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Abstract—In the information age, numerous data needs to be 

transferred from one point to another. The bigger the amount 

of the data, the more the consumption in computation and 

memory. Due to a limitation of the existing resource, the 

compression of the data and the reconstruction of the 

compressed data receive much attention in several research 

areas. A sparse signal reconstruction problem is considered 

in this work. The signal can be captured into a vector whose 

elements can be zeros. Iteratively Reweighted Least Squares 

(IRLS) is a technique that is designed for extracting the signal 

vector from the available observation data. In this paper, a 

new algorithm based on the iteratively reweighted least 

squares using diagonal regularization method are proposed 

for sparse image reconstruction. The explicit solution of the 

IRLS optimization problem is derived and then an 

alternative IRLS algorithm based on the available solution is 

proposed. Since the matrix inverse in the iterative 

computation can be subject to ill condition, a diagonal 

regularization is proposed to overcome such a problem. 

Numerical simulation is conducted to illustrate the 

performance of the new IRLS with the comparison to the 

former IRLS algorithm. Numerical results indicate that the 

new IRLS method provides lower signal recovery error than 

the conventional IRLS approach at the expense of more 

complexity in terms of more computational time.  
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iterative reweighted least squares  

 

I. INTRODUCTION 

There are many works that discussed a problem known 

as compressive sensing [1, 2]. The basic concept is that 

sparsity allows the signals that are sparse or compressible 

for being reconstructed from a small number of samples. 

This also allows for exploiting the additional information 

about the solutions, such as model-based compressive 

sensing. The methods in [3, 4] can enhance the 

recoverability and introduce a new class of the structured 

compressible signals along with a new sufficient condition 

of robust structured compressible signal recovery. In 

addition, based on structured sparsity theory [4–6], more 

benefits can be attained if more a priori information could 

be applied to the sparsity patterns, such as the components 

of the data may be clustered in groups. This technique is 

called group-sparse data in which the components within 

the same group tend to be either zeros or non-zeros.  

Consider the problem of recovering a desired signal x ∈
ℝ𝑁×1 from a set of observation data 𝒃 ∈ ℝ𝑀×1 based on a 

modeling matrix or measurement matrix 𝑨 ∈ ℝ𝑀×𝑁 which 

either depends on the model or can be chosen beforehand, 

where 𝑀 ∈ ℕ1×1 and 𝑁 ∈ ℕ1×1 are the lengths of real-

valued input data and real-valued output data, respectively. 

This problem has many applications in science and 

engineering, e.g., imaging and vision [7], photonic mixer 

device [8], electronic defense [9], security and 

cryptosystem [10], radar [11, 12], earth observation [13], 

wireless networks [14, 15], biometric watermarking [16], 

healthcare [17], etc.  

 

 

Figure 1. A noisy linear input-output system. 

In Fig. 1, if the perturbation 𝜹𝑏 is negligible, the linear 

complex system can approximately be written as 

 𝑨𝒙 ≈ 𝒃 (1) 

One of the possible ways to retrieve the unknown signal 

𝒙 such that Eq. (1) holds true.   

Iteratively Reweighted Least Squares (IRLS) is a 

considerable criterion for extracting the signal vector 𝒙 
from the available observation data 𝒃 . This idea was 

proposed in [18, 19]. Other variations of the IRLS were 

examined in [20–24]. In this work, a closed-form solution 

of the IRLS criterion is derived. An alternative IRLS is 
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later proposed based on the straightforward optimization. 

Due to a matrix inverse issue during the iterative 

computation, a regularization technique is adopted to 

overcome the ill-conditioned matrix. Numerical 

simulation is conducted to illustrate the performance of  

the new IRLS with the comparison to the former IRLS  

in [18, 19]. Numerical results indicate the lower signal 

recovery error at the expense of more complexity in terms 

of more computational time.  

