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Abstract—Over the past two decades, communication 

technologies have advanced significantly, but the growing use 

of various communication methods has led to a shortage of 

available spectrum. Cognitive Radio (CR) emerges as a 

solution to this challenge. A crucial aspect of CR is spectrum 

sensing, which detects available spectrum gaps. However, 

current spectrum sensing methods have limitations, 

including insufficient signal representation, inefficiency, and 

sensitivity to noise. To address these issues, this study 

embraces a deep learning approach and introduces an 

innovative spectrum detection architecture for cognitive 

radio networks. The method combines deep learning and 

reinforcement learning, leveraging deep learning for energy 

and energy correlation feature extraction. Additionally, a 

Recurrent Neural Network (RNN) module is used to capture 

time-shifted signal correlation. To enhance feature extraction, 

Short-Time Fourier Transform (STFT) feature extraction is 

incorporated. The combined feature vector is processed 

through a reinforcement learning module. Finally, these 

features are used to train the deep learning classifier which 

uses residual blocks for better representation of feature while 

learning. The highest prediction score is considered as the 

decision threshold in this work. The outcome of this work is 

compared with other deep learning methods in terms of 𝑷𝒅, 

𝑷𝒇 and sensing error for varied sample size and modulation 

schemes. The comparative analysis shows the robustness of 

proposed approach by achieving the 𝑷𝒇 as 0.32 and 0.06 for 

QAM16 and QPSK modulations.  
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I. INTRODUCTION 

During last two decades, we have noticed a tremendous 

growth in the demand of wireless and mobile 

communication. This growth has resulted in increasing the 

global data traffic. This growth constantly continuing to 

increase. According to Ref. [1], there were 5.1 billion 

mobile subscribers in 2018 which is expected to grow 5.7 

billion in 2023.  

Similarly, Cisco presented an annual Internet report 

which has expected the increase in mobile devices from 

8.8 billion in 2018 to 13.1 billion in 2023. By 2023, 5G 

connection speeds are anticipated to reach 575 Mbps, 

which is 13 times faster than the typical mobile connection. 

New wireless communications applications like the 

Internet of Things, wearable technology, etc. are 

continually creating a massive quantity of data in addition 

to the enormous expansion in data traffic [2]. The mobile 

and internet based applications urge for high speed data 

rate and increased Quality of Service (QoS) resulting in 

increase in the requirement of free/idle spectral bands. 

According to the current communication standards, a 

certain spectrum is allotted to the application. 

The demand for additional spectrum resources is 

increasing exponentially as more wireless services are 

supported, which has sparked the development of new 

high-speed data network technologies. However, the radio 

spectrum is fundamentally considered as a limited resource 

in which the frequency bands are solely allocated to the 

licensed user which is known as Primary User. This 

prolonged allocation when the device is in ideal condition 

lead to increase the spectrum dearth in the certain spectrum 

band. Contrarily, an assessment of spectrum utilization 

being carried out by the Federal Communication 

Commission (FCC) has revealed that several areas of the 

radio spectrum, known as spectrum holes, are not 

employed for a considerable length of time, which results 

in underutilization of the given spectrum. Similarly, recent 

studies on Orthogonal Frequency Division Multiplexing 

(OFDM) communication standards shows that spectrum 

underutilization issues are faced due to fixed spectrum 

allocation [3].  

Therefore, spectrum scarcity becomes a challenging 

issue which affects the communication performance of the 

entire network. in order to mitigate this issue, researchers 

have introduced cognitive radio mechanism which is 

considered as favourable solution to overcome the issue of 

spectrum scarcity. The cognitive radios examine the 

availability of idle or unused spectrum from Primary Users 

(PUs). this unused spectrum is allocated to secondary user 

without producing any interference for the PU. This task is 

done by employing Dynamic Spectrum Access (DSA) 

technique. This process is termed as “spectrum sensing”.   
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Cognitive radio is a technology that enables wireless 

communication devices to detect and intelligently adapt to 

their environment. The goal of cognitive radio is to 

improve the efficiency of the radio spectrum by allowing 

unlicensed devices to share unused or underused spectrum 

bands without interfering with licensed users. Cognitive 

radio devices are equipped with advanced sensing and 

signal processing capabilities that allow them to sense and 

analyze the Radio Frequency (RF) environment in real-

time. Based on this analysis, cognitive radio devices can 

make intelligent decisions on which channels to use, how 

much power to transmit, and other parameters to optimize 

their performance while minimizing interference to other 

users.  

