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Abstract—Methods for synthetic data generation are 

extremely valuable nowadays since they allow researchers 

and practitioners to develop and test their models without the 

risk and cost associated with using real data. In this paper, 

we propose a method for the generation of synthetic financial 

time series. The method adopts time series regimes clustering 

to perform generative models training on the data from each 

cluster separately. Also, we suggest the modification of 

Quantum Generative Adversarial Networks (QuantGAN) 

architecture that is able to produce synthetic data with 

frequency characteristics closer to the corresponding real-

world time series ones. Our experiments show that (1) 

synthetic financial time series can be effectively generated by 

our method; (2) the distribution characteristics of synthetic 

time series generated by the method are closer to the initial 

ones in comparison with Fourier Flows and QuantGAN; (3) 

training the forecasting model on the synthetics generated by 

the proposed method (Fourier Flows model is used within it) 

can reduce the forecasting error on the real-world series.  
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I. INTRODUCTION 

The task of financial time series forecasting is 

demanded for the last decades [1]—the industry is 

interested in the accurate predictions of financial indicators 

such as volatility [2], stock prices [3] or stock exchange 

rate [4]. Despite that these questions have been studied for 

a long time, there are still several difficulties the 

researchers are faced with, such as data sharing restrictions 

or the lack of historical data [5]. Considering that modern 

forecasting models frequently rely on machine learning [6], 

the challenges listed above could lead to a model of the 

undesired quality due to the insufficient training data. One 

of the promising approaches to cope with this problem is 

the usage of the synthetic data. In particular, one can 

bypass the data sharing restrictions by sharing not the 

initial data, but the generative model trained on it. 

Moreover, a trained generative model can be used to 

produce sufficient amount of data replacing or 

supplementing historical data. Recent studies report that 

the synthetic data can be used to augment the historical 

data, that results in improving of machine learning models 

performance [7, 8]. 

In this paper, we face the task of synthetic time series 

generation on the basis of a particular real-world financial 

time series. Financial time series reflects the dynamics of 

resources redistribution in the economy. These dynamics 

are usually expressed via the sequences of different 

financial indicators values. The specificity of this data can 

be described as follows [9]: financial time series exhibit a 

multiscale and evolving nature. They contain weekly and 

seasonal patterns, as well as trends, and are influenced by 

crises, calendar-specific events such as holidays, and 

consumer behaviour patterns associated with them. Thus, 

the financial time series are non-stationary, non-periodical, 

with erratic transitions between states affected by many 

factors. As a result, inferring an explicit probabilistic 

financial time series model is a difficult task, that, in turn, 

makes it necessary to apply Machine Learning (ML) based 

models for synthetic financial time series generation. 

However, in this work, we train ML-based generative 

models not on the whole initial time series (as is usually 

performed), but divide the initial time series into regimes, 

cluster them according to their characteristics and train 

several generative models on the data of each cluster. This 

is performed to cope with the complicated financial time 

series nature. To summarize, the impact of this study is as 

follows: 

• We propose a new method for synthetic financial 

time series generation based on the clustering of 

time series regimes; 

• We use Fourier Flows (FF) [10] and Quantum 

Generative Adversarial Networks (QuantGAN)[11] 

generative models within our method (they are 

called CLustering for Fourier Flows (CLFF) and 

CLustering for GAN (CLGAN), respectively, 

throughout the study) and, also, propose the 

modification of QuantGAN that apply within the 

method, too (we call it CLustering and Supervisor 

for GAN (CLSGAN)); 

• We show in our experimental study of the 

proposed method that it is efficient in generating 

synthetic financial time series and moreover the 

quality of its realisations by three generative 

models (CLFF, CLGAN and CLSGAN) are higher 

than the quality of FF and QuantGAN according to 

several criteria. 
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The code, data and experimental results are given on 

GitHub (https://github.com/AlgoMathITMO/CLSGAN). 

This paper is organized as follows: Section II is devoted 

to a discussion of existing research on the topic; Section 

III describes the proposed method for synthetic financial 

time series generation in details; Section IV is about the 

experiments performed using the proposed method; 

Section V is related to the results of the mentioned 

experiments and their discussion; Section VI contains the 

conclusions, as well as research limitations and directions 

for further research. 

II. LITERATURE REVIEW 

Since the task regarded in this paper relates to such 

topics as financial time series, time series clustering, 

synthetic time series generation and synthetic data quality 

assessment, further we provide a review covering all the 

topics. Before we begin, it is worth noting that the subject 

of time series analysis and forecasting is not new and has 

been extensively studied in various fields, including 

medical [12] and financial data [13, 14]. However, there 

are still several challenges in this area, which will be 

discussed below. 

