
Synthetic Financial Time Series Generation with

Regime Clustering

Kirill Zakharov *, Elizaveta Stavinova, and Alexander Boukhanovsky

National Center for Cognitive Research, ITMO University, Saint Petersburg 199034, Russia;

Email: stavinova@itmo.ru (E.S.), avbukhanovskii@itmo.ru (A.B.)

*Correspondence: kazakharov@itmo.ru (K.Z.)

Abstract—Methods for synthetic data generation are

extremely valuable nowadays since they allow researchers

and practitioners to develop and test their models without the

risk and cost associated with using real data. In this paper,

we propose a method for the generation of synthetic financial

time series. The method adopts time series regimes clustering

to perform generative models training on the data from each

cluster separately. Also, we suggest the modification of

Quantum Generative Adversarial Networks (QuantGAN)

architecture that is able to produce synthetic data with

frequency characteristics closer to the corresponding real-

world time series ones. Our experiments show that (1)

synthetic financial time series can be effectively generated by

our method; (2) the distribution characteristics of synthetic

time series generated by the method are closer to the initial

ones in comparison with Fourier Flows and QuantGAN; (3)

training the forecasting model on the synthetics generated by

the proposed method (Fourier Flows model is used within it)

can reduce the forecasting error on the real-world series.

Keywords—regime clustering, Generative Adversarial

Networks (GAN), normalising flows, time series generation,

synthetic time series

I. INTRODUCTION

The task of financial time series forecasting is

demanded for the last decades [1]—the industry is

interested in the accurate predictions of financial indicators

such as volatility [2], stock prices [3] or stock exchange

rate [4]. Despite that these questions have been studied for

a long time, there are still several difficulties the

researchers are faced with, such as data sharing restrictions

or the lack of historical data [5]. Considering that modern

forecasting models frequently rely on machine learning [6],

the challenges listed above could lead to a model of the

undesired quality due to the insufficient training data. One

of the promising approaches to cope with this problem is

the usage of the synthetic data. In particular, one can

bypass the data sharing restrictions by sharing not the

initial data, but the generative model trained on it.

Moreover, a trained generative model can be used to

produce sufficient amount of data replacing or

supplementing historical data. Recent studies report that

the synthetic data can be used to augment the historical

data, that results in improving of machine learning models

performance [7, 8].

In this paper, we face the task of synthetic time series

generation on the basis of a particular real-world financial

time series. Financial time series reflects the dynamics of

resources redistribution in the economy. These dynamics

are usually expressed via the sequences of different

financial indicators values. The specificity of this data can

be described as follows [9]: financial time series exhibit a

multiscale and evolving nature. They contain weekly and

seasonal patterns, as well as trends, and are influenced by

crises, calendar-specific events such as holidays, and

consumer behaviour patterns associated with them. Thus,

the financial time series are non-stationary, non-periodical,

with erratic transitions between states affected by many

factors. As a result, inferring an explicit probabilistic

financial time series model is a difficult task, that, in turn,

makes it necessary to apply Machine Learning (ML) based

models for synthetic financial time series generation.

However, in this work, we train ML-based generative

models not on the whole initial time series (as is usually

performed), but divide the initial time series into regimes,

cluster them according to their characteristics and train

several generative models on the data of each cluster. This

is performed to cope with the complicated financial time

series nature. To summarize, the impact of this study is as

follows:

• We propose a new method for synthetic financial

time series generation based on the clustering of

time series regimes;

• We use Fourier Flows (FF) [10] and Quantum

Generative Adversarial Networks (QuantGAN)[11]

generative models within our method (they are

called CLustering for Fourier Flows (CLFF) and

CLustering for GAN (CLGAN), respectively,

throughout the study) and, also, propose the

modification of QuantGAN that apply within the

method, too (we call it CLustering and Supervisor

for GAN (CLSGAN));

• We show in our experimental study of the

proposed method that it is efficient in generating

synthetic financial time series and moreover the

quality of its realisations by three generative

models (CLFF, CLGAN and CLSGAN) are higher

than the quality of FF and QuantGAN according to

several criteria.

Manuscript received June 4, 2023; revised June 26, 2023; accepted July

13, 2023; published December 14, 2023.

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1372doi: 10.12720/jait.14.6.1372-1381

mailto:stavinova@itmo.ru
mailto:kazakharov@itmo.ru

The code, data and experimental results are given on

GitHub (https://github.com/AlgoMathITMO/CLSGAN).

This paper is organized as follows: Section II is devoted

to a discussion of existing research on the topic; Section

III describes the proposed method for synthetic financial

time series generation in details; Section IV is about the

experiments performed using the proposed method;

Section V is related to the results of the mentioned

experiments and their discussion; Section VI contains the

conclusions, as well as research limitations and directions

for further research.

II. LITERATURE REVIEW

Since the task regarded in this paper relates to such

topics as financial time series, time series clustering,

synthetic time series generation and synthetic data quality

assessment, further we provide a review covering all the

topics. Before we begin, it is worth noting that the subject

of time series analysis and forecasting is not new and has

been extensively studied in various fields, including

medical [12] and financial data [13, 14]. However, there

are still several challenges in this area, which will be

discussed below.

A. Financial Time Series Challenges

There are specific problems, that researchers face with

during modelling financial time series. Firstly, the daily

returns exhibit a heavy-tailed distribution and have more

peaks in comparison to the initial distribution of time

series [15]. The second issue is volatility clustering, when

regimes are changing with high volatility and low

volatility periods. Due to the low probability of high

volatility periods existence within time series values, the

models are not able to precisely learn the initial

dynamic [11]. The next issue is the absence of

autocorrelation of returns [9], that means that returns have

less dependence on previous values with time scale.