One of the key features of cognitive radio is its ability 

to operate dynamically and adaptively to changes in the RF 

environment. This allows cognitive radio devices to 

exploit underutilized spectrum and avoid crowded or noisy 

channels, improving their efficiency and reducing 

interference. Cognitive radio technology has potential 

applications in a wide range of fields, including military 

communications, wireless networks, and public safety. 

The use of cognitive radio is also being explored for 

emerging technologies such as the Internet of Things (IoT), 

where the ability to adapt to dynamic RF environments can 

improve the reliability and performance of wireless IoT 

devices. 

The cognitive radio networks pose several advantages 

in wireless cellular communication systems. Recently, 

several spectrum sensing approaches have been 

established to mitigate the spectrum scarcity issues. 

Generally, these methods are classified as wideband and 

narrowband sensing methods [4]. The wideband sensing 

methods focus on analysing the number of frequencies at 

a time whereas narrowband methods focus on analysing 

one frequency channel at a time. several narrowband 

spectrum sensing methods have been introduced such as 

energy detection [5, 6], matched filter detection [7], 

cyclostationary feature detection [8, 9], covariance based 

detection [10, 11], and machine learning based sensing 

approach [12], etc. The energy detection method relies on 

power of incoming signal and compares it to previously 

estimated threshold to estimate the presence of PUs. 

However, the performance of this method is affected due 

to low Signal-to-Noise Ratio (SNR) conditions.  

Dibal et al. [15] reviewed several methods of spectrum 

sensing where waveform detection method is described 

which has highest reliability by correlating the reference 

and received signal. This is a highly efficient method but 

it requires precise information about the signals of PUs. 

moreover, Secondary Users (SUs) do not have information 

about PU’s signals thus it cannot be implemented for blind 

detection. Zhao et al. [16] presented eigenvalue based 

spectrum sensing method which has shown significant 

performance for low SNR conditions but its performance 

is affected due to high computational complexity. In 

contrast, the wideband methods divide the spectrum into 

different sub-bands which are further sensed subsequently 

or concurrently by employing narrowband techniques.  

The sequential methods fail to achieve better 

performance because of time complexity and energy 

consumption to use of high rate analog-to-digital 

converters whereas the simultaneous spectrum sensing 

mechanism require more number of sensors and 

synchronization function which increases the 

implementation complexity [13]. Similarly, Usman 

et al. [14] presented a study where suggested that prior 

information of PU signals can be used to classify spectrum 

sensing and these methods can be classified as coherent 

and non-coherent schemes. Further, these approaches can 

be categorized based on transmitter, receiver and 

interference for spectrum sensing. The traditional 

spectrum sensing methods encounter challenges due to 

multipath fading and shadowing. These obstacles can be 

mitigated by leveraging spatial diversity via cooperative 

spectrum sensing. In this approach, specific CR users 

exchange the data with Fusion Centre (FC).  

This FC integrates local information to formulate global 

decision. At this stage, CR users can perform soft-decision 

and hard decision processes to enhance the detection 

performance [17]. The idea of learning from the 

environment is an essential aspect of cognitive radios, 

which involve monitoring and adjusting operating 

characteristics to changing conditions. In order to facilitate 

this learning process, several researchers have explored the 

use of machine learning systems [11–16] for spectrum 

sensing. Since channel conditions can be difficult to 

estimate due to fading and shadowing, spectrum sensing 

based solely on current sensing slots may not be reliable in 

determining the PU status. However, machine learning and 

deep learning-based spectrum sensing can implicitly learn 

about the environment and detect PU activity without prior 

knowledge of the surroundings. Several machine learning 

based methods have been presented in literature review 

section. In this work, we adopt the deep learning based 

approach for spectrum sensing to increase the performance 

of cognitive radio networks. The main contributions of this 

work are as follows: 

1. We adopt the deep learning method for feature 

extraction where Convolutional Neural Network 

(CNN) and Recurrent Neural Network (RNN) 

modules are incorporated.  

