝑖𝑡ℎ class. The 

classification of the primary variable 

gastric_cancer_history in the study was predicted into two 

classes: class 0 (no diagnosis of gastric cancer) and class 1 

(a positive diagnosis of gastric cancer) using the Naive 

Bayes classifier. 

B. Logistic Regression 

Logistic regression is another supervised ML model that 

performs predictive regression analysis to solve binary 

classification problems using a linear combination of input 

data points. The algorithm explains the relationship 

between a dependent variable with two categories and one 

or more other independent variables [26]. Logistic 

regression is fundamentally represented by the logistic 

function and the conditional probability distribution, as 

seen as in Eqs. (3)−(5). 

 𝑃(𝑌 = 1|𝑥) =
𝑒𝑥𝑝(𝑤𝑥)

1+exp(𝑤𝑥)
  (3) 

 𝐿𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 =
1

1+𝑒−𝑥  (4) 

 𝑃(𝑌 = 0|𝑥) =
1

1+𝑒𝑥𝑝(𝑤𝑥)
  (5) 

Here, x is the input variable, Y is the binary dependent 

variable, and 

 𝑤𝑥 =  𝑙𝑜𝑔
P(Y = 1|𝑥)

1− P(Y = 1|𝑥)
  (6) 

The linear regression model in the study was used to 

classify the binary variable “gastric cancer history” into 

classes 0 and 1, according to the relationship with other 

independent variables. 

C. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is another binary 

classification ML algorithm that uses hyperplanes for data 

processing and analysis. The machine-learning model can 

solve both linear and nonlinear problems [27]. During 

training, the SVM model plots all the data as data points in 

the n-dimensional space and classifies them into two 

groups with the largest possible margins from each other 

based on a hyperplane. Then, the model trains using the 

classified data. For example, the SVM model classifies x 

(a data point) as Class 0 if y(x) > 0 is passed and Class 1 

otherwise. The Support Vector Machine model in the 

research divided the data points into two groups: Class 0 

(non-cancer history) and Class 1 (positive gastric cancer 

diagnosis). 

D. Multilayer Perceptron 

A Multilayer Perceptron (MLP) is a feed-forward 

Artificial Neural Network (ANN), as the name 

“multilayer” suggests, consisting of three types of layers: 

input layers, output layers, and hidden layers. The model 

generates information from input to output and is designed 

to solve linearly inseparable problems. The input layers 

process the input signals, and the output layers complete 

tasks such as predictions, recognitions, and classifications. 

The most critical process, the “hidden layers” is located 

between the input and output layers and is used for 

computation. Backpropagation learning algorithms train 

neurons in MLP for continuous function prediction [28]. 

The hidden layers of the multilayer perceptron identified 

the independent variables separately. Then, they worked 

together in the neural networks in the study to predict the 

classification of the gastric cancer history variable into 

Class 0 (non-cancer history) and Class 1 (positive gastric 

cancer diagnosis). 

E. Prediction Performance Evaluations 

In this study, we employed the WEKA library to 

evaluate the performance of the constructed machine-

learning models and assess their accuracy, sensitivity, and 

specificity [29, 30]. Specifically, we compared the 

performance of four different machine-learning models in 

classifying real patients as true positive instances. To 

accomplish this, we ran and modeled the four classifiers 

under five distinct training and testing conditions, namely, 

10-fold cross-validation and percentage splits of 60%, 

70%, 80%, and 90%. In addition, we used sensitivity 

(recall) and positive predictive value (precision) as the 

primary performance measures to evaluate the individual 

categories of class 0 and class 1. The equations for 

calculating Positive Predictive Value (PPV) and sensitivity 

are, as seen as in Eqs. (7) and (8). 

 Sensivity =
True  Positives

True Poisitives+False Negatives
  (7) 

 PPV =
True  Positives

True Poisitives+False Negatives
   (8) 

The variable “gastric_cancer_history” refers to the 

previous gastric cancer diagnosis history and was 

considered as the main variable to be predicted using 

various ML models. It served as the dependent or class 

variable. From the original dataset, as shown in Table II, 

“gastric_cancer_history” had three possible recorded 

values: 0, 1, and 6. A value of 0 indicated that the patient 

had no history of gastric cancer (referred to as “Class 1”), 

a value of 1 indicated that the patient had previously been 

diagnosed with gastric cancer (referred to as “Class 0”), 

and a value of 6 meant that the status was unknown. Since 

the study aimed to predict whether a patient had a positive 

or negative gastric cancer diagnosis, the cases with 

“gastric_cancer_history” = 6 were removed before further 

processing. Please see the attached supplementary file.  
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TABLE II. NATIONAL HEALTH SERVICE (NHS) SYNTHETIC GASTRIC CANCER DATASET 