B. Time Series Clustering

A typical approach for time series clustering is usually

tries to divide a set of time series into groups with similar

properties [16, 17]. Some methods exploit the distance-

based approaches for clustering [18], the others are based

on neural network models [19]. Also, there is a group of

methods that cluster time series using the regimes

features [20, 21]. But in this work, we face a different task

as we need to divide time series into regimes firstly, and

then to cluster the obtained regimes. To the best of our

knowledge, there are no works dedicated to regimes

clustering within one time series yet.

C. Synthetic Time Series Generation

We propose the following classification of methods for

synthetic time series generation (and provide the

description of the most common models in each group).

The first group consists of Generative Adversarial

Network-based (GAN-based) models: Wasserstein

Generative Adversarial Network (WGAN) [22] (based on

Wasserstein GAN for images generation), Time-series

Generative Adversarial Network (TimeGAN) [23] (uses

recurrent neural networks), QuantGAN [11] (temporal

convolution networks, overperforms TimeGAN), Time

Series Generative Adversarial Network (TSGAN) [24] and

Unseen Transition Suss GAN (UTSGAN) [25] (exploit

spectrogram of time series, large training time). Another

group of methods is based on variational autoencoders.

They have fast sampling mechanism and short training

time but demonstrate the results of the low quality [26].

The third group consists of methods based on normalising

flows such as Fourier Flows [10] (the best results in

comparison with [22, 23]). The last group consists of

transformers: for example, Transformer-based Time-

Series Generative Adversarial Network (TTS-GAN) [27].

It shows a good performance, especially on a big data, but

has a huge training time.

D. Synthetic Data Quality Assessment

Synthetic data quality assessment Synthetic data quality

assessment can be conducted by the several ways. The first

one is to estimate the similarity of synthetic and initial data

distributions, that can be done via computation of

divergence (e.g., Kullback-Leibler or Jensen-Shannon

divergences [27, 28]), comparison of statistical

characteristics (e.g., mean, standard deviation, skewness,

or kurtosis [29]) and empirical distribution functions (with

the help of Kolmogorov- Smirnov test or 𝜒2-test [30]). To

assess quality in the case of synthetic time series

generation, a second method is to analyze the

autocorrelations [22] and frequency components [10] of

both the synthetic and initial time series. Finally, there is a

possibility to assess the synthetic data quality using the

error obtained in the result of applying the forecasting

model trained on a synthetic data to the corresponding real-

world time series values [23].

III. MATERIALS AND METHODS

A. Pipeline

Consider an initial time series 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑁)𝑇 ∈
ℝ𝑁×1, that is defined on an interval [𝑡1, 𝑡𝑁], 𝑡1 < 𝑡𝑁 ∈ ℝ+.

Time series 𝑋 is non-stationary reflecting erratic changes

between different states of the corresponding process (no

constraints on autocorrelation function of 𝑋 are imposed).

Every time series can be divided into several segments,

where the time series behaviour differs from its behaviour

in other segments. These segments are called regimes,

while the time points between the regimes are called

change points. More formally, we denote change points by

𝜏 = (𝜏0, 𝜏1, 𝜏2, . . . , 𝜏𝑙) , where 𝜏0 = 0 is the initial point

and 𝑙 is the number of regimes. Then, the regime

ℛ(𝜏𝑖), 𝑖 ∈ {1, … , 𝑙} of the time series in the interval

[𝜏𝑖−1, 𝜏𝑖) is defined as:

𝑅(𝜏𝑖) = 𝑋[𝜏𝑖−1:𝜏𝑖)

Let us also mention that the time series log return is

𝑙𝑜𝑔 (
𝑋𝑡

𝑋𝑡−1
).

Note that the pipeline of the proposed method is

illustrated in Fig. 1. Let us provide a more detailed

description of the pipeline below. First, we start with

(1)

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1373

change points detection and regimes allocation according

to the obtained points (red blocks in Fig. 1). Then for every

regime we calculate the vector of its characteristics (the red

dashed box on the pipeline). For this purpose, we define

the operators 𝜒(𝑖): ℝ|ℛ(𝜏𝑖)| → ℝ𝑑𝜒 , where |ℛ(𝜏𝑖)| is the

number of elements in the regime. Operators map the

regime to the vector of its characteristics of the dimension

𝑑𝜒:

𝜒(𝑖)ℛ(𝜏𝑖) = 𝑦(𝑖) = (𝑦1
(𝑖)

, 𝑦2
(𝑖)

, … , 𝑦𝑑𝜒

(𝑖)
) .

Figure 1. The pipeline of the proposed method.

Then we apply the respective operators on every regime

within a time series and get the vectors 𝑦(𝑖), 𝑖 ∈ {1, … , 𝑙}.

After that, we cluster the regimes according to their

characteristics 𝑦(𝑖), 𝑖 ∈ {1, … , 𝑙} (the number of clusters is

predefined and equals 𝑛𝑐; blue box in Fig. 1). The obtained

clusters are denoted as 𝐶1, 𝐶2, . . . , 𝐶𝑛𝑐
. Further, each cluster

is inputted into the grey block of the pipeline, which

corresponds to preprocessing procedures.

Moreover, there is an optional green dashed block in

Fig. 1, which should be applied only when the model for

synthetic data generation is GAN-based. In this case, every

cluster is extended via noisy oversampling.