2. In order to improve the feature extraction process, 

we include Short-Time Fourier Transform (STFT) 

feature analysis. 

3. The obtained features are processed through the 

reinforcement learning block where residual block 

based deep learning scheme is employed for 

classification. 
The traditional spectrum sensing methods rely on 

dynamic spectrum access techniques such as energy 

detection [5, 6], matched filter detection but increased 

demand of spectrum leads to increase the complex 

characteristics of spectrum usages. Therefore, these 

methods fail to achieve the desired performance for 

spectrum sensing. Moreover, traditional machine learning 

overcome the challenges but accuracy and reliability still 

remains challenging task. To overcome these issue, we 
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adopt deep learning approach along with reinforcement 

learning mechanism.  

The deep learning methods is used for deep feature 

extraction and RL approach is used to improve the training 

process by incorporating the self-learning characteristics 

during training phase. For feature extraction, we use the 

combination of CNN, RNN with STFT module to obtain 

the robust features. Finally, the obtained features are 

processed through a deep learning classifier to achieve the 

sensing outcome. 

Rest of the article is organized in following subsections: 

Section II presents the brief literature review about 

machine learning and deep learning based approaches for 

spectrum sensing. Section III presents the proposed deep 

learning based solution for cooperative spectrum sensing. 

Section IV presents the outcome of proposed approach and 

its comparative analysis with existing mechanisms. Finally, 

Section V presents the conclusion and future scope of this 

research.  

II. LITERATURE REVIEW 

This section presents the brief discussion on recent 

researches in this domain of spectrum sensing in cognitive 

radio networks.  

Ghazizadeh et al. [18] adopted cooperative Stainless 

Steel (SS) mechanism and introduced a novel approach by 

introducing an improved Support Vector Machine (SVM) 

classifier which is named as 2-Phase SVM. This approach 

uses vector containing energy levels of PU as feature 

vector which are further processed by employing SVM 

training and testing process. The labelling is done based on 

the availability and unavailability of channels. Similarly, 

the ensemble classification methods are known as the 

advanced machine learning methods which uses 

combination of two or more classifiers. These methods 

provide better classification accuracy. Ahmad et al. [19] 

presented machine learning approach for SS. According to 

this process, the feature extraction process is carried out by 

using cyclostationary method where Fast Fourier 

Transform (FFT) accumulation method is employed to 

obtain the final features. Finally, these features are used to 

train the ensemble classifier to detect the signals in low 

SNR conditions. This ensemble classifier is constructed 

with the decision tree and AdaBoost methods. Gul 

et  al. [20] discussed the issue of involvement of malicious 

user which reports the false information to the fusion 

centre about PU’s activity. To overcome this issue, authors 

introduced boosted tree algorithm to increase the detection 

accuracy and reliability by mitigating different attacks 

caused due to malicious users such as Always Yes, Always 

No, Always opposite and Random Opposite.  

Sheng et al. [21] adopted narrowband spectrum sensing 

method and incorporated concept of machine learning. The 

first phase of this approach includes extraction of trace of 

covariance matrix and Variance of Quadratic Covariance 

Matrix (TCVQ) feature vectors and later, support vector 

machine classifier is employed to classify the feature 

patterns. The TCVQ approach explores the difference of 

Eigen values and structural characteristics of received 

signal which helps to increase the overall performance of 

the systems.  

Recently, deep learning based schemes have gained 

huge attention in various applications and widely adopted 

in spectrum sensing tasks [22]. However, the traditional 

machine learning methods rely on the signal-noise models 

therefore, accuracy of these systems depends on the 

assumption of these models. To overcome this issue, Xie 

et al. [23] presented a combined deep learning architecture 

with the help of Convolutional Neural Networks (CNNs) 

and the Long-Short Term Memory (LSTM) networks. The 

CNN and LSTM model helps to extract the spatial and 

temporal feature of the given input data. Further, this 

CNN-LSTM model extracts the energy-correlation 

attributes by exploring the covariance matrices which are 

produced by sensing data. The obtained series of features 

is then fed to the LSTM block to learn the activity pattern 

of PUs. Xing et al. [24] reported that existing methods are 

fail to capture the temporal correlation attributes from 

spectrum data. Generally, the CNNs do not extract the 

temporal correlations from time series data whereas 

LSTMs are used to accomplish this task. However, it fails 

to focus on important part of the given spectrum data. 