Feature Description Measurement Years 
Values code 

Numerial 2009−2021 

Acetylsalicylic Acid 

(ASA) 
Decrease the risk of gastric caner Boolean  

High_blood_ 

pressure 
If a patient is hypotensive Boolean 

0 = No 

1 = Yes 

6 = Not known 

Body Mass Index (BMI) increased risk of gastric cancer mcg/L 
10−24.99 

25−29.99 

Chemotherapy Associated factor chemotherapy Boolean 

1 = Pre-chemotherapy  

2 = Post-chemotherapy  

3 = Surgical chemo-pause 6 = Not known 

Diabetes If a patient is diabetic Boolean 
0 = No  

1 = Yes 6 = Not known 

Diarrheoa<6 months 
Inadequate sanitation and insufficient 

hygiene 
Boolean 

0 = No  

1 = Yes 6 = Not known 

Medical_ 

history_IBD 
Medical history IBD Boolean 

0 = No  

1 = Yes 6 = Not known 

Serum sodium Level of sodium in blood mEq/L 
0 = No  

1 = Yes 6 = Not known 

Smoking If the patient smokes Boolean 
0 = No  

1 = Yes 6 = Not known 

gastric_cancer_history If the patient diagnosis with gastric cancer Boolean 
0 = No  

1 = Yes 6 = Not known 

Medical_history_IBD Medical history IBD Boolean 
0 = No  

1 = Yes 6 = Not known 

 

The final dataset contained 145,789 cases after 

removing the cases with “gastric_cancer_history” = 6 

(unknown). Out of these, there were 131,210 cases for 

Class 0 and 14,579 cases for Class 1. This indicates that 

approximately 91.8% of the records were non-cancer cases, 

and 9.8% were positive cancer cases. While this 

distribution reflects real-world population data, from a 

machine learning perspective, it highlights the severely 

skewed class distribution in the NHS dataset. This class 

imbalance situation makes it difficult for machine learning 

models to make accurate predictions for the smaller 

category, positive gastric cancer (Class 1) cases. In this 

context, obtaining good prediction performance for 

positive gastric cancer cases using machine-learning 

models was expected to be extremely challenging. 

To address the challenges of overfitting and ensure that 

the model generalizes well to unseen data, it is crucial to 

split the dataset into a training set and a testing set. The 

model is trained on the training set, and its performance is 

evaluated on the testing set. This approach helps prevent 

the model from simply memorizing the training data and 

allows it to learn patterns that can be applied to new, 

unseen data. When working with synthetic datasets, it is 

important to ensure that the generated data accurately 

represents the real-world data to which the model will be 

applied [31]. To assess this, Pearson correlation analysis 

can be employed. This analysis helps identify which 

features have the strongest correlation with the target 

variable in the synthetic gastric dataset and whether these 

correlations align with those observed in real-world data. 

By comparing the correlations, we can validate if the 

synthetic dataset captures the essential relationships 

between features and the target variable. Furthermore, 

class imbalance can still pose a challenge in synthetic 

datasets. In this case, it is necessary to identify which 

features are most informative for predicting the minority 

class, which is gastric cancer in this scenario. Using 

Pearson correlation analysis makes it easier to identify 

features that are highly correlated with the target variable 

for the minority class, even if the majority class is more 

prevalent in the dataset [32]. This process ensures that the 

resulting model is optimized for predicting the minority 

class and is less influenced by the class imbalance issue, as 

shown in Figs. 1 and 2. In this study, we utilized two 

supervised machine learning models: Naïve Bayes 

classifier and Logistic Regression, based on previous 

literature research. For this, the learning library WEKA 

was used to train the ML models and analyze the 

prediction performances. We used Sensitivity (also known 

as Recall) and Positive Predictive Value (PPV, also known 

as Precision) [33, 34]. 

 

 

Figure 1. Pearson correlation coefficient of balanced dataset heatmap. 

To train and test the above two machine learning models, 

we partitioned the NHS dataset into distinct training and 

testing sets. To study the impact of class imbalance, we 

built two sets of training datasets: “balanced” and 
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“unbalanced” using a stratified sampling method. The 

“unbalanced” training dataset consisted of 98,000 cases, 

with 88,200 cases of Class 0 and 9,800 cases of Class 1, 

reflecting the 90–10 ratio of the two categories in the 

original NHS dataset. The “balanced” training dataset 

consisted of 25,658 cases, with an equal distribution of 

12,829 cases for both Class 0 and Class 1. The testing 

dataset contained 12,000 cases, which did not overlap with 

either the balanced or unbalanced training sets. It consisted 

of 11,000 cases of Class 0 and 1,000 cases of Class 1, 

reflecting the original distribution of data among the 

categories. 
 