Once the clusters are preprocessed, generative models

(GMs) 𝐺𝑀1, … , 𝐺𝑀𝑛𝑐
 are trained on the data from the

corresponding clusters 𝐶1, 𝐶2, … , 𝐶𝑛𝑐
 along with the noise

drawn from the standard Gaussian distribution 𝒩(𝟎, 𝐼),

where 𝟎 is a zero vector and 𝐼 is an identity matrix (purple

blocks in Fig. 1). The output of the generative models is

the synthetic clusters 𝐶̃1, … , 𝐶̃𝑛𝑐
.

The generated synthetic clusters 𝐶̃1, … , 𝐶̃𝑛𝑐
 are fed to

the grey block of the pipeline corresponding to the

reconstruction process, where the procedures inverse to the

procedures from the preprocessing block are performed.

Further, we sort the regimes from the synthetic clusters in

order corresponding to the order of the regimes in the

initial time series. As a result, we obtain a synthetic time

series (red blocks on the right side of the pipeline).

B. Generative Models

Now we describe the generative models that are applied

to the regimes clusters 𝐶1, 𝐶2, … , 𝐶𝑛𝑐
 according to the

pipeline (purple block in Fig. 1) to obtain a set of synthetic

clusters 𝐶̃1, 𝐶̃2, . . . , 𝐶̃𝑛𝑐
.

1) CLustering for Fourier Flows (CLFF)

The first proposed generative model is CLFF, which is

a Fourier Flows model [10] trained on the time series data

belonging to a particular cluster. The choice of the model

is determined by its fast sampling, short training time and

generated synthetics quality [31].

2) CLustering for GAN (CLGAN)

The second proposed generative model is CLGAN with

a QuantGAN architecture [11], that is trained on the data

from a certain regimes cluster. In Ref. [11], the generator

and the discriminator are based on temporal convolution

networks (TCNs). In our work, we use the TCN

architecture similar to [11], but with some modifications,

namely, the dropout mechanism for stable learning in each

TCN block. This block is represented as:

𝜑(𝑖)(𝑋, 𝜁(𝑖)) = (𝑑2 ∘ 𝜓2 ∘ 𝑓2 ∘ 𝑑1 ∘ 𝜓1 ∘ 𝑓1)(𝑋),

where ∘ is the composition operator, 𝑓𝑗 is the convolution

layer, 𝜓𝑗 is the PReLU activation function, 𝑑𝑗 is the

dropout, 𝑗 ∈ {1,2} is the layer index, 𝑖 is the block index,

𝜁(𝑖) is the set of parameters:

𝜁(𝑖) = {𝑑𝐼 , 𝑑𝐻, 𝑑𝑂 , 𝑁𝐾 , 𝑁𝐷, 𝑁𝑃 , 𝑁𝑆, 𝑑𝑟, 𝑙𝑘𝑟},

where 𝑑𝐼 is the input dimension of convolution layers, 𝑑𝐻

is the hidden dimension of convolution layers, 𝑑𝑂 is the

output dimension of convolution layers, 𝑁𝐾 is the kernel

size, 𝑁𝐷 is the dilation parameter value, 𝑁𝑃 is the padding

parameter value, 𝑁𝑆 is the stride parameter value, 𝑑𝑟 is the

dropout rate, 𝑙𝑘𝑟 is the rate of LeakyReLU which is

applied to the output of the skip connections procedure.

Also, we apply batch normalisation after each TCN.

3) CLustering and Supervisor for GAN (CLSGAN)

One of the possible problems that GAN-based models

can face is too diverse generated data which results in a

large gaps after the regimes reconstruction. To overcome

the aforementioned problem we propose the modification

of CLGAN that allows to make the generation process

more stable and to obtain synthetic time series that are

close to the real-world ones. The modification contains the

new control elements by analogy with TimeGAN [23]: the

authors apply the supervisor in the latent space after the

encoder to detect the dynamics of the real data. In turn,

CLSGAN has the following data transformation scheme

(represented in Fig. 2): the generator 𝐺 takes the noise

(4)

(3)

(2)

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1374

𝒩(𝟎, 𝐼) as an input and produces the synthetic data 𝑋̂, that

serves as an input to the supervisor 𝑆. The supervisor is a

TCN with the loss function defined as 𝑀𝑆𝐸(𝑋̃, 𝑋) +
𝔼[𝐷2(log(𝑋̃))], where 𝑋̃ is the output of 𝑆. The supervisor

aim is to detect the initial time series dynamics and to

approximate the synthetic time series dynamics to the

initial one. Two discriminators 𝐷1 and 𝐷2 are used to train

the generator 𝐺: 𝐷1 tries to distinguish the initial data 𝑋

from the generated data 𝑋̂, while 𝐷2 tries to distinguish 𝑋

from the supervised data 𝑋̃.

Thus, the generator 𝐺 is trained by the joint loss

𝛼𝔼[𝐷1(log(𝑋̂))] + 𝛽𝔼[𝐷2(log(𝑋̃))] , where 𝛼 + 𝛽 = 1 .

Thereby, the supervisor does not allow GAN to generate

the time series whose dynamics differs a lot from the initial

time series dynamics.

Figure 2. Scheme of data transformation (solid lines) and training process (dashed lines) in the CLSGAN model.

IV. EXPERIMENTAL STUDY

A. Data Description

For our experiments we use financial time series, in

particular, stock prices available via open access

(https://www.kaggle.com/datasets/borismarjanovic/price-

volume-data-for-all-us-stocks-etfs). The data presented in

CSV format with following features: Date, Open, High,

Low, Close, Volume, OpenInt. We choose the Close price

feature and stocks such as ZEUS, GEN, and FISI for the

further experiments. We choose these time series because

of their periods of high volatility with fast changes on low

volatility periods. Thus, we can properly study the benefits

of the proposed method based on volatility clustering using

the mentioned data. The lengths of time series are 3201,

2645, 3200, respectively.