Therefore, authors presented a novel deep learning 

approach which is developed by combining 1D CNN, 

BiLSTM, and self-attention. The CNN and BiLSTM 

extract the local features and global correlation 

information from time series data. Similarly, the self-

attention mechanism helps to focus on the significant 

attributes obtained from BiLSTM.  

Solanki et al. [25] developed a combined model by 

combining CNN and Recurrent Neural Network (RNN) 

models. Further, transfer learning mechanism is also used 

to improve the SS performance. Sarikhani et al. [26] 

discussed the importance of deep reinforcement learning 

in cooperative SS and introduced DRL based CSS 

approach. This approach is useful in reducing the 

signalling in the SUs.  

Du et al. [27] presented a new approach which uses 

information geometry and deep learning for spectrum 

sensing. In first stage, covariance matrix is computed and 

later geodesic distance is computed between signals which 

is considered as feature vector. Finally, deep learning 

classification algorithm is employed. 

Pati et al. [28] introduced a new approach which is 

based on the deep convolution neural network and transfer 

learning concept for non-cooperative spectrum sensing. 

This CNN architecture consists of four-layers which is 

helpful in reducing the computational complexity and 

further, the transfer learning approach is also implemented 

to improve the learning performance. Zheng et al. [29] 

reported that traditional spectrum sensing approaches have 

limitations in dealing with the complex and dynamic radio 

environment. To address this issue, the authors propose a 

deep learning-based spectrum sensing approach that uses 

a Convolutional Neural Network (CNN) for classification. 

The proposed approach involves two stages: feature 

extraction and classification. In the feature extraction stage, 

the received signal is pre-processed to obtain spectrogram 

images, which capture the frequency and time-domain 
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characteristics of the signal. The CNN is then trained on 

the spectrogram images to learn the features that are 

relevant for classification. In the classification stage, the 

trained CNN is used to classify the received signal as either 

occupied or unoccupied. Nasser et al. [30] introduced a 

deep learning based hybrid approach that combines energy 

detection and cyclostationary feature detection techniques. 

The authors describe the architecture of the DotNetNuke 

(DNN) model, which consists of several layers of neurons 

that process the input signal and output the probability of 

spectrum occupancy. They also discuss the training 

process for the DNN model, which involves using a large 

dataset of labelled signals to adjust the weights and biases 

of the neurons. Several methods have been discussed but 

these methods suffer from several challenges. Below given 

Table I presents a brief overview of these mechanisms. 

TABLE I. COMPARATIVE OVERVIEW OF EXISTING SCHEMES 

Ref. Contribution Remarks 

[18] 
SVM ML based 

cooperative SS 

Traditional ML do not have strong 

feature learning characteristics  

[19] 

ML based model which 

uses FFT based feature 

extraction 

This method do not carry strong 

feature extraction thus 

misclassification rate increases as 

the data increases 

[21] 

It uses covariance based 

feature and SVM 

classification 

Poor accuracy and convergence 

impacts its performance 

[23] 
DL method by using CNN 

and LSTM 

It is able to extract the temporal and 

spatial feature but extracts only 

energy attributes 

[24] 
CNN and BiLSTM and 

attention based DL model 

Overcomes the temporal feature 

extraction  

[25] 
CNN and RNN model with 

transfer learning 

It uses transfer learning but requires 

huge dataset 

[28] 
CNN with Non-

cooperative SS 

It reduces complexity and improves 

the performance by using transfer 

learning  

[29] 

Extracts time and 

frequency domain features 

and classify with CNN 

Converts spectrum data into image 

and train the network  

[30] 

Combined energy and 

cyclostationary feature 

detection with DL 

Requires huge dataset and suffer 

from gradient vanish problem 

III. PROPOSED MODEL 

This section presents the proposed deep learning and 

reinforcement learning based solution to enhance the 

performance of spectrum sensing. The first sub-section 

briefly describes the various components of proposed 

model and next sub-section presents the proposed hybrid 

architecture.  