A. Financial Time Series Challenges 

There are specific problems, that researchers face with 

during modelling financial time series. Firstly, the daily 

returns exhibit a heavy-tailed distribution and have more 

peaks in comparison to the initial distribution of time 

series  [15]. The second issue is volatility clustering, when 

regimes are changing with high volatility and low 

volatility periods. Due to the low probability of high 

volatility periods existence within time series values, the 

models are not able to precisely learn the initial 

dynamic  [11]. The next issue is the absence of 

autocorrelation of returns [9], that means that returns have 

less dependence on previous values with time scale. 

B. Time Series Clustering 

A typical approach for time series clustering is usually 

tries to divide a set of time series into groups with similar 

properties [16, 17]. Some methods exploit the distance-

based approaches for clustering [18], the others are based 

on neural network models [19]. Also, there is a group of 

methods that cluster time series using the regimes 

features  [20, 21]. But in this work, we face a different task 

as we need to divide time series into regimes firstly, and 

then to cluster the obtained regimes. To the best of our 

knowledge, there are no works dedicated to regimes 

clustering within one time series yet. 

C. Synthetic Time Series Generation 

We propose the following classification of methods for 

synthetic time series generation (and provide the 

description of the most common models in each group). 

The first group consists of Generative Adversarial 

Network-based (GAN-based) models: Wasserstein 

Generative Adversarial Network (WGAN) [22] (based on 

Wasserstein GAN for images generation), Time-series 

Generative Adversarial Network (TimeGAN) [23] (uses 

recurrent neural networks), QuantGAN [11] (temporal 

convolution networks, overperforms TimeGAN), Time 

Series Generative Adversarial Network (TSGAN) [24] and 

Unseen Transition Suss GAN (UTSGAN) [25] (exploit 

spectrogram of time series, large training time). Another 

group of methods is based on variational autoencoders. 

They have fast sampling mechanism and short training 

time but demonstrate the results of the low quality [26]. 

The third group consists of methods based on normalising 

flows such as Fourier Flows [10] (the best results in 

comparison with [22, 23]). The last group consists of 

transformers: for example, Transformer-based Time-

Series Generative Adversarial Network (TTS-GAN) [27]. 

It shows a good performance, especially on a big data, but 

has a huge training time. 

D. Synthetic Data Quality Assessment 

Synthetic data quality assessment Synthetic data quality 

assessment can be conducted by the several ways. The first 

one is to estimate the similarity of synthetic and initial data 

distributions, that can be done via computation of 

divergence (e.g., Kullback-Leibler or Jensen-Shannon 

divergences [27, 28]), comparison of statistical 

characteristics (e.g., mean, standard deviation, skewness, 

or kurtosis [29]) and empirical distribution functions (with 

the help of Kolmogorov- Smirnov test or 𝜒2-test [30]). To 

assess quality in the case of synthetic time series 

generation, a second method is to analyze the 

autocorrelations [22] and frequency components [10] of 

both the synthetic and initial time series. Finally, there is a 

possibility to assess the synthetic data quality using the 

error obtained in the result of applying the forecasting 

model trained on a synthetic data to the corresponding real-

world time series values [23]. 

III. MATERIALS AND METHODS 

A. Pipeline 

Consider an initial time series 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁)𝑇 ∈
ℝ𝑁×1, that is defined on an interval [𝑡1, 𝑡𝑁], 𝑡1 < 𝑡𝑁 ∈ ℝ+. 

Time series 𝑋 is non-stationary reflecting erratic changes 

between different states of the corresponding process (no 

constraints on autocorrelation function of 𝑋 are imposed). 

Every time series can be divided into several segments, 

where the time series behaviour differs from its behaviour 

in other segments. These segments are called regimes, 

while the time points between the regimes are called 

change points. More formally, we denote change points by 

𝜏 = (𝜏0, 𝜏1, 𝜏2, . . . , 𝜏𝑙) , where 𝜏0 = 0  is the initial point 

and 𝑙  is the number of regimes. Then, the regime 

ℛ(𝜏𝑖), 𝑖 ∈ {1, … , 𝑙}  of the time series in the interval 

[𝜏𝑖−1, 𝜏𝑖) is defined as: 

𝑅(𝜏𝑖) = 𝑋[𝜏𝑖−1:𝜏𝑖)  

Let us also mention that the time series log return is 

𝑙𝑜𝑔 (
𝑋𝑡

𝑋𝑡−1
). 

Note that the pipeline of the proposed method is 

illustrated in Fig. 1. Let us provide a more detailed 

description of the pipeline below. First, we start with 

(1)
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change points detection and regimes allocation according 

to the obtained points (red blocks in Fig. 1). Then for every 

regime we calculate the vector of its characteristics (the red 

dashed box on the pipeline). For this purpose, we define 

the operators 𝜒(𝑖): ℝ|ℛ(𝜏𝑖)| → ℝ𝑑𝜒 , where |ℛ(𝜏𝑖)| is the 

number of elements in the regime. Operators map the 

regime to the vector of its characteristics of the dimension 

𝑑𝜒: 

𝜒(𝑖)ℛ(𝜏𝑖) = 𝑦(𝑖) = (𝑦1
(𝑖)

, 𝑦2
(𝑖)

, … , 𝑦𝑑𝜒

(𝑖)
) .  