Train sets for the GAN-based generative models are

formed in the following way: each cluster 𝐶𝑖 , 𝑖 ∈
{1, … , 𝑛𝑐} is divided into 𝑁 − 𝑇 + 1 series of the length 𝑇

by the sliding window method. In the experiments we take

𝑇 = 127. Then, the batches of size 80 are formed using the

obtained time series. In the case of CLFF generative model,

the whole cluster is used as a training set.

B. Pipeline Implementation Details

The following section contain some details about the

implementation of the pipeline presented in Fig. 1. In our

work we use the Pruned Exact Linear Time (PELT)

method [32] for change points detection, which allows to

detect an unspecified number of change points. We apply

it with the following specification: the penalty value is 1

and the minimum length of detected regime is 𝑇 + 1 =128.

As for the dimension of the regime characteristics

vector (2), it is chosen to be 8 and consists of the following

components:

• sample mean (calculated on logarithmic

normalised via MinMax transformation regime

data);

• standard deviation (calculated on initial regime

data);

• skewness (calculated on initial regime data);

• kurtosis (calculated on initial regime data);

• minimum (calculated on logarithmic standardise

regime data);

• maximum (calculated on logarithmic standardise

regime data);

• mean of spectral density squared absolute values

(calculated on twice differentiated regime data):

𝑆𝜒 = 𝔼𝑓[|𝑆(𝑓)|2],

where

𝑆(𝑓) = ∑

+∞

𝑘=−∞

𝑟𝑋[𝑘]𝑒−2𝜋𝑘𝑓,

and 𝑟𝑋[𝑘]—autocorrelation function of time series 𝑋

with lag 𝑘;

• Kolmogorov-Smirnov test statistic with respect to

standard normal distribution (calculated on

differentiated regime data).

As for the regimes clustering method, we use the

agglomerative clustering algorithm with the Ward distance

between clusters and euclidean metric between objects

inside clusters.

C. Data Preprocessing

Since clusters are formed from regimes that located at

different positions in the original series, the series within a

cluster are not continuous. Therefore, in the preprocessing

procedure (see Fig. 1), we smooth out the clusters based

on the changes between different regimes. Further we will

denote this transformation as Δ . Consider a regime

(5)

(6)

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1375

ℛ(𝜏𝑖), 𝑖 ∈ {1, … , 𝑙 − 1} with the last value ℛ−1(𝜏𝑖) ;

ℛ0(𝜏𝑖+1) is the first value of the next regime. Denote the

difference between them as Δ𝑖 = ℛ−1(𝜏𝑖) − ℛ0(𝜏𝑖+1).

The transformation of the regime ℛ(𝜏𝑖+1) values is

performed according to the following rules:

if Δ𝑖 ≥ 0 ⇒ ℛ(𝜏𝑖+1) = ℛ(𝜏𝑖+1) + Δ,
if Δ𝑖 < 0 ⇒ ℛ(𝜏𝑖+1) = ℛ(𝜏𝑖+1) − |Δ|.

After the Δ transformation the regimes are further

preprocessed via applying log returns, standardisation and

Lambert transformation.

In the case of CLFF generative model the Δ

transformation with the opposite signs is applied to the

synthetic clusters 𝐶̃1, … , 𝐶̃𝑛𝑐
, as well as inverse

transformations of log returns, standardisation and

Lambert transform within the data reconstruction

procedure.

In the case of GAN-based models the reconstruction

procedure differs from the above described. This is caused

by the fact that these models produce more diverse

synthetic data and there is a possibility that after the

reconstruction the differences between the regimes in the

synthetic time series will vary a lot comparing to the initial

data. To cope with it, we use four additional

transformations described in Algorithm 1 (the difference

between regimes in initial time series is denoted by Δ𝑖
𝑟).

Algorithm 1. Additional Δ transform for GANs

Require: Δ𝑖 , Δ𝑖
𝑟

1 if (Δ𝑖 ≥ 0) & (𝑠𝑖𝑔𝑛(Δ𝑖) = 𝑠𝑖𝑔𝑛(Δ𝑖
𝑟)) then

2 if |Δ𝑖| ≥ |Δ𝑖
𝑟| then

3 ℛ̃(𝜏𝑖+1) = ℛ̃(𝜏𝑖+1) + (|Δ𝑖| − |Δ𝑖
𝑟|)

4 else if |Δ𝑖| < |Δ𝑖
𝑟| then

5 ℛ̃(𝜏𝑖+1) = ℛ̃(𝜏𝑖+1) − (|Δ𝑖
𝑟| − |Δ𝑖|)

6 end if

7 else if (Δ𝑖 ≥ 0) & (𝑠𝑖𝑔𝑛(Δ𝑖) ≠ 𝑠𝑖𝑔𝑛(Δ𝑖
𝑟)) then

8 ℛ̃(𝜏𝑖+1) = ℛ̃(𝜏𝑖+1) + (|Δ𝑖| + |Δ𝑖
𝑟|)

9 else if (Δ𝑖 < 0) & (𝑠𝑖𝑔𝑛(Δ𝑖) = 𝑠𝑖𝑔𝑛(Δ𝑖
𝑟)) then

10 if |Δ𝑖| ≥ |Δ𝑖
𝑟| then

11 ℛ̃(𝜏𝑖+1) = ℛ̃(𝜏𝑖+1) − (|Δ𝑖| − |Δ𝑖
𝑟|)