 

Figure 2. Pearson correlation coefficient of unbalanced dataset heatmap. 

As stated earlier, our objective was to use the two 

machine learning models and sampled training sets 

(balanced and unbalanced) to improve prediction 

performance and decision support for the testing set. The 

testing set represented the real-life distribution of negative 

and positive gastric cancer cases that medical professionals 

are likely to encounter in practice. We performed a case-

by-case analysis, comparing the predictions made by 

different ML models trained on distinct model-and-

training set combinations (NB-Balanced, NB-Unbalanced, 

LR-Balanced, and LR-Unbalanced) on the same testing 

dataset of 11,000 cases. We examined the disagreements 

in predictions of different ML models and the prediction 

probabilities to explore approaches to improve the 

accuracy of Class 1 predictions. Fig. 3 shows the 

architecture design of the study, including the machine 

learning models, sampled training sets, and case-by-case 

analyses we conducted to address the class imbalance issue 

in the data. Since the smaller class, Class 1, had a very 

small percentage of cases in the unbalanced training 

dataset but a sizeable percentage of cases in the balanced 

training dataset, we hypothesized that the prediction 

performance of Class 1 would be considerably better with 

the balanced training dataset compared to the unbalanced 

training dataset for both the machine learning models NB 

and LR. 

 

Figure 3. The architecture design of the study. 

As shown in Fig. 3, the architecture design of the study 

addresses class imbalance in predicting gastric cancer 

using machine-learning methods. The process begins with 

the preparation of balanced and unbalanced training 

datasets based on the original NHS dataset, along with a 

separate testing dataset. Naïve Bayes and Logistic 

Regression algorithms are then applied to the training 

datasets. The testing results are divided into two groups: 

“Agree” and “Disagree” based on whether the predictions 

made by the balanced and unbalanced models agree or 

disagree. Sensitivity and Positive Predictive Value (PPV) 

are calculated separately for each group to evaluate the 

models’ performance. Fig. 4 provides a visual 

representation of the steps involved in training, testing, and 

evaluating the models in the context of class imbalance in 

gastric cancer prediction. 
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Figure 4. Flowchart of various steps performed in the study. 

The gastric cancer dataset used in this study is not 

publicly available and was obtained from the NHS 

Liverpool University Hospital with approval from the 

responsible surgeon (coauthor). The data are anonymous 

and consist of records observed from 2009 to the 2021 

calendar year. The dataset includes personal features, 

systemic conditions, gastric conditions, and separate fields 

for “diet” and “food information” about the individuals, as 

listed in Table II, along with their possible values. The 

features are categorized into four groups: personal 

characteristics, behavior, systemic features, and the gastric 

condition. 

Table II illustrates the 21 different types of fields 

present in the dataset. The field “gastric cancer history” 

(previous gastric cancer diagnosis) was chosen as the 

dependent variable to be predicted based on the values of 

the other fields. The “year” variable was excluded from the 

study as it only indicated the year the record was created 

and did not provide relevant health or history context. The 

following 11 fields were considered as independent 

variables: “gastric_cancer_history”, “previous cancer 

history”, “Clostridium”, “methotrexate”, “diabetic”, 

“autoimmune”, “peptic_ulcer”, “bowl op”, “betablocker”, 

“current diarrhea” (frequency count of this combination of 

covariates), and “cholecystectomy” (chole) (frequency 

count of this combination of “methotrexate”). The “count” 

column was the only numeric variable, while the 

remaining fields and variables were nominal. This study 

hypothesis is that training both models on a balanced 

dataset can improve their performance by mitigating bias 

towards the majority class and allowing equal 

representation of both classes in the training data. This can 

result in more accurate and unbiased predictions for both 

classes, including the minority class (Class 1). To test this 

hypothesis, we developed a Decision Support System 

(DSS) using two supervised machine learning models: 

Naive Bayes and Logistic Regression. 