 

 

Figure 1. The pipeline of the proposed method. 

Then we apply the respective operators on every regime 

within a time series and get the vectors 𝑦(𝑖), 𝑖 ∈ {1, … , 𝑙}. 

After that, we cluster the regimes according to their 

characteristics 𝑦(𝑖), 𝑖 ∈ {1, … , 𝑙} (the number of clusters is 

predefined and equals 𝑛𝑐; blue box in Fig. 1). The obtained 

clusters are denoted as 𝐶1, 𝐶2, . . . , 𝐶𝑛𝑐
. Further, each cluster 

is inputted into the grey block of the pipeline, which 

corresponds to preprocessing procedures. 

Moreover, there is an optional green dashed block in 

Fig. 1, which should be applied only when the model for 

synthetic data generation is GAN-based. In this case, every 

cluster is extended via noisy oversampling. 

Once the clusters are preprocessed, generative models 

(GMs) 𝐺𝑀1, … , 𝐺𝑀𝑛𝑐
 are trained on the data from the 

corresponding clusters 𝐶1, 𝐶2, … , 𝐶𝑛𝑐
 along with the noise 

drawn from the standard Gaussian distribution 𝒩(𝟎, 𝐼), 

where 𝟎 is a zero vector and 𝐼 is an identity matrix (purple 

blocks in Fig. 1). The output of the generative models is 

the synthetic clusters 𝐶̃1, … , 𝐶̃𝑛𝑐
. 

The generated synthetic clusters 𝐶̃1, … , 𝐶̃𝑛𝑐
 are fed to 

the grey block of the pipeline corresponding to the 

reconstruction process, where the procedures inverse to the 

procedures from the preprocessing block are performed. 

Further, we sort the regimes from the synthetic clusters in 

order corresponding to the order of the regimes in the 

initial time series. As a result, we obtain a synthetic time 

series (red blocks on the right side of the pipeline). 

B. Generative Models 

Now we describe the generative models that are applied 

to the regimes clusters 𝐶1, 𝐶2, … , 𝐶𝑛𝑐
 according to the 

pipeline (purple block in Fig. 1) to obtain a set of synthetic 

clusters 𝐶̃1, 𝐶̃2, . . . , 𝐶̃𝑛𝑐
. 

1) CLustering for Fourier Flows (CLFF) 

The first proposed generative model is CLFF, which is 

a Fourier Flows model [10] trained on the time series data 

belonging to a particular cluster. The choice of the model 

is determined by its fast sampling, short training time and 

generated synthetics quality [31]. 

2) CLustering for GAN (CLGAN) 

The second proposed generative model is CLGAN with 

a QuantGAN architecture [11], that is trained on the data 

from a certain regimes cluster. In Ref. [11], the generator 

and the discriminator are based on temporal convolution 

networks (TCNs). In our work, we use the TCN 

architecture similar to [11], but with some modifications, 

namely, the dropout mechanism for stable learning in each 

TCN block. This block is represented as:  

𝜑(𝑖)(𝑋, 𝜁(𝑖)) = (𝑑2 ∘ 𝜓2 ∘ 𝑓2 ∘ 𝑑1 ∘ 𝜓1 ∘ 𝑓1)(𝑋),  

where ∘ is the composition operator, 𝑓𝑗 is the convolution 

layer, 𝜓𝑗  is the PReLU activation function, 𝑑𝑗  is the 

dropout, 𝑗 ∈ {1,2} is the layer index, 𝑖 is the block index, 

𝜁(𝑖) is the set of parameters:  

𝜁(𝑖) = {𝑑𝐼 , 𝑑𝐻, 𝑑𝑂 , 𝑁𝐾 , 𝑁𝐷, 𝑁𝑃 , 𝑁𝑆, 𝑑𝑟, 𝑙𝑘𝑟},  

where 𝑑𝐼 is the input dimension of convolution layers, 𝑑𝐻 

is the hidden dimension of convolution layers, 𝑑𝑂 is the 

output dimension of convolution layers, 𝑁𝐾 is the kernel 

size, 𝑁𝐷 is the dilation parameter value, 𝑁𝑃 is the padding 

parameter value, 𝑁𝑆 is the stride parameter value, 𝑑𝑟 is the 

dropout rate, 𝑙𝑘𝑟  is the rate of LeakyReLU which is 

applied to the output of the skip connections procedure. 

Also, we apply batch normalisation after each TCN. 