12 else if |Δ𝑖| < |Δ𝑖
𝑟| then

13 ℛ̃(𝜏𝑖+1) = ℛ̃(𝜏𝑖+1) + (|Δ𝑖
𝑟| − |Δ𝑖|)

14 end if

15 else if (Δ𝑖 < 0) & (𝑠𝑖𝑔𝑛(Δ𝑖) ≠ 𝑠𝑖𝑔𝑛(Δ𝑖
𝑟)) then

16 ℛ̃(𝜏𝑖+1) = ℛ̃(𝜏𝑖+1) − (|Δ𝑖| + |Δ𝑖
𝑟|)

17 end if

D. Evaluation of Synthetic Time Series Quality

We evaluate the models performance using the

following criteria (motivated by the financial time series

specific properties):

• extreme points coincidence in initial and synthetic

time series;

• fading autocorrelation function of the synthetic

time series with behaviour similar to the initial one;

• closeness of time series distributions at different

scales (in particular, on daily and monthly basis);

• synthetic and initial time series distributions

similarity in terms of sample characteristics

(Skewness, Kurtosis), Jensen-Shannon

divergence (𝐃𝐉𝐒), sum of spectral density squared

absolute values (5) (𝐒𝛘) and two-sample

Kolmogorov-Smirnov statistic, that shows the

maximum distance between two empirical

distribution functions (𝐊𝐒∗);

• synthetic data quality from the point of its

usefulness in the initial time series forecasting

tasks (below described in details).

The last criteria of synthetic data quality is connected

with the time series forecasting task. For this experiment

we divided the synthetic and the corresponding real-world

time series into train and test sets according to the standard

cross validation procedure for time series. Namely, the

time series are divided into 31 disjoint parts of the length

𝐿 = 60. The forecasting model (from fbprophet Python

library: https://facebook.github.io/prophet/docs/quick_sta

rt.html) is trained on the synthetic time series part of length

𝑘 ⋅ 𝐿 , where 𝑘 ∈ {1, … ,30} is the step number and the

model is tested on the real-world time series part of length

𝐿. On every step we append the train sample by 𝐿 values.

E. Generative Models Implementation Details

For CLFF model we use the following hyperparameters:

800 epochs, 10 flows, learning rate equals to 10−4.

As it was said earlier, for CLGAN and CLSGAN we use

the architecture where generator and discriminator based

on TCNs. The number of temporal convolution blocks 𝐻

inside the TCN depends on the receptive field size (the

detailed description of this dependence is given in [11]). In

this work we consider the value for receptive field size

equal 127 (thus, 𝑇 = 127). There is a disadvantage of

using clustering approach in the case of GAN-based

models since clusters can have a small number of elements.

This can result in insufficient data to train the GANs of the

desired quality. If the number of elements in the

preprocessed cluster 𝐶𝑘, 𝑘 ∈ {1, … , 𝑛𝑐} is less than 𝐻 ⋅ 𝑇,

then noisy oversampling is applied to it, that is we add

noise with standard normal distribution to cluster values.

The number of noisy series is equal to 𝑠. It is chosen as

⌈
𝐻⋅𝑇

|𝐶𝑘|
⌉, where |𝐶𝑘| is the number of elements in the cluster

𝐶𝑘 . After the noisy oversampling we have 𝑠 time series

belonging to the cluster 𝐶𝑘 with the same properties as the

initial one but with noisy values. Then we stack them in

one series 𝐶̂𝑘 and feed it to QuantGAN.

TABLE I. CLGAN and CLSGAN ARCHITECTURE DETAILS

𝜻 𝒅𝑰 𝒅𝑯 𝒅𝑶 𝑵𝑲 𝑵𝑫 𝑵𝑷 𝑵𝑺 𝒅𝒓 𝒍𝒌𝒓

𝜁(1) 1 80 80 1 1 0 1 0.1 0.002

𝜁(𝑖) 80 80 80 2 2𝑖−2 2𝑖−2 1 0.1 0.002

For the experiments we employ the model with the

values of parameters from 𝜁(𝑖) for TCN presented in

Table I, where 𝑖 ∈ {2, … ,7}. Last layer of TCN is 1 × 1

convolution [11] with 𝑑𝐼 = 80, 𝑑𝐻 = 80, 𝑑𝑂 = 1, 𝑁𝐾 =
1, 𝑁𝐷 = 1. Note that in CLSGAN Supervisor’s TCN has

𝑑𝐻 = 60. As for the generators, they get random noise

(7)

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1376

sampled from multivariate standard normal distribution of

the dimension 3.

TABLE II. HYPERPARAMETERS FOR CLGAN AND CLSGAN

Hyperparameters CLGAN CLSGAN

M 23 20

initial learning rate 0.0009
0.0009 (and 0.001

for Supervisor)

exponential learning

rate scheduler
gamma=0.96 gamma=0.96

generator training every 5 iterations every 5 iterations

supervisor training – every 5 iterations

batch size 80 80

sequence length 127 127

number of clusters 2–3 3–4

clip value for

discriminator
0.01 0.01

For the training of CLGAN and CLSGAN we use the

hyperparameters listed in Table II (also, in experiments we

take 𝛼 = 0.8, 𝛽 = 0.2 for training the generator in

CLSGAN). As it can be seen, we use learning rate

scheduler for faster convergence at the start and we train

generator (in both models) and supervisor (in CLSGAN)

once every 5th iteration of discriminator. Number of

epochs is selected dynamically related on the number of

elements in cluster. Let 𝑀 ∈ ℕ, 𝑀 > 2 be the maximum

acceptable value for the number of epochs. We choose

index 𝑖𝑘 ∈ {1, … , 𝑀 − 1} as the smallest value for which

holds |𝐶𝑘| ≤
𝑖𝑘𝑁

𝑀−1
. Then the number of epochs for cluster

𝐶𝑘 is equal to 𝑖𝑘 + 1.

