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Abstract—In recent years, the progress made in neural 

models trained on extensive multilingual text or speech data 

has shown great potential for improving the status of 

underresourced languages. This paper focuses on 

experimenting with three state-of-the-art speech recognition 

models, namely Facebook’s Wav2Vec2.0 and Wav2Vec2-

XLS-R, OpenAI’s Whisper, on the Kazakh language. The 

objective of this research is to investigate the effectiveness of 

these models in transcribing Kazakh speech and to compare 

their performance with existing supervised Automatic 

Speech Recognition (ASR) systems. The study also aims to 

explore the possibility of using data from other languages for 

pre-training and to test whether fine-tuning the target 

language data can improve model performance. Thus, this 

work can provide insights into the effectiveness of using 

pretrained multilingual models in underresourced language 

settings. The wav2vec2.0 model achieved a Character Error 

Rate (CER) of 2.8 and a Word Error Rate (WER) of 8.7 on 

the test set, which closely matches the best result achieved by 

the end-to-end Transformer model. The large whisper model 

achieves a CER of approximately 4 on the test set. The results 

of this study can contribute to the development of robust and 

efficient ASR systems for the Kazakh language, benefiting 

various applications, including speech-to-text translation, 

voice assistants, and speech-based communication tools. 

Keywords—automatic speech recognition, Wav2Vec 2.0, 
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speech representation models 

I. INTRODUCTION

In recent years, sequence-based models have 

demonstrated exceptional speech recognition performance 

compared to traditional automatic speech recognition 

frameworks. Sequence-based models use neural networks 

to learn speech-to-text mapping, which simplifies the 

modeling process. Among the sequence-based models, 

Transformer [1] is widely used and has shown remarkable 

success in building end-to-end speech recognition 

systems [2–4]. Although significant progress has been 

made in the development of ASR models, creating robust 

models for most languages other than English remains 

challenging. This is primarily due to the fact that state-of-

the-art models typically require many hours of annotated 

speech for training to achieve satisfactory results. This is 

particularly true for Kazakh, a Turkic language spoken by 

more than 13 million people worldwide (according to the 

statistics of the Ethnologue website: 

https://www.ethnologue.com/language/kaz).  

Recent advancements in self-supervised learning 

techniques have shown promise in addressing data scarcity 

problems for unresourced languages. Self-supervised 

training is a type of training for speech recognition systems 

that leverages the abundance of unlabeled speech data to 

learn useful representations of the speech signal. Unlike 

traditional supervised learning, where labeled data is 

required to train a model, self-supervised learning 

algorithms learn from the raw data without the need for 

explicit labels. In self-supervised training, the model is 

trained to perform tasks that are closely related to the 

ultimate task of speech recognition, but do not require 

labeled data. For example, one approach is to train the 

model to predict the next frame of a speech signal, given 

the previous frames. This is known as a Contrastive 

Predictive Coding (CPC) [5] task. Another approach is to 

train the model to differentiate between two different 

speech segments, such as discriminating between a pair of 

speech frames that were close in time versus those that 

were far apart. The power of self-supervised training for 

Kazakh speech recognition lies in the ability to leverage 

large amounts of unlabeled data. This is particularly useful 

in languages where labeled data is scarce. By training a 

speech recognition model on unlabeled data using self-

supervised techniques, the model can learn to recognize 

key features of the speech signal, such as phonemes and 

acoustic variations that are critical for accurate 

transcription. In addition to its potential to improve the 

accuracy of speech recognition systems, self-supervised 

learning can also reduce the amount of labeled data 

required for training. This can significantly reduce the cost 

and time needed to develop a robust Kazakh speech 

recognition system, making it more accessible to 

researchers and developers. Recent advancements in self-

supervised audio encoders, such as Wav2Vec2.0 [6], have 

successfully learned high-quality audio representations. 

However, their unsupervised pre-training approach poses 

a challenge when it comes to decoding these 

representations into practical outputs. This necessitates a 

fine-tuning phase to effectively apply these models for 

tasks like ASR. To address this limitation, OpenAI 

researchers have recently introduced “Whisper” [7], a fully 

supervised sequence-to-sequence transformer.  
Manuscript received May 30 2023; revised June 19, 2023; accepted July 

6, 2023; published December 14, 2023. 