3) CLustering and Supervisor for GAN (CLSGAN) 

One of the possible problems that GAN-based models 

can face is too diverse generated data which results in a 

large gaps after the regimes reconstruction. To overcome 

the aforementioned problem we propose the modification 

of CLGAN that allows to make the generation process 

more stable and to obtain synthetic time series that are 

close to the real-world ones. The modification contains the 

new control elements by analogy with TimeGAN [23]: the 

authors apply the supervisor in the latent space after the 

encoder to detect the dynamics of the real data. In turn, 

CLSGAN has the following data transformation scheme 

(represented in Fig. 2): the generator 𝐺  takes the noise 

(4)

(3)

(2)
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𝒩(𝟎, 𝐼) as an input and produces the synthetic data 𝑋̂, that 

serves as an input to the supervisor 𝑆. The supervisor is a 

TCN with the loss function defined as 𝑀𝑆𝐸(𝑋̃, 𝑋) +
𝔼[𝐷2(log(𝑋̃))], where 𝑋̃ is the output of 𝑆. The supervisor 

aim is to detect the initial time series dynamics and to 

approximate the synthetic time series dynamics to the 

initial one. Two discriminators 𝐷1 and 𝐷2 are used to train 

the generator 𝐺: 𝐷1 tries to distinguish the initial data 𝑋 

from the generated data 𝑋̂, while 𝐷2 tries to distinguish 𝑋 

from the supervised data 𝑋̃. 

Thus, the generator 𝐺  is trained by the joint loss 

𝛼𝔼[𝐷1(log(𝑋̂))] + 𝛽𝔼[𝐷2(log(𝑋̃))] , where 𝛼 + 𝛽 = 1 . 

Thereby, the supervisor does not allow GAN to generate 

the time series whose dynamics differs a lot from the initial 

time series dynamics. 

 

 

Figure 2. Scheme of data transformation (solid lines) and training process (dashed lines) in the CLSGAN model. 

IV. EXPERIMENTAL STUDY 

A. Data Description 

For our experiments we use financial time series, in 

particular, stock prices available via open access 

(https://www.kaggle.com/datasets/borismarjanovic/price-

volume-data-for-all-us-stocks-etfs). The data presented in 

CSV format with following features: Date, Open, High, 

Low, Close, Volume, OpenInt. We choose the Close price 

feature and stocks such as ZEUS, GEN, and FISI for the 

further experiments. We choose these time series because 

of their periods of high volatility with fast changes on low 

volatility periods. Thus, we can properly study the benefits 

of the proposed method based on volatility clustering using 

the mentioned data. The lengths of time series are 3201, 

2645, 3200, respectively. 

Train sets for the GAN-based generative models are 

formed in the following way: each cluster 𝐶𝑖 , 𝑖 ∈
{1, … , 𝑛𝑐} is divided into 𝑁 − 𝑇 + 1 series of the length 𝑇 

by the sliding window method. In the experiments we take 

𝑇 = 127. Then, the batches of size 80 are formed using the 

obtained time series. In the case of CLFF generative model, 

the whole cluster is used as a training set. 

B. Pipeline Implementation Details 

The following section contain some details about the 

implementation of the pipeline presented in Fig. 1. In our 

work we use the Pruned Exact Linear Time (PELT) 

method [32] for change points detection, which allows to 

detect an unspecified number of change points. We apply 

it with the following specification: the penalty value is 1 

and the minimum length of detected regime is 𝑇 + 1 =128. 

As for the dimension of the regime characteristics 

vector (2), it is chosen to be 8 and consists of the following 

components:   

• sample mean (calculated on logarithmic 

normalised via MinMax transformation regime 

data);  

• standard deviation (calculated on initial regime 

data);  

• skewness (calculated on initial regime data);  

• kurtosis (calculated on initial regime data); 

• minimum (calculated on logarithmic standardise 

regime data);  

• maximum (calculated on logarithmic standardise 

regime data);  

• mean of spectral density squared absolute values 

(calculated on twice differentiated regime data): 

𝑆𝜒 = 𝔼𝑓[|𝑆(𝑓)|2],  

where 

𝑆(𝑓) = ∑

+∞

𝑘=−∞

𝑟𝑋[𝑘]𝑒−2𝜋𝑘𝑓,  

and 𝑟𝑋[𝑘]—autocorrelation function of time series 𝑋 

with lag 𝑘; 

• Kolmogorov-Smirnov test statistic with respect to 

standard normal distribution (calculated on 

differentiated regime data). 

As for the regimes clustering method, we use the 

agglomerative clustering algorithm with the Ward distance 

between clusters and euclidean metric between objects 

inside clusters. 