V. RESULTS AND DISCUSSION

In this section we show the advantages of the proposed

generative models (CLFF, CLGAN, CLSGAN) by

comparing the results to the chosen existing baselines

(FF [10], QuantGAN [11]).

In Fig. 3, we can see the obtained Q-Q plots of the

extremum points in synthetic and the corresponding initial

time series (GEN, ZEUS, FISI). These plots are

constructed by finding the points of time series local

extremum in windows of the length 40, then computing the

quantiles with the step 0.01 for the sample of time series

extremum points and plotting the obtained quantiles values.

Due to the specific behaviour of financial time series, the

generative model should be able to produce extremum

points that are close to the initial ones. As it can be seen,

CLFF model repeats the real time series more precise than

others. GAN-based approaches detect the extrema worse

than FF-based models (especially QuantGAN, that tends

to underestimate the real data in the case of GEN and

ZEUS; in the case of FISI this model produces the

extremum points that far from the real ones). Contrariwise,

CLSGAN tends to overestimate the real data in all three

cases, while the CLGAN shows the closest to the initial

data performance in terms of extrema.

Figure 3. Q-Q plots (quantiles with step 0.01) of local extremum points (computed in windows of the length 40) in synthetic and corresponding initial

time series.

In Fig. 4, the autocorrelation function values for each

time series and generative model are shown. All models

produce fading autocorrelation functions, that is an

important characteristic of financial time series. One can

note that the dependence of autocorrelation on lags is

almost identical in the case of the initial time series and the

time series generated by CLFF. In the case of CLGAN and

CLSGAN models, the main properties of autocorrelation

function behaviour are detected, but are reproduced with

different amplitudes.

In Fig. 5, the box plots of obtained MSE values

distributions (see Evaluation metrics section for the

mechanism of their computation) are shown. The median

error value corresponding to CLFF model is closer to the

value corresponding to the real-world time series in

comparison to Fourier Flows model; also, CLFF’s error

interquartile range has similar size to the real-world one.

In case of ZEUS and FISI (time series with rough

dynamics) QuantGAN shows the worst results in terms of

MSE. Vice versa, CLGAN and CLSGAN result in smaller

values of MSE, thus, these methods are more helpful in

approximating the behaviour of the initial time series. Note

that training the forecasting model on synthetic generated

by CLFF results in reduction of MSE for all tested time

series.

GEN ZEUS FISI

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1377

Figure 4. Autocorrelation functions for the initial and synthetic time series.

Figure 5. Box plots for MSE values obtained after training the Prophet model on the corresponding synthetic time series and testing it on the real-

world time series (repeated 30 times procedure of cross-validation).

Fig. 6 shows the distributions: the original one and the

distribution of revenues in daily (differentiated time series)

and monthly (differentiated with time lag of 20 days time

series) scales. When dealing with financial time series, it

is important to pay attention to daily and monthly

distributions of revenues, as the original one can be rather

noisy. The CLFF, CLGAN, and CLSGAN models are

capable of accurately modelling distributional properties

that exist in the real data. However, due to space

limitations, we only present the results for GEN in the

paper. Models are able to detect the heavy tails and have

more precise values in daily and monthly distributions

comparing to QuantGAN produced data.

GEN ZEUS

FISI

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1378

Figure 6. The original time series distribution, the differentiated time series distribution (daily scale) and the differentiated with lag of 20 days time

series distribution (monthly scale without weekends) of the initial and synthetic data on GEN time series.

In Table III, the values of computed distributional

characteristics for synthetic and the corresponding real-

world time series are presented. To compute every

characteristic value we generated 40 synthetic instances

for every real-world time series and averaged the obtained

values. Regarding the skewness and kurtosis

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1379

FF and CLFF

QuantGAN and CLGAN

CLSGAN

characteristics, we also include the confidence interval

bounds in brackets. We can observe absolute dominating

of CLFF model in comparison with the baselines as well

as with the proposed generative models (the best obtained

values for Fourier Flows based models are highlighted

with the blue colour). Also, we independently compare the

characteristics values of GAN-based approaches (the

closest to the real-world time series values are highlighted

with the orange colour). Our proposed method with

clustering outperforms QuantGAN among all chosen

characteristics except the kurtosis for GEN and FISI (note

that QuantGAN which outperforms approaches with

clustering in FISI has a large confidence interval, thus, the

generation process is unstable). CLSGAN in all three data

cases approximates the initial frequency 𝑆𝜒 closer than

QuantGAN due to Supervisor which can help to generate

more stable synthetic time series.