Overall, the results demonstrate that using a balanced 

training dataset can enhance the performance of the Naive 

Bayes and Logistic Regression models in predicting the 

likelihood of having gastric cancer. The original NHS 

dataset was divided into distinct training and testing sets to 

train and test the two selected ML models. Two sets of 

training datasets—“balanced” and “unbalanced”—were 

created using a stratified sampling method to examine the 

impact of class imbalance. The “unbalanced” training 

dataset consisted of 98,000 cases, with 88,200 cases of 

Class 0 and 9,800 cases of Class 1, reflecting the 90–10 

ratio of the two categories in the original NHS dataset. In 

contrast, the “balanced” training set comprised 12,829 

cases for both Classes 0 and 1. The testing dataset, separate 

from the balanced and unbalanced training sets, contained 

12,000 cases with 11,000 cases of Class 0 and 1,000 cases 

of Class 1, reflecting the original distribution of data 

among the categories. The study aimed to enhance the 

prediction performance and decision support for the testing 
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set by utilizing the two machine learning models and 

sampled training sets (balanced and unbalanced). The 

testing set was designed to simulate the distribution of 

negative and positive gastric cancer cases that medical 

professionals are likely to encounter in practice. 

In this research, WEKA 3.8 and Python machine 

learning software were used to evaluate four ML models 

(NB, LR, SVM, and MLP) for prediction purposes. The 

WEKA machine learning libraries offer various 

classification, clustering, and preprocessing classifiers to 

analyze different datasets [34]. Moreover, both Python and 

WEKA provide well-defined frameworks for building and 

testing models. The selected ML models were trained and 

tested under five different conditions, including 10-fold 

cross-validation and percentage splits ranging from 60% 

to 90% in 10% increments [34]. This study employed the 

WEKA library to evaluate the performance of the 

constructed machine-learning models and assess their 

accuracy, sensitivity, and specificity. Specifically, we 

compared the performance of four different machine-

learning models in classifying real patients as true positive 

instances. To accomplish this, we ran and modeled the four 

classifiers under five distinct training and testing 

conditions, namely, 10-fold cross-validation and 

percentage splits of 60%, 70%, 80%, and 90%. In addition, 

we used sensitivity (recall) and positive predictive value 

(precision) as the primary performance measures to 

evaluate the individual categories of Class 0 and 

Class  1  [35]. 

The primary objective of this research is to address the 

challenge of low prediction accuracy in gastric cancer 

cases caused by an imbalanced distribution of positive and 

negative instances. The aim is to develop an effective 

approach that enhances the accuracy of the machine 

learning-based decision-making process in predicting the 

likelihood of gastric cancer. 

To achieve this objective, the proposed approach 

incorporates several key components. Firstly, a 

comprehensive data preprocessing stage is conducted, 

including data cleaning, feature extraction, and 

transformation. This stage ensures the quality and 

suitability of the data for subsequent analysis. Next, 

feature selection methods play a crucial role in identifying 

the most relevant and informative features for gastric 

cancer prediction [36]. These methods eliminate redundant 

or irrelevant features, reducing the dimensionality of the 

dataset and improving the efficiency and accuracy of the 

predictive models [37]. In this study, the researchers apply 

the Pearson Correlation Balanced method as a feature 

selection technique to identify the most significant features 

for gastric cancer prediction. This method calculates the 

correlation between each independent variable and the 

target variable while considering the class imbalance in the 

dataset. By considering the imbalanced distribution, the 

Pearson Correlation Balanced method measures the linear 

association between variables and helps identify the 

strength and direction of their relationship. By applying the 

Pearson Correlation Balanced method, the researchers can 

determine the features that exhibit a strong correlation with 

gastric cancer likelihood, taking into account the class 

imbalance issue [38]. Features with higher correlation 

coefficients are considered more relevant and informative 

for predicting the occurrence of gastric cancer. This feature 

selection process prioritizes the most influential features, 

allowing for more focused and accurate predictions. 

Following feature selection, multiple machine learning 

algorithms are employed to train predictive models, 

including Naive Bayes, Logistic Regression, Support 

Vector Machine (SVM), and Multilayer Perceptron (MLP). 

Each algorithm possesses unique strengths and 

characteristics, enabling the model to capture different 

aspects of the data and make accurate predictions. In terms 

of complexity, the time and space complexities of the 

chosen algorithms vary. Naive Bayes has a time 

complexity of O (N * d) for training, where N represents 

the number of training instances and d denotes the number 

of features. Logistic Regression has a time complexity of 

O (k * N * d) for training, with k as the number of iterations. 

The time complexity of SVM depends on the chosen 

kernel function, ranging from O (N * d) for linear SVM to 

higher complexities for non-linear SVM with kernel 

functions like the Gaussian RBF. MLP’s time complexity 

depends on the number of layers, the number of neurons, 

and the optimization algorithm used, ranging from O (N * 

e * L) to O (N * e * L^2). The space complexities vary as 

well, ranging from O (N * d) for Naive Bayes and SVM to 

O(d) for Logistic Regression and O (L * M) for MLP. 