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1382doi: 10.12720/jait.14.6.1382-1389

mailto:zhanibek.kozhirbayev@nu.edu.kz


Based on the reviewed literature, there are two main 

paradigms for ASR: self-supervised models, such as 

Wav2Vec2.0, and fully supervised models, such as 

Whisper. This study aimed to compare these two 

approaches to determine their ability to perform robust 

ASR for the Kazakh language. The main contributions of 

this study are as follows: 

1. In addition to the existing speech corpora available 

for the Kazakh language, we have gathered audio 

recordings with corresponding texts from open sources. 

The total amount of collected data was approximately 

1000 hours. Each audio file corresponds to a separate text 

file containing the content of an audiobook. It is important 

to note that the audio and texts are not synchronized, 

meaning they are not aligned at the sentence or word level. 

To overcome this misalignment challenge, we utilized a 

segmentation approach based on the Connectionist 

Temporal Classification (CTC) [8] algorithm. This method 

allowed us to accurately extract audio-text alignments. 

2. Several experiments were conducted with 

Wav2Vec2.0 base and XLRS-53 architectures, pretraining 

and finetuning it in various scenarios. 

3. Several experiments were conducted with Whisper 

architectures and finetuning it in various scenarios. 

4. Two of the most accurate neural-based ASR 

architectures to date were extensively compared: 

Wav2Vec2.0 and Whisper. In addition, they were 

compared with the baseline E2E Transformer model. This 

evaluation is valuable for other languages, and our 

contribution is open and applicable to other scenarios. To 

the best of our knowledge, this is the first study to utilize 

above mentioned ASR solutions and their ability to 

recognize Kazakh speech. 

The rest of the paper is organized as follows: Section II 

provides an in-depth discussion of the technical aspects of 

the Wav2Vec2.0, XLSR-53, and Whisper architectures in 

the context of Automatic Speech Recognition (ASR). 

Furthermore, this section offers an overview of recent 

advancements in Kazakh speech recognition. Detailed 

information about the dataset utilized in our experiments 

is described in Section III. The approaches of using 

Wav2Vec2.0, XLSR-53 and Whisper architectures as well 

as baseline end-to-end Transformer approach also 

presented in Section III. The results obtained from our 

conducted experiments are outlined in Section IV. 

Section V summarizes our findings and conclusions from 

the experiments conducted, and highlights potential areas 

for further research. 

II. BACKGROUND AND RELATED WORK 

This section provides a brief overview of the related 

work to this article, which is categorized into four sections: 

Wav2Cec2.0, XLSR-53, Whisper and Kazakh ASR. 

Wav2Vec 2.0. This model is designed to transcribe 

speech from audio signals, and it uses a self-supervised 

pre-training approach that allows it to learn from large 

amounts of unlabeled audio data. This particular model is 

an amalgamation of several earlier models, namely, 

Contrastive Predictive Coding (CPC) [5], Model 

Predictive Control (MPC) [9], wav2vec [10], and 

vqwav2vec [11]. Wav2Vec2 utilizes a combination of 

Convolutional Neural Networks (CNNs) and transformers, 

which enables it to capture both local and global patterns 

in audio data. The model utilizes a multi-layer 

convolutional feature encoder, denoted as 𝑓: 𝑋 →  𝑍 , to 

encode raw audio waveforms,  𝑋 , into latent speech 

representations, 𝑧1, … , 𝑧𝑇 , which are then fed into a 

transformer-masked network, denoted as 𝑔: 𝑍 →  𝐶 , that 

maps the representations from the latent space to a discrete 

set of outputs, 𝑞1, … , 𝑞𝑇, that represent targets in the self-

supervised learning objective [6, 12]. The transformer 

module contextualizes the quantized representations using 

attention blocks, resulting in a set of discrete contextual 

representations, 𝑐1, … , 𝑐𝑇 . The feature encoder is 

composed of seven convolutional blocks, each with 512 

channels, kernel widths of {10, 3, 3, 3, 3, 2, 2}, and strides 

of {5, 2, 2, 2, 2, 2, 2}. On the other hand, the transformer 

network is made up of 24 blocks, with 1024 dimensions 

and inner dimensions numbering 4096. It also has a total 

of 16 attention heads.  