II. WEIGHTED LEAST SQUARES 

Let 𝒘 ∈ ℝ𝑁×1 be a weighting vector, which can be 

element-wise expressed by  

 𝒘 = [𝑤1, 𝑤2,   … , 𝑤𝑁]T, (2) 

where (∙)Tis the transpose operator, which can be applied 

to a vector or a matrix. Since each element of 𝒙 may be 

subject to outlier or meaningless information, e.g., 𝑥𝑛 = 0, 

in some scenarios. A Weighted Least Squares (WLS) 

optimization problem can be formulated as  

 𝒙̂WLS = argmin
𝒙

∑ 𝑤𝑛
𝑁
𝑛=1 𝑥𝑛

2, s.t. 𝑨𝒙 = 𝒃. (3) 

To solve the constraint optimization in Eq. (3), one has 

to consult the Lagrange multiplier technique [25]. The 

Lagrange function of Eq. (3) can be written as   

  𝑓(𝒙, 𝝀) = ∑ 𝑤𝑛
𝑁
𝑛=1 𝑥𝑛

2 + 𝝀T(𝑨𝒙 − 𝒃),  (4) 

where 𝝀 ∈ ℝ𝑁×1 is the Lagrange multiplier vector, which 

is also unknown. Based on few multivariate derivatives 

(see, e.g., [26, 27]), it can be shown that  

 
𝜕

𝜕𝝀
𝑓(𝒙, 𝝀) = ∑

𝜕

𝜕𝝀
𝑤𝑛𝑥𝑛

2𝑁
𝑛=1 +

𝜕

𝜕𝝀
𝝀T(𝑨𝒙 − 𝒃)            (5) 

                    

    

                  = 𝟎 + 𝑰(𝑨𝒙 − 𝒃) 

 

                 = 𝑨𝒙 − 𝒃, 

 

and  

 

  
𝜕

𝜕𝒙
𝑓(𝒙, 𝝀) = ∑

𝜕

𝜕𝒙
𝑤𝑛𝑥𝑛

2𝑁
𝑛=1 +

𝜕

𝜕𝒙
𝝀T(𝑨𝒙 − 𝒃) 

                   = ∑

[
 
 
 
 
 

𝜕

𝜕𝑥1

𝜕

𝜕𝑥2

  ⋮
𝜕

𝜕𝑥𝑁]
 
 
 
 
 

𝑤𝑛𝑥𝑛
2𝑁

𝑛=1 +
𝜕

𝜕𝝀
𝝀T𝑨𝒙 −

𝜕

𝜕𝝀
𝝀T𝒃     

                  = [

2𝑤1𝑥1

2𝑤2𝑥2

      ⋮
2𝑤𝑁𝑥𝑁

] + 𝑰𝑨T𝝀 + 𝟎 

  

                  = 2𝑫(𝒘)𝒙 + 𝑨T𝝀,    (6) 

 

where 𝑫(∙) is the diagonal matrix, whose diagonal is taken 

from the vector ∙. Solving the critical points 
𝜕

𝜕𝒙
𝑓(𝒙, 𝝀) =

𝟎and 
𝜕

𝜕𝝀
𝑓(𝒙, 𝝀) = 𝟎 for 𝒙 and 𝝀, respectively, bring about  

 

                      2𝑫(𝒘)𝒙 + 𝑨T𝝀 = 𝟎 

                ⇒ 2𝑫(𝒘)𝒙 = −𝑨T𝝀              (7) 

            ⇒ 𝒙̂WLS = −
1

2
𝑫−1(𝒘)𝑨T𝝀, 

              𝑨𝒙̂ − 𝒃 = 𝟎 

 

  

⇒ 𝑨(−
1

2
𝑫−1(𝒘)𝑨T𝝀) = 𝒃 

 

⇒ 𝝀̂ = −2(𝑨𝑫−1(𝒘)𝑨T)−1𝒃,  (8) 

 

and  

 

𝒘̂WLS = −
1

2
𝑫−1(𝒘)𝑨T𝝀̂ 

    

           = −
1

2
𝑫−1(𝒘)𝑨T(−2(𝑨𝑫−1(𝒘)𝑨T)−1𝒃) 

 

           = 𝑫−1(𝒘)𝑨T(𝑨𝑫−1(𝒘)𝑨T)−1𝒃,                (9) 