C. Data Preprocessing 

Since clusters are formed from regimes that located at 

different positions in the original series, the series within a 

cluster are not continuous. Therefore, in the preprocessing 

procedure (see Fig. 1), we smooth out the clusters based 

on the changes between different regimes. Further we will 

denote this transformation as Δ . Consider a regime 

(5)

(6)
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ℛ(𝜏𝑖), 𝑖 ∈ {1, … , 𝑙 − 1}  with the last value ℛ−1(𝜏𝑖) ; 

ℛ0(𝜏𝑖+1) is the first value of the next regime. Denote the 

difference between them as Δ𝑖 = ℛ−1(𝜏𝑖) − ℛ0(𝜏𝑖+1). 

The transformation of the regime ℛ(𝜏𝑖+1)  values is 

performed according to the following rules: 

if Δ𝑖 ≥ 0 ⇒ ℛ(𝜏𝑖+1) = ℛ(𝜏𝑖+1) + Δ, 
if Δ𝑖 < 0 ⇒ ℛ(𝜏𝑖+1) = ℛ(𝜏𝑖+1) − |Δ|.  

After the Δ  transformation the regimes are further 

preprocessed via applying log returns, standardisation and 

Lambert transformation. 

In the case of CLFF generative model the Δ 

transformation with the opposite signs is applied to the 

synthetic clusters 𝐶̃1, … , 𝐶̃𝑛𝑐
, as well as inverse 

transformations of log returns, standardisation and 

Lambert transform within the data  reconstruction 

procedure. 

In the case of GAN-based models the reconstruction 

procedure differs from the above described. This is caused 

by the fact that these models produce more diverse 

synthetic data and there is a possibility that after the 

reconstruction the differences between the regimes in the 

synthetic time series will vary a lot comparing to the initial 

data. To cope with it, we use four additional 

transformations described in Algorithm 1 (the difference 

between regimes in initial time series is denoted by Δ𝑖
𝑟). 

 

Algorithm 1. Additional Δ transform for GANs 

Require: Δ𝑖 , Δ𝑖
𝑟 

1 if (Δ𝑖 ≥ 0)  &  (𝑠𝑖𝑔𝑛(Δ𝑖) = 𝑠𝑖𝑔𝑛(Δ𝑖
𝑟)) then 

2  if |Δ𝑖| ≥ |Δ𝑖
𝑟| then 

3   ℛ̃(𝜏𝑖+1) = ℛ̃(𝜏𝑖+1) + (|Δ𝑖| − |Δ𝑖
𝑟|) 

4  else if |Δ𝑖| < |Δ𝑖
𝑟| then 

5   ℛ̃(𝜏𝑖+1) = ℛ̃(𝜏𝑖+1) − (|Δ𝑖
𝑟| − |Δ𝑖|) 

6  end if 

7 else if (Δ𝑖 ≥ 0)  &  (𝑠𝑖𝑔𝑛(Δ𝑖) ≠ 𝑠𝑖𝑔𝑛(Δ𝑖
𝑟)) then 

8   ℛ̃(𝜏𝑖+1) = ℛ̃(𝜏𝑖+1) + (|Δ𝑖| + |Δ𝑖
𝑟|) 

9 else if (Δ𝑖 < 0)  &  (𝑠𝑖𝑔𝑛(Δ𝑖) = 𝑠𝑖𝑔𝑛(Δ𝑖
𝑟)) then 

10  if |Δ𝑖| ≥ |Δ𝑖
𝑟| then 

11   ℛ̃(𝜏𝑖+1) = ℛ̃(𝜏𝑖+1) − (|Δ𝑖| − |Δ𝑖
𝑟|) 

12  else if |Δ𝑖| < |Δ𝑖
𝑟| then 

13   ℛ̃(𝜏𝑖+1) = ℛ̃(𝜏𝑖+1) + (|Δ𝑖
𝑟| − |Δ𝑖|) 

14  end if 

15 else if (Δ𝑖 < 0)  &  (𝑠𝑖𝑔𝑛(Δ𝑖) ≠ 𝑠𝑖𝑔𝑛(Δ𝑖
𝑟)) then 

16   ℛ̃(𝜏𝑖+1) = ℛ̃(𝜏𝑖+1) − (|Δ𝑖| + |Δ𝑖
𝑟|) 

17 end if 

 

D. Evaluation of Synthetic Time Series Quality 

We evaluate the models performance using the 

following criteria (motivated by the financial time series 

specific properties):  

• extreme points coincidence in initial and synthetic 

time series;  

• fading autocorrelation function of the synthetic 

time series with behaviour similar to the initial one;  

• closeness of time series distributions at different 

scales (in particular, on daily and monthly basis);  

• synthetic and initial time series distributions 

similarity in terms of sample characteristics 

(Skewness, Kurtosis), Jensen-Shannon 

divergence (𝐃𝐉𝐒), sum of spectral density squared 

absolute values (5) ( 𝐒𝛘 ) and two-sample 

Kolmogorov-Smirnov statistic, that shows the 

maximum distance between two empirical 

distribution functions (𝐊𝐒∗);  

• synthetic data quality from the point of its 

usefulness in the initial time series forecasting 

tasks (below described in details).  