This model has achieved impressive results on a number 

of benchmark datasets and has significantly advanced the 

state-of-the-art in speech recognition. An illustration of the 

model based on the one presented in [6] is shown in Fig. 1. 

 

 

Figure 1. Wav2Vec2.0 architecture representation. 

XLSR-53. It is a multilingual language model 

developed by Facebook AI Research [12]. It is an 

extension of the cross-lingual language model XLM-R, 

designed to handle multilingual and cross-lingual Natural 

Language Processing (NLP) tasks. Although XLSR-53 is 

built on the Wav2Vec 2.0 model, it can learn latent 

quantization that is spread across languages. XLSR-53 

uses product quantization to select quantized 

representations from codebooks, which are then selected 

using the Gumbel-Softmax method in a completely 

distinguishable manner. XLSR-53’s architecture is similar 

to that of Bidirectional Encoder Representations from 

Transformers (BERT) [13], with the exception that it has 

53 language-specific embeddings, one for each language it 

supports. This means that the model can process data in 

different languages and understand their nuances, even 

when they have similar spellings or pronunciations. 

Additionally, XLSR-53 has 500 million parameters, 

making it one of the largest multilingual language models 

to date. The model is trained on a vast and diverse corpus 

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1383



of speech text data from over 53 languages. XLSR-53’s 

ability to understand multiple languages makes it 

particularly useful for cross-lingual transfer learning, 

where a model trained on one language can be adapted to 

another language with minimal additional training. 

Whisper. OpenAI has introduced a new ASR system 

called Whisper [7]. Unlike Wav2Vec2.0, Whisper is 

trained using fully supervised methods, which involves 

using up to 680,000 h of labeled speech data from various 

sources. Thanks to the massive database and the training 

techniques that they used, the model can be a multilingual 

and multitask ASR system. The model was enhanced to 

add the multitask training format using a set of special 

tokens that serve as task specifiers or classification targets. 

As part of development, a sample of the previously 

transcribed text was fed back into the model so that it 

would learn from the context that accompanies the 

transcription. The structure of the model itself is not new, 

as it consists of an encoder-decoder Transformer that 

utilizes 80-channel log-Mel spectrograms. The encoder is 

composed of two convolution layers with a kernel size of 

3, a sinusoidal positional encoding, and a series of stacked 

Transformer blocks. Meanwhile, the decoder utilizes 

learned positional embeddings and the same number of 

Transformer blocks as the encoder. An illustration of the 

Whisper architecture based on the one presented in [7] is 

shown in Fig. 2. 

 

 

Figure 2. Whisper architecture representation. 

Kazakh ASR. New developments in ASR have brought 

about innovative end-to-end structures, which demonstrate 

remarkable precision when provided with adequate 

datasets. The fundamental concept behind these end-to-

end models is to map the speech signal input directly to 

character sequences. This simplifies the processes of 

training, fine-tuning, and inference making. Researchers in 

the field of ASR typically employ two distinct methods for 

training ASR systems: fully supervised or self-supervised 

models. 

Regarding the first group, Yessenbayev et al. [14] 

conducted a comprehensive study to address the challenge 

of automatic, speaker-independent recognition of 

continuous Kazakh speech on a specific vocabulary basis 

in the presence of noise. According to the author, the 

proposed system achieved successful results in tasks such 

as phonetic recognition of English speech and recognition 

of continuous Kazakh speech, with a relative improvement 

in the recognition quality of up to 20%. Specifically, the 

recognition quality of Kazakh speech was 94.5%. Overall, 

this work serves as a starting point for the development of 

more advanced systems for continuous Kazakh speech 

recognition. 