 

where (∙)−1 is the inverse of a square matrix ∙. The WLS 

estimate in Eq. (9) works perfectly if any element of 𝒘 is 

non-zero, i.e., 𝑤𝑛 ≠ 0 for ∀𝑛 ∈ {1, 2, . . ., 𝑁}.  However, 

when some elements of 𝒘 become zeros, i.e., 𝑤𝑛 = 0 for 

∃𝑛 ∈ {1, 2, . . . , 𝑁}, the solution in Eq. (9) will diverge. Let 

us introduce the definite reciprocal operator (∙)∓as  

 𝑧∓ =    {
1

𝑧
,    𝑧 ≠ 0,

0,    𝑧 = 0,
   (10) 

for 𝑧 ∈ ℂ1×1.  In compressed sensing, few or some 

elements of the unknown 𝒙 possess zeros. To deal with the 

trivial case 𝑤𝑛 = 0  for ∃𝑛 ∈ {1, 2, . . ., 𝑁},  the WLS 

estimate in Eq. (9) has to be modified as  

  𝒘̂WLS = 𝑫∓(𝒘)𝑨T(𝑨𝑫∓(𝒘)𝑨T)
−1

𝒃,  (11) 

Basic algebraic manipulation reveals that   

𝑨𝑫∓(𝒘)𝑨T = [𝒂1 𝒂2  ⋯  𝒂𝑁]

[
 
 
 
 
𝑤1

∓ 0 ⋯ 0

0 𝑤2
∓ ⋯ 0

⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝑤𝑁

∓]
 
 
 
 

[
 
 
 
𝒂1

T

𝒂2
T

⋮
𝒂𝑁

T ]
 
 
 

 

= ∑ 𝑤𝑁
∓𝒂𝑛

𝑁

𝑛=1

𝒂𝑛
T 

 = ∑
1

𝑤𝑛
𝒂𝑛𝒂𝑛

T
𝑛∈𝒩𝑤≠0

,  (12) 

where 𝒩𝑤≠0 is the set that consists of all indices of 𝑛 for 

which 𝑤𝑛 ≠ 0, i.e.,  

 𝒩𝑤≠0  = {𝑛|𝑤𝑛 ≠ 0; 𝑛 = 1, 2, . . ., 𝑁}. (13) 

= 𝟎     = 𝑰 

= 𝟎 = 𝑰 

 (7) 

 (8) 
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If the number of nonzero weights is less than 𝑀, the 

matrix 𝑨𝑫∓(𝒘)𝑨Twill be singular, i.e., 

 |𝒩𝑤≠0| < 𝑀 ⇒ |𝑨𝑫∓(𝒘)𝑨T| = 0,  (14) 

where |∙| is either the cardinality of a set or the determinant 

of a matrix. To alleviate the inverse issue, one might need 

to resort to a diagonal regularization or a truncated singular 

value decomposition. 

III. ITERATIVELY REWEIGHTED LEAST SQUARES 

Let ℓ(𝒙) be a non-increasing set of all elements in 𝒙, 
which can be represented by  

 ℓ(𝒙) = {𝑙𝑛1
|𝑙𝑛1

= 𝑥𝑛2
; 𝑛1, 𝑛2 ∈ {1, 2, . . . , 𝑁} ∧ |𝑙1| ≥

|𝑙2| ≥. . . ≥ |𝑙𝑁|}.  (15) 

Let 𝐿𝑘(𝒙) be the 𝑘-th element of the non-increasing set 

ℓ(𝒙) , i.e., 𝐿𝑘(𝒙) = 𝑙𝑘.  An iterative computation was 

introduced earlier as follows. 

 

Algorithm 1. Iteratively Reweighted Least Squares 

(IRLS) [18, 19] 

Input: A∈ ℝ𝑀×𝑁,  𝒃 ∈ ℝ𝑀×1, p ∈ (0,1], k ∈ ℤ1×1 

Output: 𝒙̂𝑝 ∈ ℝ𝑁×1 

𝒙̂[0] ← 𝟏 

𝒘̂[0] ← 𝟏 

ϵ̂𝑟[0] ← 1 

𝑖 ← 1 

While ϵ̂𝑟[0]  ≠ 1 do 
𝑖 ← 𝑖 + 1 

ϵ̂𝑟[𝑖] ← min(ϵ̂𝑟[𝑖 − 1],
1

𝑁
𝐿𝑘+1(𝒙̂[𝑖 − 1])) 

𝒙̂[𝑖] ← 𝑫(𝒘̂[𝑖 − 1])𝑨T(𝑨𝑫(𝒘̂[𝑖 − 1])𝑨T)−1𝒃 

𝒘̂[𝑖] ← (𝒙̂2[𝑖] + ϵ̂𝑟
2[𝑖]𝟏)1−

1
2
𝑝
 

end while 

return 𝒙̂[𝑖] 

 

Algorithm 1 is different from [19] in two aspects. 