TABLE III. SYNTHETIC AND REAL-WORLD TIME SERIES DISTRIBUTION CHARACTERISTICS (COMPUTED BY 40 REALISATIONS OF SYNTHETIC TIME

SERIES). FOR SKEWNESS AND KURTOSIS CHARACTERISTICS CONFIDENCE INTERVAL BOUNDS ARE GIVEN IN BRACKETS

Data Methods Skewness Kurtosis 𝐃𝐉𝐒 𝐒𝛘 𝐊𝐒∗

GEN

Real 0.747 −0.135 0.000 2.004 0.000

FF 0.595 (±0.05) −0.280 (±0.08) 0.077 2.350 0.159

CLFF 0.733 (±0.01) −0.152 (±0.01) 0.017 2.001 0.029

QuantGAN 0.211 (±0.13) −0.393 (±0.18) 0.241 2.287 0.843

CLGAN 0.371 (±0.21) −0.576 (±0.29) 0.162 2.256 0.456

CLSGAN 0.336 (±0.31) −0.552 (±0.41) 0.141 1.995 0.501

ZEUS

 Real 1.750 6.268 0.000 1.951 0.000

FF 0.996 (±0.15) 2.732 (±0.75) 0.048 2.434 0.347

CLFF 1.681 (±0.04) 5.673 (±0.19) 0.027 2.014 0.121

QuantGAN 0.548 (±0.21) 0.159 (±0.69) 0.171 2.084 0.426

CLGAN 0.123 (±0.33) −0.213 (±0.51) 0.192 2.107 0.282

CLSGAN 0.590 (±0.31) 0.701 (±0.76) 0.169 2.052 0.211

FISI

Real 0.735 0.198 0.000 2.072 0.000

FF 0.868 (±0.03) 0.601 (±0.09) 0.050 2.614 0.221

CLFF 0.739 (±0.01) 0.238 (±0.02) 0.020 2.102 0.039

QuantGAN 0.563 (±0.22) 0.151 (±0.65) 0.180 2.157 0.467

CLGAN 0.252 (±0.11) −0.473 (±0.25) 0.185 1.954 0.354

CLSGAN 0.778 (±0.19) −0.401 (±0.29) 0.157 2.015 0.335

Thus, FF and CLFF methods can be used for the

accurate generation because they estimate explicit

likelihood and show the closest metric values to the real-

world time series ones. Additional experiments on varying

the hyperparameters (such as number of flows or epochs)

in these models demonstrate the results of the low quality

as synthetics start to differ from the initial data

significantly. Therefore, to generate diverse data, one

should use methods that have more freedom in parameters,

such as GANs. The proposed approaches show that the

regime clustering can help to detect rough dynamic of the

financial time series.

VI. CONCLUSION

We have proposed the new method for synthetic

financial time series generation, which combines

generative models with regime clustering. For the

generative models within our method, we used the Fourier

Flows and QuantGAN approaches. The proposed method

is advisable to use in situations where inferring an explicit

probabilistic time series model is difficult or even

impossible, such as with financial time series. Due to

regimes clustering, our method can deal with multiscale

nature of time series and generate a data containing a

diversity of patterns presented in the initial data: the

distribution characteristics of synthetic data produced by

the method are closer to the corresponding values of the

initial time series characteristics in comparison with FF

and QuantGAN generative models. If one is interested in

an accurate and stable generation of the synthetic data,

then the CLFF generative model should be used, as it

shows the closest to the initial characteristics with narrow

confidence intervals. GAN-based generative models

provide generation of a more diverse synthetic data.

As for the computation time on CPU (M1 with 8GB

RAM), the CLFF (69 s) method works even faster that FF

(76.2 s) in the same conditions, due to the training the

models separately on clusters data (all measurements are

carried out on GEN time series with parameters values

described earlier). On the contrary, CLGAN (1218 s) and

CLSGAN (1520.4 s) are more computationally expensive

in comparison with QuantGAN (687 s), but the

experimental study has shown that CLGAN and CLSGAN

outperform QuantGAN in terms of generated synthetics

quality. We plan to improve the CLGAN and CLSGAN

architectures in terms of their generation process time in

the future.

The developed method can be applied to the tasks of

historical data supplementation for training a ML model of

a desired quality or historical data replacement in case of

data sharing restrictions. Further elaboration of this

research is possible in such directions as constructing a

neural network for regimes clustering, that can be able to

find more complex relationships between regimes, or

method’s modification for working with multivariate time

series.

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1380

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Conceptualisation: K.Z., E.S. and A.B.; methodology:

K.Z.; data curation: K.Z.; writing—original draft: K.Z. and

E.S.; writing—review and editing: E.S. and A.B.; all

authors had approved the final version.

FUNDING

This research is financially supported by the Russian

Science Foundation, Agreement 17-71-30029

(https://rscf.ru/en/project/17-71-30029/), with co-

financing of Bank Saint Petersburg.

REFERENCES

[1] O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, “Financial time

series forecasting with deep learning: A systematic literature review:

2005–2019,” Applied Soft Computing, vol. 90, 106181, 2020.

[2] R. Bhowmik and S. Wang, “Stock market volatility and return

analysis: A systematic literature review,” Entropy, vol. 22, no. 5,

522, 2020.

[3] W. Lu, J. Li, J. Wang et al., “A CNN-BiLSTM-AM method for

stock price prediction,” Neural Computing and Applications, vol.

33, pp. 4741–4753, 2021.

[4] A. Parot, K. Michell, and W. D. Kristjanpoller, “Using artificial

neural networks to forecast exchange rate, including VAR-VECM

residual analysis and prediction linear combination,” Intelligent

Systems in Accounting, Finance and Management, vol. 26, no. 1,

pp. 3–15, 2019.

[5] S.A. Assefa, D. Dervovic, M. Mahfouz et al., “Generating synthetic

data in finance: Opportunities, challenges and pitfalls,” in Proc. the

First ACM International Conference on AI in Finance, 2020, pp. 1–

8.