Mamyrbayev et al. [15] introduce stream speech 

recognition using the RNN-T model in their study. The 

architecture of the model is constructed using neural 

networks such as LSTM and BLSTM, and it was trained 

using over 300 h of prepared (reading) and spontaneous 

speech data. The study’s findings show that the RNN-T 

model can achieve a CER of 10.6.  In another study, 

Mamyrbayev et al. [16] introduce a combined Transformer 

+ CTC LM model, which was trained on a 400-hour speech 

dataset. The study’s findings indicate that the model 

achieved a CER of 3.7 and WER of 8.3. 

It is also worth noting the joint work of researchers at 

the Center for Speech Technologies, St. Petersburg 

National Research University of Information 

Technologies, Mechanics and Optics and Kostanay State 

University named after Baitursynov [17]. The authors 

carried out work on the recognition and synthesis of the 

bilingual (Kazakh-Russian) language. 

Khassanov et al. [18] have introduced the first 

comprehensive Kazakh database, KSC 1, which provides 

an open benchmark for Kazakh speech recognition 

research. The database comprises approximately 332 

hours of transcribed audio, consisting of over 153,000 

utterances spoken by individuals from various age groups, 

regions, and genders. According to the authors, a 

Transformer-based End-to-End (E2E) model yielded 2.8% 

CER and 8.7% WER on this dataset. Mussakhojayeva  

et al. [19] extended KSC to 1,128 h. Additional data from 

diverse sources, such as television news, television and 
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radio programs, parliament speeches, and podcasts were 

incorporated into the database. The authors specified the 

corpus specifications and verified its usefulness by 

employing a Transformer-based ASR model, which 

produced promising results. Specifically, the overall WER 

on the validation and test sets were 15.1% and 15.6%, 

respectively. 

Although the models being developed have 

demonstrated exceptional performance, many of them rely 

on supervised training techniques, which demand a 

considerable amount of labeled data. Unfortunately, the 

process of data labeling and annotation is labor-intensive, 

expensive, and time-consuming, often requiring manual 

effort. Furthermore, there are situations where acquiring 

such data is not feasible due to limitations or 

inaccessibility. In contrast to fully supervised models, 

recent research has concentrated on employing big 

acoustic models trained through self-supervised learning 

techniques and a vast volume of unlabeled data. Meng and 

Yolwas [20] employed unsupervised pre-training using 

Wav2Vec2.0 and integrated a Factorized TDNN layer to 

preserve the relationship between voice and time steps, 

thereby enhancing speech recognition for the Kazakh 

language. Additionally, they utilized multi-language pre-

training and speech synthesis to further improve 

performance. The results of the experiments indicated that 

incorporating unlabeled data from non-target languages 

and using data enhancement with speech synthesis 

significantly reduced word error rates on test sets. 

This work compares self-supervised (Wav2Vec2.0) and 

fully supervised (Whisper) models for ASR in the Kazakh 

language. It explores various pretraining and finetuning 

scenarios, providing valuable insights for ASR in low-

resource languages like Kazakh. 

III. MATERIALS AND METHOD 

This section focuses on datasets specifically designed 

for speech recognition in the Kazakh language, along with 

the approaches employed to develop accurate speech 

recognition modules.  

A. Dataset 

ISSAI KSC. The ISSAI KSC is the largest publicly 

accessible database created to support Kazakh speech and 

language processing applications [18]. It consists of over 

332 h of data collected through a web-based speech 

recording platform, which invited volunteers to read 

sentences from various sources, including books, laws, 

Wikipedia, news portals, and blogs. The KSC dataset is 

diverse, featuring speakers and audio recordings from 

different regions of Kazakhstan and made using different 

devices such as smartphones, tablets, and laptops. The 

speakers are from five different regions, and the validation 

and test sets contain 51.7% female and 48.3% male 

speakers.  

M2ASRKazakh-78. The speech corpus [21] created by 

Xinjiang University and made available through the 

M2ASR Free Data Program consists of 78 h of recordings 

obtained from 96 students using a variety of recording 

equipment. The recordings were made in quiet 

environments, and the speakers read the sentences in a 

scripted, reading style. The transcriptions are written using 

Latin characters and follow the rules established by the 

authors. However, there are some limitations to this corpus. 

All the speakers in the corpus share similar characteristics 

such as age group, social status, and region, which restricts 

its overall applicability. Moreover, the corpus only 

contains 4,000 sentences, and most of the participants 

recorded the same transcriptions, leading to a lack of 

diversity in linguistic content and speaker traits. 