First, the regularization parameter 𝜖𝑟[𝑖]  in [19] is 

computed from the updated 𝑥̂[𝑖] at the 𝑖-th iteration, which 

is unavailable. Second, the procedure addressed in [19] 

considers only 𝑝 = 1. 
Next, let the weight𝑤𝑛 in Section II be |𝑥̂𝑛[𝑖]|𝑝−2, i.e.,  

 𝑤𝑛[𝑖] = |𝑥̂𝑛[𝑖]|𝑝−2, (16) 

where 𝑖 is the index of iteration, 𝑝 is the exponent of an ℓ𝑝 

norm, and  𝑥̂𝑛[𝑖] is the 𝑛-th element of  𝒙̂[𝑖] ∈ ℝ𝑁×1, i.e., 

 𝒙̂[i] = [𝑥̂1[𝑖]  𝑥̂2[𝑖] … , 𝑥̂𝑁[𝑖]]
T
.  (17) 

An alternative optimization for the 𝑖-th iteration can be 

written in the form of  

 𝒙̂[𝑖] =  argmin 
𝒖

∑ |𝑥̂𝑛[𝑖 − 1]|𝑝−2𝑢𝑛
2 ,𝑁

𝑛=1  s.t. 𝑨𝒖 = 𝒃. (18) 

Following from the same way as Eq. (9) and Eq. (11) 

one would arrive at  

 𝒙̂[i]=𝑫∓(|𝒙̂[𝑖 − 1]|𝑝−2)𝑨T(𝑨𝑫∓(|𝒙̂[𝑖 − 1]|𝑝−2)𝑨T)
−1

𝒃. (19) 

In this work, an algorithm is proposed based on Eq. (19) 

as follows.  
 

Algorithm 2. IRLS with diagonal regularization 

Input: A ∈ ℝ𝑀×𝑁, 𝒃 ∈ ℝ𝑀×1, 𝑝 ∈ (0,1], 𝑁max ∈

ℤ+
1×1 , ϵmin ∈ ℝ+

1×1 

Output: 𝒙̂𝑝 ∈ ℝ𝑁×1 

𝒙̂[0] ← 𝟏 

𝑖 ← 0 

ϵx̂ ← ϵmin + 1 

While ϵx̂ > ϵmin ∧ 𝑖 ≤ 𝑁max  do 
𝑖 ← 𝑖 + 1 

𝒙̂[𝑖] ← 𝑫∓(|𝒙|𝑝−2)𝑨T(𝑨𝑫∓(|𝒙|𝑝−2)𝑨T)
−1

𝒃|𝒙=𝒙̂[𝑖−1] 

ϵx̂ ←
‖𝒙̂[𝑖] − 𝒙̂[𝑖 − 1]‖2

‖𝒙̂[𝑖 − 1]‖2
 

end while 

return 𝒙̂[𝑖] 

 

Since 𝑥̂𝑛[𝑖] has a high probability to be nonzero during 

the iteration, the definite inverse from Eq. (10) for the 

matrix 𝑫(|𝒙|𝑝−2) can be replaced by  

𝑫∓(|𝒙|𝑝−2) = 𝑫−1(|𝒙|𝑝−2) 

                                             = 𝑫(|𝒙|2−𝑝). (20) 

Since the matrix 𝑨𝑫∓(|𝒙̂𝑛[𝑖 − 1]|𝑝−2)𝑨T  can be ill-

conditioned, it can be approximated by 

𝑨𝑫∓(|𝒙̂[i − 1]|𝑝−2)𝑨T  

 ≈ lim
ε→0

(𝑨𝑫−𝟏(|𝒙̂[i − 1]|𝑝−2)𝑨T + ε𝑰)−1, (21) 

where ε ∈ ℝ+
1×1 is a small positive constant close to zero. 