By implementing this proposed approach, it is expected 

that the prediction accuracy of gastric cancer likelihood 

can be significantly improved compared to traditional 

methods. The model considers the imbalanced distribution 

of positive and negative cases, utilizes effective data 

preprocessing techniques, employs feature selection to 

focus on relevant features, and utilizes multiple machine 

learning algorithms to capture different aspects of the data. 

These improvements enhance the decision-making process 

and provide more accurate predictions for gastric cancer 

likelihood. Regarding the complexity of model evaluation, 

based on the provided information: 

Group: “Agree” 

Number of cases: 9784 

Calculation of sensitivity and PPV: Since we compare 

the model predictions with the originally assigned class 

labels in the testing set, the complexity of calculating 

sensitivity and PPV for this group is linear with respect to 

the number of cases. Therefore, the complexity is O(n), 

where n is the number of cases in the “Agree” group (9784). 

Group: “Disagree” 

Number of cases: 1218 

Calculation of sensitivity and PPV: Similar to the 

“Agree” group, calculating sensitivity and PPV for the 

“Disagree” group is also linear with respect to the number 

of cases. Therefore, the complexity is O(m), where m is 

the number of cases in the “Disagree” group (1218). 

To summarize, the complexity of the model evaluation 

process can be approximated as follows: 

For the “Agree” group: O(n), where n is the number of 

cases (9784). 

For the “Disagree” group: O(m), where m is the number 

of cases (1218). 
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Since the calculations for each group are performed 

separately, the overall complexity would be the sum of the 

complexities for each group: 

Total complexity = O(n) + O(m) 

IV. RESULT AND DISCUSSION 

A. Supervised Machine Learning Performance 

The predictive performance of Naïve Bayes and 

Logistic Regression models was evaluated on both 

balanced and unbalanced training datasets, as shown in 

Table III. Overall, the Naïve Bayes model outperformed 

the Logistic Regression model in both datasets. These 

results suggest that the proposed ensemble approach using 

Naive Bayes and Logistic Regression models can 

effectively address the issue of class imbalance and 

provide accurate predictions for gastric cancer likelihood. 

For both ML models, the balanced training set resulted 

in better sensitivity and PPV values for Class 0 and better 

sensitivity values for Class 1 compared to the unbalanced 

training set. However, for Class 1, the PPV values for the 

unbalanced training set were higher for both Naïve Bayes 

(0.659) and Logistic Regression (0.755) models than the 

corresponding values for the balanced training set (0.422-

NB and 0.553-LR). Overall, the balanced training dataset 

predicted Class 1 more accurately than the unbalanced 

training dataset, while also performing better for Class 0 

and Class 1 in general. 

B. Case-by-Case Scanning Followed by Prediction 

Probability Analysis 

After examining the prediction performances of 

different ML models and training set combinations, a case-

by-case analysis was performed on both Naïve Bayes and 

Logistic Regression models. For each ML model, the 

testing results were partitioned into two groups based on 

the predictions made for each case by the two models 

trained on balanced and unbalanced training sets. The first 

group, “Agree” included cases where predictions made by 

the balanced and unbalanced models (for both NB and LR) 

agreed with each other, and the second group, “Disagree” 

included cases where the predictions made by the balanced 

and unbalanced models (for both LR and NB) disagreed 

with each other. In the NB model, the “Agree” group 

consisted of 9,784 cases (89%), and the “Disagree” group 

consisted of 1,218 cases (11%) out of the total 11,000 

cases in the testing set. For the LR model, the “Agree” 

group consisted of 9,800 cases (89%) and the “Disagree” 

group consisted of 1,200 cases (11%). Finally, sensitivity 

and PPV values were calculated separately by comparing 

the model predictions with the originally assigned class 

labels in the testing set for each group. For both ML 

models, the sensitivity and PPV of Class 1 for unbalanced 

predictions were 0, indicating that none of the predictions 

were correct. Similarly, the sensitivity and PPV for Class 

0 were 0 for the balanced predictions for both ML models. 

Class 0 PPV also decreased significantly for the 88 

Disagree-Unbalanced group (0.78-NB and 0.53-LR) for 

both models compared to their balanced (0.995-NB and 

0.992-LR) and unbalanced (0.969-NB and 0.939-LR) 

training sets as shown in Tables III and IV. 

As shown in Table V, when the ML models trained on 

balanced and unbalanced training datasets predicted 

differently, the Class 1 PPV dropped for both ML models. 