Kazcorpus. The kazcorpus acoustic corpus [22] 

consists of two independent subcorpuses—kazspeechdb 

and kazmedia. The kazspeechdb corpus was used as a 

starting point in creating the corpus for broadcast news. It 

is a set of speech fragments—12,675 sentences in Kazakh, 

voiced in studio conditions by speakers of different sexes, 

ages, from different regions of Kazakhstan. The size of the 

subcorpus is 22 h of speech. The subcorpus consists of 169 

speakers, from them 73 male and 96 female voices. Each 

speaker read 75 sentences. The body of KazMedia is audio 

and text data collected from the official websites of the 

television news agencies, namely “Khabar”, “Astana TV” 

and “Channel 31”. Text data is the text of all news in the 

Kazakh language, published on the official websites of 

three TV channels. Audio data is wav files representing 

audio tracks extracted from a number of video news of 

these three TV channels in the Kazakh language. The total 

audio duration is 21 h of speech. 

KazLibriSpeech. We have collected audio recordings 

with relevant texts from open sources. The amount of data 

collected was approximately 1,000 h. Each audio file 

corresponds to one common file with the text of the 

audiobook, i.e., audio and texts are not aligned either by 

sentences or by words. Therefore, the next task is to 

segment the audio file into smaller intervals (words, 

phrases or sentences). Further, each such interval must be 

compared with the corresponding text that was voiced in 

this interval.  Alignment and segmentation can be a 

complex task, but this method allows to create large 

datasets from various sources and domains at the lowest 

possible cost. 

The quality of the collected audiobooks varies and 

needs to be cleaned up and normalized to make sure that 

the alignment of subsequent segments is not broken. 

Cleaning and normalization of the text was carried out, 

including such processes as noise removal, work with 

homoglyphs, transliterator, removal of unreproducible 

fragments, replacement of acronyms and abbreviations 

with their full equivalents, normalization of numbers, 

replacement of characters with their verbal equivalents, 

initial segmentation at the chapter level and division of the 

source text into short sentences based on punctuation at the 

end of a sentence. The musical accompaniment at the 

beginning and at the end of the read audiobooks has been 

removed.  

We employed a segmentation approach based on 

Connectionist Temporal Classification (CTC) algorithm to 

extract accurate audio-text alignments even when the 

audio recording includes unknown speech sections at the 

beginning or end. Our method employs an end-to-end 
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network trained on pre-aligned data using a CTC/attention 

ASR system. CTC is a type of neural network inference 

and associated scoring function for training recurrent 

neural networks to solve sequencing problems where time 

is a variable. CTC refers to results and scoring and is 

independent of the underlying structure of the neural 

network. In our case, this model defines speech segments 

in audio files in sentence level. The speech recognition 

model required for segmentation was trained using the 

ISSAI KSC dataset in Espnet tool [23].  

More details of the available corpora for the speech 

recognition in the Kazakh language are shown in Table I. 

TABLE I. THE STRUCTURE OF THE CORPORA FOR THE KAZAKH 

LANGUAGE 

Structure 
Name of the 

corpus/sets 
Data type 

Amount of 

wav-files 

Overall 

duration of 

wav-files in 

hour 

1 ISSAI KSC  153853 332.6 

1.1 Train 
Crowdsourced 

recordings 

147236 318.4 

1.2 Dev 3283 7.1 

1.3 Test 3334 7.1 

2 M2ASRKazakh-78  37892 86 

2.1 Train Reading-style 

recordings 

34392 78 

2.2 Test 3500 8 

3 Kazcorpus  13425 44.16 

3.1 kazspeechdb Studio 

recordings, 

prepared 

speech 

12675 22.61 

3.1.1 Train 11175 19.92 

3.1.2 Dev 750 1.36 

3.1.3 Test 750 1.34 

3.2 KazMedia Mixed type: 

studio 

recordings, 

prepared 

speech + 

spontaneous 

speech in 

different 

acoustic 

conditions 

740 21.55 

3.2.1 Train 561 18.04 

3.2.2 Dev 49 1.00 

3.2.3 Test 130 2.51 

4 KazLibriSpeech Audio books 575243 992 

 

B. Methods 

In this study, two of the most precise neural-based ASR 

architectures currently available were evaluated: (1) 

Wav2Vec2.0, which is trained using a self-supervised 

paradigm; (2) Whisper, which is trained using a fully 

supervised strategy. Additionally, a baseline E2E 

Transformer; and (3) model was trained. Further 

information about each model can be found in the 

following sub-sections. 