IV. NUMERICAL EXAMPLES 

All numerical simulation in this work is conducted 

using Python language.  

A. Random Number Generation 

Details of random number generation are setup as same 

as in [28, 29].  

B. Algorithmic Comparison 

The methods intended to numerical comparison include  

• linear least squares (LLS); the estimate given by 

𝒙̂LLS = 𝑨T(𝑨𝑨T)−1𝒃, 

• iterative hard thresholding (IHT); the estimate 𝒙̂[𝑖] 
given by Blumensath and Davies [30, 31],  

• Iteratively reweighted ℓ1 (IRL1): the estimate 𝒙̂[𝑖] 
given by Candès et al. [32] whose convex 

optimization problem is solved by an open-source 

Python-embedded modeling language for convex 

optimization (known as CVXPY) [33],  

• IRLS: the estimate 𝒙̂[𝑖] given by Algorithm 1.  

• IRLS-DR: the estimate 𝒙̂[𝑖]given by Algorithm 2. 
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Figure 2. RMSRE as a function of p from 𝑁R=100,000 independent 

runs for K = 32, 𝑀 = 128, and 𝑁 = 256. 

In Fig. 2, the RMSRE is shown as a function of the norm 

exponent 𝑝. The new IRLS has a sharp decrease to the 

lowest error around 𝑝 = 1 . For 𝑝 = 2 , the new IRLS 

provides the same error as the conventional one.  

 

 

Figure 3. Elapsed time of computational as a function of p from 

𝑁R=100,000 independent runs for K = 32, 𝑀 = 128, and 𝑁 = 256. 

In Fig. 3, the computational time is shown as a function 

of the norm exponent p. One can see that the IRLS-DR 

generally requires more computational time than the 

conventional IRLS, except for 𝑝 > 1.7.  

 

 

Figure 4. RMSRE as a function of SNR from 𝑁𝑨= 𝑁𝒙0
=32, 𝑁supp(𝒙0) = 

32, 𝑁𝜹𝑏
= 100, and 𝑁R = 𝑁𝑨𝑁supp(𝒙0)𝑁𝜹𝑏

  = 102,400 independent runs for 

K = 32, 𝑀 = 128, and 𝑁 = 256, p = 0.9, and ϵmin= ϵ = 10−6. 

In Fig. 4, the RMSRE is shown as a function SNR. This 

is the complete scenario, where the additive noise in Fig. 1 

takes place. The IRLS-DR and the IRL1 decreases with the 

SNR continuously, while the IHTs and the former IRLS do 

not. The IRL1 outperforms the new IRLS by a little 

amount of margin. However, as seen in Fig. 5, the IRL1 

needs more computational time than the new IRLS. In 

addition, one can hardly see any benefit of the LLS 

initialization to the new IRLS in Fig. 4. 

 

 

Figure 5. Elapsed time of computation as a function of SNR from 𝑁𝑨 = 

𝑁𝒙0
= 32, 𝑁supp(𝒙0) = 32, 𝑁𝜹𝑏

= 100, and 𝑁R = 𝑁𝑨𝑁supp(𝒙0)𝑁𝜹𝑏
  = 102,400 

independent runs for K = 32, 𝑀 = 128, and 𝑁 = 256, p = 0.9, and ϵmin= 
ϵ = 10−6. 

 

 

Figure 6. RMSRE as a function of sparsity ratio from 𝑁𝑨 = 𝑁𝒙0
= ⌈

103

𝐾
⌉ , 

𝑁supp(𝒙0) = K, 𝑁𝜹𝑏
= 100, and 𝑁R = 𝑁𝑨𝑁supp(𝒙0)𝑁𝜹𝑏

  = independent runs 

for 𝑀 = 128, 𝑁 = 256, p = 0.9, SNR ≈ 30[dB], and ϵmin= ϵ = 10−6. 