For Naïve Bayes, it decreased to 0.2186 (Disagree-

Balanced) from 0.422 (Balanced), and for Logistic 

Regression, it decreased to 0.4738 (Disagree-Balanced) 

from 0.553 (Balanced).  

TABLE III. NAÏVE BAYES AND LOGISTIC REGRESSION PREDICTION 

PERFORMANCES 

 Naive Bayes Logistic Regression 

  Balanced Unbalanced Balanced Unbalanced 

Class 0 
Sensitivity 0.869 0.964 0.925 0.988 

PPV 0.995 0.969 0.992 0.939 

Class 1 
Sensitivity 0.953 0.687 0.927 0.358 

PPV 0.422 0.659 0.553 0.755 

TABLE IV. PREDICTION PERFORMANCES WHEN BALANCED AND 

UNBALANCED PREDICTIONS AGREE 

  Naive Bayes Logistic Regression 

Class 0 
Sensitivity 0.9607 0.9876 

PPV 0.9946 0.9922 

Class 1 
Sensitivity 0.9360 0.8306 

PPV 0.6587 0.7553 

TABLE V. PREDICTION PERFORMANCES WHEN BALANCED AND 

UNBALANCED PREDICTIONS DISAGREE 

 Naive Bayes Logistic Regression 

  Balanced Unbalanced Balanced Unbalanced 

Class 0 
Sensitivity 0.00 1.00 0.00 1.00 

PPV 0.00 0.7814 0.00 0.5262 

Class 1 
Sensitivity 1.00 0.00 1.00 0.00 

PPV 0.2186 0.00 0.4738 0.00 

 

In this study, the distribution of prediction probabilities 

of the two ML models for the Agree and Disagree groups 

was analyzed to examine their correlation with prediction 

accuracy. Figs. 5−8 illustrates the prediction probability 

distributions when the balanced and unbalanced prediction 

performances agreed and disagreed for both the Naïve 

Bayes and Logistic Regression algorithms. Fig. 5(a) 

presents the distribution of prediction probabilities for the 

NB-Balanced model, while Fig. 5(b) displays the 

distribution for the NB-Unbalanced model in the Agree 

group. Similarly, Fig. 6(a) shows the distribution of 

prediction probabilities for the LR-Balanced model, and 

Fig. 8 presents the distribution for the LR-Unbalanced 

model in the Agree group. As shown in Figs. 5 and 6 

demonstrates that when both the balanced and unbalanced 

datasets predict the same outcome for both Naïve Bayes 

and Logistic Regression algorithms, a similar pattern 

emerges. More than 90% of the cases exhibit prediction 

probabilities over 0.97, while only a few cases have 

prediction probabilities ranging from 0.5 to 0.9. Table IV 

indicates that the Sensitivity and PPV values for both Class 

0 and Class 1 were significantly high in the Agree group. 

Thus, there appears to be a correlation between high 

prediction probability values and better prediction 

performance for both the LR and NB models. 
 

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1419



 
(a) 

 
(b) 

Figure 5. Prediction probability distribution of models for agree group: 

(a) NB-Balanced model; (b) NB-unbalanced model. 

 
(a) 

 
(b) 

Figure 6. Prediction probability distribution of models for agree group: 

(a) LR-balanced model; (b) LR-unbalanced model. 

As shown in Fig. 5(a), the distribution of prediction 

probabilities for the NB-Balanced model, and Fig. 5(b), for 

the NB-Unbalanced model, are presented for the Disagree 

group, where the predictions of NB-Balanced and NB-

Unbalanced disagree. Similarly, Fig. 6(a) displays the 

distribution of prediction probabilities for the LR-

Balanced model, and Fig. 8(b) illustrates the distribution 

for the LR-Unbalanced model in the disagree group. 

 

 
(a) 

 
(b) 

Figure 7. Probability distribution of models for disagree group: (a) NB-

balanced model; (b) NB-unbalanced model. 

From the four plots in as shown in Figs. 7 and 8, it can 

be observed that the prediction probabilities were 

uniformly distributed between 0.5 and 0.95 when the 

predictions of the balanced and unbalanced models 

disagreed. This is in stark contrast to the Agree set, where 

more than 90% of the cases exhibited extremely high 

prediction probabilities (as shown in Figs. 5 and 6. As 

shown in Table V, the prediction accuracy (Sensitivity and 

PPV) for the Disagree group was significantly lower 

compared to the balanced and unbalanced NB and LR 

models. This indicates that the prediction probabilities for 

both models were more evenly distributed when the model 

predictions were inaccurate. From a medical decision 

support perspective, the above findings suggest that the 

predictions made by the ML model for the Agree group 

can be considered reliably accurate and labeled as high-

confidence ML predictions. On the other hand, cases in the 

Disagree group can be labeled as low-confidence ML 

predictions. Furthermore, providing the prediction 

probability values would be beneficial from a decision 
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support perspective, as low prediction probability values 

can indicate missing values or cases where ML models are 

unable to make clear predictions due to uncommon 

combinations of variable values, as shown in Fig. 8(b). 
 