The last criteria of synthetic data quality is connected 

with the time series forecasting task. For this experiment 

we divided the synthetic and the corresponding real-world 

time series into train and test sets according to the standard 

cross validation procedure for time series. Namely, the 

time series are divided into 31 disjoint parts of the length 

𝐿 = 60. The forecasting model (from fbprophet Python 

library: https://facebook.github.io/prophet/docs/quick_sta 

rt.html) is trained on the synthetic time series part of length 

𝑘 ⋅ 𝐿 , where 𝑘 ∈ {1, … ,30}  is the step number and the 

model is tested on the real-world time series part of length 

𝐿. On every step we append the train sample by 𝐿 values. 

E. Generative Models Implementation Details 

For CLFF model we use the following hyperparameters: 

800 epochs, 10 flows, learning rate equals to 10−4. 

As it was said earlier, for  CLGAN and  CLSGAN we use 

the architecture where generator and discriminator based 

on TCNs. The number of temporal convolution blocks 𝐻 

inside the TCN depends on the receptive field size (the 

detailed description of this dependence is given in [11]). In 

this work we consider the value for receptive field size 

equal 127 (thus, 𝑇 = 127). There is a disadvantage of 

using clustering approach in the case of GAN-based 

models since clusters can have a small number of elements. 

This can result in insufficient data to train the GANs of the 

desired quality. If the number of elements in the 

preprocessed cluster 𝐶𝑘, 𝑘 ∈ {1, … , 𝑛𝑐} is less than 𝐻 ⋅ 𝑇, 

then noisy oversampling is applied to it, that is we add 

noise with standard normal distribution to cluster values. 

The number of noisy series is equal to 𝑠. It is chosen as 

⌈
𝐻⋅𝑇

|𝐶𝑘|
⌉, where |𝐶𝑘| is the number of elements in the cluster 

𝐶𝑘 . After the noisy oversampling we have 𝑠 time series 

belonging to the cluster 𝐶𝑘 with the same properties as the 

initial one but with noisy values. Then we stack them in 

one series 𝐶̂𝑘 and feed it to QuantGAN. 

TABLE I. CLGAN and CLSGAN ARCHITECTURE DETAILS 

𝜻 𝒅𝑰 𝒅𝑯 𝒅𝑶 𝑵𝑲 𝑵𝑫 𝑵𝑷 𝑵𝑺 𝒅𝒓 𝒍𝒌𝒓 

𝜁(1) 1 80 80 1 1 0 1 0.1 0.002 

𝜁(𝑖) 80 80 80 2 2𝑖−2 2𝑖−2 1 0.1 0.002 

 

For the experiments we employ the model with the 

values of parameters from 𝜁(𝑖)  for TCN presented in 

Table I, where 𝑖 ∈ {2, … ,7}. Last layer of TCN is 1 × 1 

convolution [11] with 𝑑𝐼 = 80, 𝑑𝐻 = 80, 𝑑𝑂 = 1, 𝑁𝐾 =
1, 𝑁𝐷 = 1. Note that in CLSGAN Supervisor’s TCN has 

𝑑𝐻 = 60. As for the generators, they get random noise 

(7)
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sampled from multivariate standard normal distribution of 

the dimension 3.   

TABLE II. HYPERPARAMETERS FOR CLGAN AND CLSGAN 

Hyperparameters CLGAN CLSGAN 

M 23 20 

initial learning rate 0.0009 
0.0009 (and 0.001 

for Supervisor) 

exponential learning 

rate scheduler 
gamma=0.96 gamma=0.96 

generator training every 5 iterations every 5 iterations 

supervisor training – every 5 iterations 

batch size 80 80 

sequence length 127 127 

number of clusters 2–3 3–4 

clip value for 

discriminator 
0.01 0.01 

 

For the training of CLGAN and CLSGAN we use the 

hyperparameters listed in Table II (also, in experiments we 

take 𝛼 = 0.8, 𝛽 = 0.2  for training the generator in 

CLSGAN). As it can be seen, we use learning rate 

scheduler for faster convergence at the start and we train 

generator (in both models) and supervisor (in CLSGAN) 

once every 5th iteration of discriminator. Number of 

epochs is selected dynamically related on the number of 

elements in cluster. Let 𝑀 ∈ ℕ, 𝑀 > 2 be the maximum 

acceptable value for the number of epochs. We choose 

index 𝑖𝑘 ∈ {1, … , 𝑀 − 1} as the smallest value for which 

holds |𝐶𝑘| ≤
𝑖𝑘𝑁

𝑀−1
. Then the number of epochs for cluster 

𝐶𝑘 is equal to 𝑖𝑘 + 1. 