In Fig. 6, the RMSRE is shown as a function of the 

sparsity ratio 
𝐾

𝑁
. The new IRLS provides lower RMSRE 

than the conventional IRLS, yet at the expense of more 

computational time as seen in Fig. 7. 
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Figure 7. Elapsed time of computation as a function of sparsity ratio from 

𝑁𝑨 = 𝑁𝒙0
= ⌈

103

𝐾
⌉, 𝑁supp(𝒙0) = K, 𝑁𝜹𝑏

= 100, and 𝑁R = 𝑁𝑨𝑁supp(𝒙0)𝑁𝜹𝑏
  = 

independent runs for 𝑀 = 128, 𝑁 = 256, p = 0.9, SNR ≈ 30[dB], and 

ϵmin= ϵ = 10−6. 

Next, an image reconstruction is considered. The (m,n)-

th pixel of the image 𝑿 ∈ ℝ𝑀×𝑁can be found from the two-

dimensional inverse discrete cosine transform (IDCT) of 

the image spectrum matrix S ∈ ℝ𝑀×𝑁 [34], i.e., 

𝑥𝑚,𝑛 = [𝒞−1{𝑺}]𝑚,𝑛 

= ∑ ∑ 𝛼𝑘1
𝛼𝑘2

𝑠𝑘1,𝑘2

𝑀−1

𝑘1=0

𝑁−1

𝑘2=0

 

 cos (
1

2𝑀
(2𝑚 + 1)𝑘1) cos (

1

2𝑁
(2𝑛 + 1)𝑘2), (22) 

where 𝒞−1{∙}  is the IDCT operator and 𝑠𝑘1,𝑘2
 is the 

(𝑘1, 𝑘2)-element of 𝑺. The sensing matrix 𝑨 is given by 

 𝑨 = 𝚽(𝑪𝑁⨂𝑪𝑀),  (23) 

where 𝚽 ∈ ℝ𝑀×(𝑀𝑁)  is the sampling matrix and 𝑪𝑀 ∈
ℝ𝑀×𝑁 is the IDCT matrix, which is given by  

 𝑪𝑀 = 𝒞−1{𝑰𝑀}, (24) 

and 𝑪𝑁 ∈ ℝ𝑀×𝑁 is the IDCT matrix, which is given by  

 𝑪𝑁 = 𝒞−1{𝑰𝑁}.  (25) 

Peak Signal-to-Noise Ratio (PSNR) is defined by 

 PSNR = 20log10 (
255

√
1

𝑀𝑁
‖𝑿̂−𝑿0‖

2

2
).  (26) 

The original image is shown in Fig. 8 which contains 

the data of size 𝑁 = 1534 × 1433 × 3 = 6594666. The data 

of this size requires so much computational time in a 

computer simulation. This image is converted to a 

grayscale image. Furthermore, to reduce the computational 

burden, the grayscale image is down sampled to 153 × 143 

pixels in Fig. 9, which results in N = 153 × 143 = 21879. 

 

 

Figure 8. An original MRI image of a human brain with the size of 

1534×1433 pixels and 3-bit color depth in .jpg format. 

 

Figure 9. The MRI image of the human brain converted to the grayscale 

and down sampled to 153×143 pixels. 

Assume that the length of the compressed data to be of 

the size M = 10940, which is the same value for K. The 

compression ratio thus becomes 
1

𝑁
(𝑁 − 𝑀)  = 

0.49997714703597057, which is still less than the 

Nyquist’s sampling rate. 

 

 

Figure 10. IHT with 𝑁max = 100 iterations, ϵmin= 10−6, c = 0.1, 𝜅 =

 
1

1−𝑐
 + 0.1, 𝛾 =  

1

𝜅(1−𝑐)
, and 𝒙̂[0] = 1. 

The IHT algorithm reconstructs the compressed image, 

which is in Fig. 10, with the performance in Table I. 

Initialized by the LLS estimate, the IHT algorithm again 

recovers the compressed image, which is in Fig. 11, with 

the performance in Table II. One can see that the LLS 
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initialization gives better reconstruction error performance 

at the expense of the computational time. 