[6] B. Krollner, B. J. Vanstone, G. R. Finnie et al., “Financial time

series forecasting with machine learning techniques: A survey,” in

Proc. 18th European Symposium on Artificial Neural Networks

(ESANN 2010), 2010, pp. 25–30.

[7] F. D. M. Pardo and R. C. Lopez, “Mitigating overfitting on financial

datasets with generative adversarial networks,” The Journal of

Financial Data Science, vol. 2, no. 1, pp. 76–85, 2020.

[8] A. Rusnak, “Conditional synthetic financial time series with

generative adversarial networks,” Master’s thesis, Digital

Humanities Laboratory, École Polytechnique Fédérale de Lausanne,

2022.

[9] A. Chakraborti, I. M. Toke, M. Patriarca et al., “Econophysics

review: I. empirical facts,” Quantitative Finance, vol. 11, no. 7, pp.

991–1012, 2011.

[10] A. Alaa, A. J. Chan, and M. Schaar, “Generative time-series

modeling with fourier flows,” in Proc. International Conference on

Learning Representations, 2020.

[11] M. Wiese, R. Knobloch, R. Korn et al., “Quant gans: Deep

generation of financial time series,” Quantitative Finance, vol. 20,

no. 9, pp. 1419–1440, 2020.

[12] A. Rajak and K. Saxena, “Modeling clinical database using time

series based temporal mining,” International Journal of Computer

Theory and Engineering, vol. 2, no. 2, pp. 185–188, 2010.

[13] A. Ganatr and Y. P. Kosta, “Spiking back propagation multilayer

neural network design for predicting unpredictable stock market

prices with time series analysis,” International Journal of Computer

Theory and Engineering, vol. 2, no. 6, pp. 963–971, 2010.

[14] A. Chitra and S. Uma, “An ensemble model of multiple classifiers

for time series prediction,” International Journal of Computer

Theory and Engineering, vol. 2, no. 3, pp. 454–458, 2010.

[15] R. Cont, “Empirical properties of asset returns: Stylized facts and

statistical issues,” Quantitative Finance, vol. 1, no. 2, 223, 2001.

[16] P. D’Urso, L. Giovanni, and R. Massari, “Garch-based robust

clustering of time series,” Fuzzy Sets and Systems, vol. 305, pp. 1–

28, 2016.

[17] F. Chamroukhi, A. Samé, P. Aknin et al., “Model-based clustering

with hidden Markov model regression for time series with regime

changes,” in Proc. the 2011 International Joint Conference on

Neural Networks, IEEE, 2011, pp. 2814–2821.

[18] T. W. Liao, “Clustering of time series data: A survey,” Pattern

Recognition, vol. 38, no. 11, pp. 1857–1874, 2005.

[19] A. Cherif, H. Cardot, and R. Bon, “Som time series clustering and

prediction with recurrent neural networks,” Neurocomputing, vol.

74, no. 11, pp. 1936–1944, 2011.

[20] A. Samé, F. Chamroukhi, G. Govaert et al., “Model-based

clustering and segmentation of time series with changes in regime,”

Advances in Data Analysis and Classification, vol. 5, no. 4, pp.

301–321, 2011.

[21] J. Wiljes, A. Majda, and I. Horenko, “An adaptive markov chain

monte carlo approach to time series clustering of processes with

regime transition behavior,” Multiscale Modeling & Simulation, vol

11, no. 2, pp. 415–441, 2013.

[22] M. Pfenninger, S. Rikli, and D. N. Bigler, “Wasserstein gan: Deep

generation applied on financial time series,” Other Financial

Economics eJournal, 2021.

[23] J. Yoon, D. Jarrett, and M. Schaar, “Time-series generative

adversarial networks,” Advances in Neural Information Processing

Systems, vol. 32, 2019.

[24] K. E. Smith and A. O. Smith, “Conditional gan for timeseries

generation,” arXiv preprint, arXiv:2006.16477, 2020.

[25] K. E. Smith and A. O. Smith, “A spectral enabled gan for time series

data generation,” arXiv preprint, arXiv:2103.01904, 2021.

[26] Y. Yacoby, W. Pan, and F. Doshi-Velez, “Failure modes of

variational autoencoders and their effects on downstream tasks,”

arXiv preprint, arXiv:2007.07124, 2021.

[27] X. Li, V. Metsis, H. Wang et al., “TTS-GAN: A transformer-based

time-series generative adversarial network,” in Proc. AIME 2022:

the 2022 International Conference on Artificial Intelligence in

Medicine, 2022, pp. 133–143.

[28] D. M. Mateos, L. E. Riveaud, and P. W. Lamberti, “Detecting

dynamical changes in time series by using the jensen shannon

divergence,” Chaos: An Interdisciplinary Journal of Nonlinear

Science, vol. 27, no. 8, 083118, 2017.

[29] A. Marani, A. Jamali, and M. Nehdi, “Predicting ultra-high-

performance concrete compressive strength using tabular

generative adversarial networks,” Materials, vol. 13, pp. 1–24,

2020.

[30] G. K. Kanji, 100 Statistical Tests, Sage Publications Ltd., 2006.

[31] J. Jeon, J. Kim, H. Song et al., “GT-GAN: General purpose time

series synthesis with generative adversarial networks,” in Proc.

NeurIPS 2022, Advances in Neural Information Processing Systems,

2022.

[32] R. Killick, P. Fearnhead, and I. A. Eckley, “Optimal detection of

changepoints with a linear computational cost,” Journal of the

American Statistical Association, vol. 107, no. 500, pp. 1590–1598,

2012.

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1381

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N6-1372