Baseline E2E Transformer. An encoder-decoder 

architecture based on the Transformer was trained using 

the ESPnet framework [23], jointly trained with the 

Connectionist Temporal Classification (CTC) objective 

function. The input speech was represented using 80-

dimensional filterbank features with pitch computed every 

10 ms over a 25 ms window. To process the acoustic 

features for the E2E architecture, a few initial blocks of 

VGG network were used. The E2E-Transformer ASR 

system was comprised of 12 encoder and 6 decoder blocks, 

with 4 heads in the self-attention layer, hidden states of 

256-dimension, and feed-forward network dimensions of 

2,048. The model was trained for 100 epochs using the 

Adam optimizer with an initial learning rate of 10 and 

warmup-steps of 30,000, with a dropout rate and label 

smoothing of 0.1 set. To assist decoding, a two-layer RNN 

with 650 Long Short-Term Memory (LSTM) units each 

was utilized to construct a character-level LM, based on 

the transcripts of the training set. Additionally, the LSTM 

LM was used during the decoding stage. 

Wav2Vec 2.0. and XLSR-53. The experiments were 

conducted using the fairseq platform. The Wav2Vec 2.0 

base model was pre-trained with unlabeled speech data 

using various configurations, such as encoder layerdrop set 

to 0.05, dropout_input, dropout_features, and 

feature_grad_mult set to 0.1, and encoder_embed_dim set 

to 768. The training hyperparameters included a learning 

rate of 5×10⁻⁴ and warmed up in the first 10% of the 

training time. The number of updates was set to 800,000, 

and the maximum quantity of tokens was set to 1,200,000. 

Additionally, the Adam optimizer was used, as in the 

original work. Standard fine-tuning procedures were used, 

with fine-tuning parameters defined using the following 

configurations: the number of updates was set to 160,000, 

and the maximum quantity of tokens was set to 2,800,000. 

The Adam optimizer was used, and other parameters 

included a learning rate of 3×10⁻⁵ and a gradient 

accumulation of 12 steps. The batch size during training 

was defined automatically by the framework, depending 

on the maximum quantity of predefined tokens. During 

training, the best model was selected based on the lowest 

WER obtained on the validation set. 

The XLSR model was pre-trained using the same 

configurations as the Wav2Vec large model. The encoder 

block consisted of 24 layers with a dimension of 1024, and 

16 attention blocks were used with no dropout. Fine-tuning 

parameters were defined using the same configurations 

used in the original Wav2Vec 2.0 experiment with XLSR. 

After fine-tuning the model, decoding is performed 

using a 3-gram language model, which was trained using 

Kenlm on the KSC LM corpus. During decoding, a beam 

search decoder is used, with the beam size set to 1,500. 

Whisper. The five configurations of Whisper 

checkpoints are available in varying model sizes. The 

smaller four are trained on either English-only or 

multilingual data. The largest checkpoint is trained 

exclusively on multilingual data. The multilingual version 

of the “small” checkpoint with 244 M parameters and the 

“large” checkpoint with 1,550 M parameters were fine-

tuned with a warmup of 10% of the steps and a learning 

rate of 10⁻⁵. The “small” model trained for 40,000 steps, 

while the “large” model trained for 30,000 steps. 

IV. RESULT AND DISCUSSION 

The E2E Transformer, Wav2Vec2.0, and Whisper 

models were assessed using the corpora outlined in 

Section III.A. Tables II–IV present the word error rate 

results of the ASR systems. Each architecture was trained 

in different scenarios, employing various parameters. 