TABLE I. RECONSTRUCTION PERFORMANCE OF THE IHT IN FIG. 10 

Performance Value 

normalized error 
‖𝑿̂IHT−𝑿0‖

2

‖𝑿0‖2
 0.546294822456923 

Peak signal-to-noise ratio 13.419542261080572 [dB] 

computational time 0.1734757089870982 [s] 

TABLE II. RECONSTRUCTION PERFORMANCE OF THE IHT IN FIG. 11 

Performance Value 

normalized error 
‖𝑿̂IHT−𝑿0‖

2

‖𝑿0‖2
 0.5013291943650706 

Peak signal-to-noise ratio 13.49846419956603 [dB] 

computational time 0.37225858398596756 [s] 

 

 

Figure 11. IHT with 𝑁max = 100 iterations, ϵmin= 10−6, c = 0.1, 𝜅 =

 
1

1−𝑐
 + 0.1, 𝛾 =  

1

𝜅(1−𝑐)
, and 𝒙̂[0] = 𝑨T(𝑨𝑨T)−1𝒃. 

The conventional IRLS method provides the 

reconstructed image in Fig. 12 and the associating 

performance in Table III. 

 

 

Figure 12. IRLS with 𝑁max = 100 iterations, ϵmin= 10−6, p = 0.9,  
𝒘̂[0] = 𝟏, and 𝒙̂[0] = 1. 

TABLE III. RECONSTRUCTION PERFORMANCE OF THE IRLS IN FIG. 12 

Performance Value 

normalized error  
‖𝑿̂IRLS−𝑿0‖

2

‖𝑿0‖2
 0.13054135154075275 

Peak signal-to-noise ratio 20.261949757237478 [dB] 

computational time 882.3728725830151 [s] 

 

Comparing Table II to Table III, one can find that the 

IRLS approach provides better reconstruction 

performance than the IHT algorithm. However, it takes 

more time in the computation than the IHT approach.  

Fig. 13 is the acquired image given by the IRLS-DR 

technique with the corresponding performance in Table IV. 

One can see that the IRLS-DR method gives less 

normalized error and more PSNR than the conventional 

IRLS algorithm. However, the computational time is 

required more in the IRLS- DR method. 

 

 

Figure 13. IRLS-DR with 𝑁max = 100 iterations, ϵmin= 10−6, p = 0.9, ϵ 

= 10−6, and 𝒙̂[0] = 10−51. 

TABLE IV. RECONSTRUCTION PERFORMANCE OF THE IRLS-DR IN FIG. 

13 

Performance Value 

normalized error  
‖𝑿̂IRLS−DR−𝑿0‖

2

‖𝑿0‖2
 0.07993784956037091 

Peak signal-to-noise ratio 21.194630017158865 [dB] 

computational time 22889.644447542003 [s] 

TABLE V. RECONSTRUCTION PERFORMANCE OF THE IRL1 IN FIG. 14 

Performance Value 

normalized error 
‖𝑿̂IRL1−𝑿0‖

2

‖𝑿0‖2
 0.07596854561346658 

Peak signal-to-noise ratio 21.64997462101646 [dB] 

computational time 73293.26560041701 [s] 

 

 

Figure 14. IRL1 with 𝑁max = 100 iterations, ϵmin= 10−6, p = 0.9, ϵ = 
10−6, and 𝒙̂[0] = 10−51. 

In Fig. 14, the IRL1 algorithms gives a recovered image 

with the performance in Table V. One can see that the 

IRL1 algorithm provides better image than the IRLS 

method, but the computational time is approximately three 

times more than that of the IRLS-DR approach. Our 

companion works relating to compressive sensing in other 

applications can be seen in [35, 36]. 
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V. CONCLUSION 

The numerous data is stringent to the flow rate in the 

information era. Under the limited amount of the available 

resource, there is a demand in compressing the data and 

the recovery of the compressed data. The second step, 

which is the reconstruction of the compressed signal, is 

crucial in compressed sensing. A method that can provide 

high accuracy in the signal recovery remains as an open 

problem. In this work, a closed-form solution of the IRLS 

optimization problem is derived. It is found however that 

a matrix for an inverse might be subject to an ill condition. 

This issue can be resolved by adding the diagonal 

regularization to that matrix. Numerical results illustrate 

that the error given by the new proposed IRLS method is 

obviously lower than that by the conventional IRLS 

algorithm. Unfortunately, the IRLS-DR algorithm requires 

more computational time than the conventional IRLS 

approach. The implication of this work is that the use of 

exponent norm can increase the accuracy of the signal 

reconstruction.  
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