V. RESULTS AND DISCUSSION 

In this section we show the advantages of the proposed 

generative models (CLFF, CLGAN, CLSGAN) by 

comparing the results to the chosen existing baselines 

(FF [10], QuantGAN [11]). 

In Fig. 3, we can see the obtained Q-Q plots of the 

extremum points in synthetic and the corresponding initial 

time series (GEN, ZEUS, FISI). These plots are 

constructed by finding the points of time series local 

extremum in windows of the length 40, then computing the 

quantiles with the step 0.01 for the sample of time series 

extremum points and plotting the obtained quantiles values. 

Due to the specific behaviour of financial time series, the 

generative model should be able to produce extremum 

points that are close to the initial ones. As it can be seen, 

CLFF model repeats the real time series more precise than 

others. GAN-based approaches detect the extrema worse 

than FF-based models (especially QuantGAN, that tends 

to underestimate the real data in the case of GEN and 

ZEUS; in the case of FISI this model produces the 

extremum points that far from the real ones). Contrariwise, 

CLSGAN tends to overestimate the real data in all three 

cases, while the CLGAN shows the closest to the initial 

data performance in terms of extrema.  

 

 

Figure 3. Q-Q plots (quantiles with step 0.01) of local extremum points (computed in windows of the length 40) in synthetic and corresponding initial 

time series. 

In Fig. 4, the autocorrelation function values for each 

time series and generative model are shown. All models 

produce fading autocorrelation functions, that is an 

important characteristic of financial time series. One can 

note that the dependence of autocorrelation on lags is 

almost identical in the case of the initial time series and the 

time series generated by CLFF. In the case of CLGAN and 

CLSGAN models, the main properties of autocorrelation 

function behaviour are detected, but are reproduced with 

different amplitudes.  

In Fig. 5, the box plots of obtained MSE values 

distributions (see Evaluation metrics section for the 

mechanism of their computation) are shown. The median 

error value corresponding to CLFF model is closer to the 

value corresponding to the real-world time series in 

comparison to Fourier Flows model; also, CLFF’s error 

interquartile range has similar size to the real-world one. 

In case of ZEUS and FISI (time series with rough 

dynamics) QuantGAN shows the worst results in terms of 

MSE. Vice versa, CLGAN and CLSGAN result in smaller 

values of MSE, thus, these methods are more helpful in 

approximating the behaviour of the initial time series. Note 

that training the forecasting model on synthetic generated 

by CLFF results in reduction of MSE for all tested time 

series. 

GEN ZEUS FISI
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Figure 4. Autocorrelation functions for the initial and synthetic time series. 

 

Figure 5. Box plots for MSE values obtained after training the Prophet model on the corresponding synthetic time series and testing it on the real-

world time series (repeated 30 times procedure of cross-validation). 

Fig. 6 shows the distributions: the original one and the 

distribution of revenues in daily (differentiated time series) 

and monthly (differentiated with time lag of 20 days time 

series) scales. When dealing with financial time series, it 

is important to pay attention to daily and monthly 

distributions of revenues, as the original one can be rather 

noisy. The CLFF, CLGAN, and CLSGAN models are 

capable of accurately modelling distributional properties 

that exist in the real data. However, due to space 

limitations, we only present the results for GEN in the 

paper. Models are able to detect the heavy tails and have 

more precise values in daily and monthly distributions 

comparing to QuantGAN produced data. 

GEN ZEUS

FISI
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Figure 6. The original time series distribution, the differentiated time series distribution (daily scale) and the differentiated with lag of 20 days time 

series distribution (monthly scale without weekends) of the initial and synthetic data on GEN time series. 

In Table III, the values of computed distributional 

characteristics for synthetic and the corresponding real-

world time series are presented. To compute every 

characteristic value we generated 40 synthetic instances 

for every real-world time series and averaged the obtained 

values. Regarding the skewness and kurtosis 
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FF and CLFF 

 
QuantGAN and CLGAN  

 
CLSGAN 



characteristics, we also include the confidence interval 

bounds in brackets. We can observe absolute dominating 

of CLFF model in comparison with the baselines as well 

as with the proposed generative models (the best obtained 

values for Fourier Flows based models are highlighted 

with the blue colour). Also, we independently compare the 

characteristics values of GAN-based approaches (the 

closest to the real-world time series values are highlighted 

with the orange colour). Our proposed method with 

clustering outperforms QuantGAN among all chosen 

characteristics except the kurtosis for GEN and FISI (note 

that QuantGAN which outperforms approaches with 

clustering in FISI has a large confidence interval, thus, the 

generation process is unstable). CLSGAN in all three data 

cases approximates the initial frequency 𝑆𝜒  closer than 

QuantGAN due to Supervisor which can help to generate 

more stable synthetic time series.  