However, for validation and testing purposes, only the 

development and test sets of the ISSAI KSC1 corpus were 

used consistently across all cases. The experiments were 

conducted on the NVIDIA DGX-1 server, which is 

equipped with 8 V100 GPUs.  
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By incorporating the ISSAI KSC1 and Kazcorpus 

datasets into the training process, substantial 

enhancements were observed in the performance of the 

E2E-Transformer model (Table II). The best results for 

CER and WER achieved by the E2E-Transformer on the 

test set were 2.8 and 8.7, respectively. Notably, the 

utilization of an LSTM language model had a significant 

positive impact on the E2E-Transformer model, leading to 

improved performance. Additionally, the application of 

data augmentation techniques such as SpeedPerturb and 

SpecAugment proved to be highly effective in enhancing 

the Kazakh E2E ASR, resulting in further improvements. 

TABLE II. E2E-TRANSFORMER MODELS PERFORMANCE 

ID Dataset LM Speed-Perturb Spec-Augment 
Valid Test 

WER CER WER CER 

1 ISSAI KSC1 No Yes Yes 15.9 6.2 15.2 5.5 

2 ISSAI KSC1 Yes Yes Yes 10.0 3.3 8.8 2.8 

3 
ISSAI KSC1 

+ Kaz-corpus 
No Yes Yes 13.0 5.7 12.4 5.1 

4 
ISSAI KSC1 

+ Kaz-corpus 
Yes Yes Yes 10.0 3.2 8.7 2.8 

TABLE III. WAV2VEC 2.0 MODELS PERFORMANCE 

ID Initial model Pretrain dataset Finetune dataset Evaluation 
LM 

dataset 

Valid Test 

WER WER CER 

1 
Wav2Vec 2.0 

Base 
 

ISSAI KSC1 

(train+dev) 

ISSAI 

KSC1 

(test) 

KenLM (ISSAI KSC1 

+ Kazcorpus + 

KazLibriSpeech) 

10.5 9.71 2.69 

2 
Wav2Vec 2.0 

Base 
ISSAI KSC1 (train) ISSAI KSC1 (dev) 

ISSAI 

KSC1 

(test) 

KenLM (ISSAI KSC1 

+ Kazcorpus + 

KazLibriSpeech) 

14.4 31.1 8.6 

3 
Wav2Vec 2.0 

Base 

KazLibriSpeech + 

M2ASRKazakh-78 

ISSAI KSC1 

(train+dev) 

ISSAI 

KSC1 

(test) 

KenLM (ISSAI KSC1 

+ Kazcorpus + 

KazLibriSpeech) 

8.7 10.9 3.2 

4 
Wav2Vec 2.0 

Base 

KazLibriSpeech + 

M2ASRKazakh-78 

ISSAI KSC1 

(train+dev) + 

Kazcorpus 

ISSAI 

KSC1 

(test) 

KenLM (ISSAI KSC1 

+ Kazcorpus + 

KazLibriSpeech) 

8.5 9.8 2.7 

5 XLSR-53 
KazLibriSpeech + 

M2ASRKazakh-78 

ISSAI KSC1 

(train+dev)  

ISSAI 

KSC1 

(test) 

KenLM (ISSAI KSC1 

+ Kazcorpus + 

KazLibriSpeech) 

12.4 13.5 4.3 

 

 

Figure 3. Wav2Vec 2.0 finetuning: train/loss (exp IDs refers to the ID 

column in Table III). 

 

Figure 4. Wav2Vec 2.0 pretraining: train/loss (exp IDs refers to the ID 

column in Table III). 

Table III presents the word error rate and character error 

rate scores of the fine-tuned Wav2Vec 2.0-base and XLS-

R models. In the pretraining phase, the KazLibriSpeech 

and M2ASRKazakh-78 corpora were exclusively utilized, 

while the ISSAI KSC1 (train+dev) and Kazcorpus were 

employed for finetuning. The results demonstrate that the 

pre-trained Wav2Vec 2.0 Base model, which underwent 

pretraining using the KazLibriSpeech and 

M2ASRKazakh-78 corpora, followed by finetuning with 

the ISSAI KSC1 (train+dev) and Kazcorpus data, exhibits 

remarkable performance. It achieves a CER of 2.8 and a 

WER of 8.7 on the test set, which closely matches the best 

result achieved by the E2E-Transformer model. These 

findings indicate that pretraining significantly enhances 
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the model’s performance, and the size of the dataset used 