 
(a) 

 
(b) 

Figure 8. Prediction probability distribution of models for disagree 

group: (a) LR-balanced model; (b) LR-unbalanced model. 

 

Figure 9. Decision-making logic derived from the study. 

The results also indicate that solely providing prediction 

probabilities along with the prediction may not be entirely 

reliable, as there were cases in the Disagree group with low 

Sensitivity and PPV values but high prediction accuracy, 

particularly depicted in Figs. 6(a), 8, and 9. Overall, the 

findings of this study suggest that balancing the training 

dataset can enhance the performance of prediction models 

for gastric cancer. However, it is crucial to carefully 

consider the trade-off between sensitivity and PPV. 

Additionally, case-by-case analysis and prediction 

probability distribution analysis can offer valuable insights 

into model performance and help identify areas for 

improvement. 

C. Results 

The study aimed to evaluate the performance of Naïve 

Bayes and Logistic Regression models in predicting 

gastric cancer likelihood using supervised machine 

learning. Two datasets, one balanced and one unbalanced, 

were used for training the models. The results 

demonstrated that the Naïve Bayes model outperformed 

the Logistic Regression model in both datasets, indicating 

its effectiveness in addressing class imbalance and 

achieving accurate predictions for gastric cancer 

likelihood. When comparing the balanced and unbalanced 

datasets, it was observed that the balanced training set 

yielded better sensitivity and Positive Predictive Value 

(PPV) values for Class 0, whereas the unbalanced training 

set performed better in terms of sensitivity and PPV values 

for Class 1. This highlights the need to carefully consider 

the trade-off between sensitivity and PPV when selecting 

the training dataset. A case-by-case analysis was 

conducted to examine the predictions made by the models 

trained on the balanced and unbalanced datasets. Cases 

were categorized as “Agree” or “Disagree” based on the 

alignment or discrepancy between the predictions of the 

two models. The “Agree” group exhibited higher 

sensitivity and PPV values, indicating more accurate 

predictions. Conversely, the “Disagree” group had lower 

PPV values and included cases where there were no correct 

predictions for positive instances. The analysis of 

prediction probabilities revealed that cases with consistent 

predictions between the balanced and unbalanced datasets 

had higher prediction probabilities, suggesting more 

accurate predictions. On the other hand, when the 

predictions differed, the prediction probabilities were 

uniformly distributed between 0.5 and 0.95, indicating less 

reliable predictions. The proposed method of relying on 

high-confidence ML-based predictions and filtering out 

weaker predictions proved to be effective in addressing the 

class imbalance issue and improving the prediction 

accuracy of ML-based gastric cancer likelihood decision-

making processes. This approach can provide more 

reliable diagnoses and be valuable for decision support to 

healthcare professionals and researchers. 

D. Interpretation and Discussion 

In the context of previous studies, the findings align 

with research indicating the successful application of 

Naïve Bayes models in medical classification tasks, 

including cancer prediction. Logistic Regression, although 
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commonly used, may struggle with class imbalance, 

leading to lower performance. The superior performance 

of the Naïve Bayes model can be attributed to its 

assumption of feature independence, which may align well 

with the dataset’s characteristics and the patterns of gastric 

cancer likelihood. On the other hand, Logistic 

Regression’s performance may have been hindered by its 

inability to effectively handle class imbalance. The results 

emphasize the importance of consistency in model 

predictions for improved accuracy. Cases with consistent 

predictions showed higher sensitivity and PPV values, 

indicating their reliability in predicting gastric cancer 

likelihood. In contrast, cases with inconsistent predictions 

demonstrated lower PPV values and less confidence in 

their predictions.  

The choice of Logistic Regression (LR) and Naive 

Bayes (NB) models in this study is justified based on 

several reasons. First, LR and NB were selected due to 

their effectiveness in handling class imbalance issues in 

datasets. The gastric cancer dataset used in this research 

exhibits significant class imbalance, with a 9:1 ratio of 

non-cancer to gastric cancer-diagnosed cases. It is crucial 

to employ models that can adapt to such imbalanced 

distributions. LR and NB have built-in mechanisms to 

adjust their predictions and account for the class imbalance, 

making them suitable choices for this specific problem. 