TABLE III. SYNTHETIC AND REAL-WORLD TIME SERIES DISTRIBUTION CHARACTERISTICS (COMPUTED BY 40 REALISATIONS OF SYNTHETIC TIME 

SERIES). FOR SKEWNESS AND KURTOSIS CHARACTERISTICS CONFIDENCE INTERVAL BOUNDS ARE GIVEN IN BRACKETS 

Data Methods Skewness Kurtosis 𝐃𝐉𝐒 𝐒𝛘 𝐊𝐒∗ 

GEN 

Real  0.747  −0.135  0.000  2.004  0.000  

FF  0.595 (±0.05) −0.280 (±0.08)  0.077  2.350  0.159  

CLFF  0.733 (±0.01)  −0.152 (±0.01)  0.017  2.001  0.029  

QuantGAN  0.211 (±0.13) −0.393 (±0.18)  0.241  2.287  0.843  

CLGAN  0.371 (±0.21)  −0.576 (±0.29) 0.162  2.256  0.456  

CLSGAN  0.336 (±0.31)  −0.552 (±0.41)  0.141  1.995  0.501  

ZEUS 

 Real  1.750  6.268  0.000  1.951  0.000  

FF  0.996 (±0.15)  2.732 (±0.75)  0.048  2.434  0.347  

CLFF  1.681 (±0.04) 5.673 (±0.19)  0.027  2.014  0.121  

QuantGAN  0.548 (±0.21)  0.159 (±0.69)  0.171  2.084  0.426 

CLGAN  0.123 (±0.33)  −0.213 (±0.51) 0.192  2.107  0.282  

CLSGAN  0.590 (±0.31)  0.701 (±0.76)  0.169  2.052  0.211  

FISI 

Real  0.735  0.198  0.000  2.072  0.000  

FF  0.868 (±0.03)  0.601 (±0.09)  0.050  2.614  0.221  

CLFF  0.739 (±0.01)  0.238 (±0.02)  0.020  2.102  0.039  

QuantGAN  0.563 (±0.22)  0.151 (±0.65)  0.180  2.157  0.467  

CLGAN  0.252 (±0.11)  −0.473 (±0.25)  0.185  1.954  0.354  

CLSGAN  0.778 (±0.19)  −0.401 (±0.29)  0.157  2.015  0.335  

 

Thus, FF and CLFF methods can be used for the 

accurate generation because they estimate explicit 

likelihood and show the closest metric values to the real-

world time series ones. Additional experiments on varying 

the hyperparameters (such as number of flows or epochs) 

in these models demonstrate the results of the low quality 

as synthetics start to differ from the initial data 

significantly. Therefore, to generate diverse data, one 

should use methods that have more freedom in parameters, 

such as GANs. The proposed approaches show that the 

regime clustering can help to detect rough dynamic of the 

financial time series. 

VI. CONCLUSION 

We have proposed the new method for synthetic 

financial time series generation, which combines 

generative models with regime clustering. For the 

generative models within our method, we used the Fourier 

Flows and QuantGAN approaches. The proposed method 

is advisable to use in situations where inferring an explicit 

probabilistic time series model is difficult or even 

impossible, such as with financial time series. Due to 

regimes clustering, our method can deal with multiscale 

nature of time series and generate a data containing a 

diversity of patterns presented in the initial data: the 

distribution characteristics of synthetic data produced by 

the method are closer to the corresponding values of the 

initial time series characteristics in comparison with FF 

and QuantGAN generative models. If one is interested in 

an accurate and stable generation of the synthetic data, 

then the CLFF generative model should be used, as it 

shows the closest to the initial characteristics with narrow 

confidence intervals. GAN-based generative models 

provide generation of a more diverse synthetic data. 

As for the computation time on CPU (M1 with 8GB 

RAM), the CLFF (69 s) method works even faster that FF 

(76.2 s) in the same conditions, due to the training the 

models separately on clusters data (all measurements are 

carried out on GEN time series with parameters values 

described earlier). On the contrary, CLGAN (1218 s) and 

CLSGAN (1520.4 s) are more computationally expensive 

in comparison with QuantGAN (687 s), but the 

experimental study has shown that CLGAN and CLSGAN 

outperform QuantGAN in terms of generated synthetics 

quality. We plan to improve the CLGAN and CLSGAN 

architectures in terms of their generation process time in 

the future. 

The developed method can be applied to the tasks of 

historical data supplementation for training a ML model of 

a desired quality or historical data replacement in case of 

data sharing restrictions. Further elaboration of this 

research is possible in such directions as constructing a 

neural network for regimes clustering, that can be able to 

find more complex relationships between regimes, or 

method’s modification for working with multivariate time 

series. 
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