for pretraining plays a crucial role. Moreover, the XLRS-

53 model, trained on a vast and diverse corpus of speech 

text data from over 53 languages, also demonstrates 

competitive result. It is worth noting that the Language 

Model (LM) applied to all the models provides significant 

benefits, since it helps to refine the output of the models 

and reduce errors, leading to better results in terms of word 

error rate and character error rate. Figs. 3 and 4 depict the 

training loss progression during the pretraining and 

finetuning phases. These figures provide visual 

representations of how the loss values change over the 

course of training, offering insights into the optimization 

process of the models. 

The pretrained Whisper models, utilizing the ISSAI 

KSC1 (train) and Kazcorpus datasets, exhibit competitive 

performance (Table IV). However, it is important to note 

that all models have a word error rate of at least 25, 

indicating that they do not transcribe Kazakh speech as 

accurately as desired without further adjustments. To 

improve the performance of the Whisper models, fine-

tuning can be applied. When the small model is fine-tuned 

using only the ISSAI KSC1 (train) dataset, better results 

can be achieved. Specifically, a CER of 17.4 and a WER 

of 5.4 are obtained on the test set. Furthermore, the large 

model achieves a CER of approximately 4 on the test set. 

It is worth mentioning that the Language Model (LM) was 

not applied to the Whisper models. The absence of a 

language model may contribute to the lower transcription 

accuracy of the models. Fig. 5 illustrates the validation 

performance during the training, while Fig. 6 depicts the 

training loss progression. 

TABLE IV. WHISPER MODELS PERFORMANCE 

ID Initial model Finetune dataset Validation Evaluation 
Valid Test 

WER WER CER 

1 Multilingual small model ISSAI KSC1 (train) ISSAI KSC1 (dev) ISSAI KSC1 (test) 16.4 17.4 5.4 

2 Multilingual large model ISSAI KSC1 (train)  ISSAI KSC1 (dev) ISSAI KSC1 (test)  20.4 22.3 4.5 

3 Multilingual large model 
ISSAI KSC1 (train) 

+ Kazcorpus 
ISSAI KSC1 (dev) ISSAI KSC1 (test) 18.1 19.8 4.1 

 

 

Figure 5. Whisper: valid/wer (exp IDs refers to the ID column in 

Table IV). 

 

Figure 6. Whisper: train/loss (exp IDs refers to the ID column in 

Table IV). 

V. CONCLUSION 

This work focuses on evaluating the effectiveness of 

state-of-the-art speech recognition models in transcribing 

the Kazakh language, which is considered a low-resourced 

language. The models examined in the study include 

Facebook’s Wav2Vec2.0 and Wav2Vec2-XLS-R, as well 

as OpenAI’s Whisper. We compared the performance of 

these models with existing supervised Automatic Speech 

Recognition (ASR) systems and investigate the potential 

benefits of pre-training with data from other languages and 

fine-tuning with target language data. This study 

conducted various experiments with the Wav2Vec2.0 and 

Wav2Vec2-XLS-R architectures, exploring different pre-

training and fine-tuning scenarios. Additionally, 

experiments were carried out with the Whisper 

architecture, focusing on fine-tuning it in various scenarios. 

One of the primary contributions of this study is the 

extensive comparison of two highly accurate neural-based 

ASR architectures, Wav2Vec2.0 and Whisper, with the 

baseline E2E Transformer model. This evaluation not only 

provides insights into the performance of these models for 

the Kazakh language but also holds value for other 

languages and scenarios. Notably, this study is the first to 

utilize the aforementioned ASR solutions to recognize 

Kazakh speech. 

Overall, this research sheds light on the potential of 

utilizing advanced multilingual models and comparing 

self-supervised and fully supervised approaches for robust 

ASR in underresourced language settings. The findings 

and methodologies presented in this study can have 

broader applications in addressing language resource 

limitations and advancing the development of ASR 

systems for diverse languages. 
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