Additionally, LR and NB models are known for their 

interpretability, providing insights into the factors 

influencing the predictions. This characteristic allows for 

a better understanding of the underlying relationships 

between the features and the target variable. In medical 

applications, interpretability is of great importance as it 

enables healthcare professionals to trust and make 

informed decisions based on the predictions. Deep 

learning techniques, on the other hand, often lack 

interpretability and operate as black boxes, which can be a 

limitation in medical contexts. LR and NB models have 

been extensively studied and have shown good 

performance in various domains, including medical 

applications. They have a solid track record of delivering 

reliable results in a wide range of scenarios. While there 

are many ML and deep learning techniques available, LR 

and NB have proven to be effective and efficient in 

different classification tasks. Their simplicity and 

effectiveness make them practical choices, especially 

when working with limited data or computational 

resources. Furthermore, LR and NB models offer 

computational efficiency compared to more complex deep 

learning architectures. Deep learning models often require 

large amounts of data and computational resources to train 

and optimize. In contrast, LR and NB models can deliver 

accurate predictions with relatively lower training and 

inference times. In medical settings where real-time 

predictions and quick response times are crucial, the 

computational efficiency of LR and NB models can be 

advantageous. 

Considering these factors, the use of Logistic 

Regression (LR) and Naive Bayes (NB) models in this 

study is justified to address the class imbalance issue in 

gastric cancer likelihood prediction. These models provide 

a balance between interpretability, performance, and 

computational efficiency, making them well-suited for the 

research objective and the specific characteristics of the 

dataset. 

E. Implications and Limitations 

The study highlights the significance of addressing class 

imbalance in gastric cancer prediction using machine 

learning [9]. The superiority of the Naïve Bayes model 

suggests its value as a tool in this domain. The findings 

have implications for researchers and practitioners 

working on predictive models for cancer diagnosis and risk 

assessment [39]. However, it is crucial to acknowledge the 

limitations of the study. The evaluation was restricted to 

Naïve Bayes and Logistic Regression models, and other 

algorithms may yield different results. The use of manually 

created balanced and unbalanced datasets may not fully 

capture the complexity of real-world data. Therefore, 

further research with larger and more diverse datasets is 

necessary to validate the findings and enhance the 

generalizability of the results. Additionally, the study did 

not explore other factors that could impact prediction 

accuracy, such as additional features or preprocessing 

techniques, which should be considered in future research. 

V. CONCLUSION 

The study highlights the importance of addressing class 

imbalance in predictive models for gastric cancer 

likelihood using machine learning. The findings 

demonstrate the advantages of using a balanced training 

dataset in terms of sensitivity and Positive Predictive 

Value (PPV) for Class 0, while the unbalanced training 

dataset performs better in sensitivity and PPV for Class 1. 

However, the trade-off between ruling out negative cases 

and accurately identifying positive cases should be 

carefully considered. The case-by-case analysis reveals 

that consistent predictions between the balanced and 

unbalanced models result in higher sensitivity and PPV 

values, indicating more accurate predictions. On the other 

hand, cases with inconsistent predictions show lower PPV 

values and even reach 0 sensitivity, indicating incorrect 

predictions for positive instances. Furthermore, the 

prediction probability analysis demonstrates that cases 

with consistent predictions have significantly higher 

prediction probabilities, suggesting more accurate 

predictions. Conversely, when the predictions differ, the 

prediction probabilities are uniformly distributed, 

indicating less reliable predictions. Based on these 

findings, a decision logic is proposed to classify 

predictions into high-confidence and low-confidence 

categories. High-confidence predictions show improved 

accuracy in predicting gastric cancer likelihood, while 

low-confidence predictions require further testing by 

professionals for accurate diagnosis. 

In light of these results, future research could explore 

alternative machine learning algorithms beyond Naïve 

Bayes and Logistic Regression models. Additionally, the 

validation of findings and improving generalizability can 

be achieved through larger and more diverse datasets. 

Further investigation into additional features and 
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preprocessing techniques should also be considered to 

enhance prediction accuracy. In summary, the proposed 

method offers a valuable approach to address the 

challenges posed by class imbalance in gastric cancer 

prediction. Future research should focus on exploring 

alternative algorithms, incorporating larger datasets, and 

investigating additional features and preprocessing 

techniques to further improve the accuracy and reliability 

of machine learning-based decision-making processes in 

gastric cancer likelihood assessment. 
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