A. Main Components of Proposed Model  

Signal Model: The signal model represents the received 

signal at each cognitive radio device, which includes the 

transmitted signal from the primary user and any noise and 

interference in the environment. The signal model can be 

expressed as: 

 𝑦[𝑛]  =  𝑠[𝑛]  +  𝑤[𝑛] (1) 

where 𝑦[𝑛]is the received signal, 𝑠[𝑛] is the transmitted 

signal from the primary user, and 𝑤[𝑛] is the noise and 

interference. 

Deep Learning Model: The deep learning model is 

used to extract features from the received signal and 

classify it as either idle or busy. The deep learning model 

can be represented by a function 𝑓  that maps the input 

signal x to a probability 𝑝(𝑥) of the signal being idle. The 

deep learning model can be trained using a dataset of 

labeled signals to optimize its parameters and improve its 

accuracy. 

Reinforcement Learning: Reinforcement learning is a 

machine learning technique that has shown promise for 

improving spectrum sensing in cognitive radio systems. In 

reinforcement learning, an agent learns to make decisions 

by interacting with an environment, receiving rewards or 

punishments based on its actions, and adjusting its 

behavior accordingly. The use of reinforcement learning 

for spectrum sensing involves designing an agent that can 

learn to sense the radio spectrum efficiently and accurately. 

The reinforcement learning approach for spectrum sensing 

involves the following key components: 

• State representation: The state of the environment 

is represented by a set of features that capture the 

relevant characteristics of the radio signals, such as 

signal strength, noise level, and interference. 

• Action selection: The agent selects an action based 

on the current state of the environment. In 

spectrum sensing, the action corresponds to the 

frequency band or channel to sense. 

• Reward function: The agent receives a reward or 

punishment based on the accuracy of its sensing 

decision. The reward function can be designed to 

encourage the agent to prioritize certain frequency 

bands or to penalize false sensing decisions. 

• Learning algorithm: The agent uses a learning 

algorithm to adjust its behavior based on the 

rewards and punishments received. Reinforcement 

learning algorithms such as Q-learning, SARSA, 

or Deep Q-networks (DQNs) can be used for this 

purpose. 

The reinforcement learning approach can be 

implemented in a cooperative spectrum sensing scenario 

where multiple cognitive radio nodes work together to 

sense the spectrum. The nodes can share their sensing 

decisions and reward signals to learn collectively and 

improve the overall spectrum sensing performance.  

One key advantage of reinforcement learning for 

spectrum sensing is its ability to adapt to changing radio 

environments. The agent can learn from past experiences 

and adjust its behavior based on the current state of the 

environment. This makes it well-suited for dynamic and 

unpredictable radio environments, where traditional 

sensing approaches may be less effective. Overall, the use 

of reinforcement learning for spectrum sensing in 

cognitive radio systems is an active area of research with 

promising results. However, there are also challenges that 

need to be addressed, such as the design of efficient state 

representations and the scalability of learning algorithms 

for large-scale networks. 

Decision Threshold: The decision threshold is used to 

make the final decision on whether the spectrum is idle or 

busy based on the output of the cooperative sensing 
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algorithm. The decision threshold can be set based on the 

desired false alarm and detection probabilities. 

B. Proposed Model  

This section presents the proposed deep learning and 

Reinforcement learning architecture for spectrum sensing. 

The complete architecture is depicted in Fig. 1, where 𝐻1 

and 𝐻0 are the initial datasets. These datasets are further 

processed through different feature extraction models such 

as energy, energy correlation, time shifted signal 

correlation [31] and STFT. Further, these features are 

merged together to formulate the ensemble feature vector. 

Later, deep reinforcement learning model with residual 

network is incorporated to learn these attributes and 

classify the patterns according to presence and absence of 

PUs.  

1) System model  

In cognitive radio networks, the spectrum sensing 

problem can be represented in the form of binary 

hypothesis problem which can be represented as: 

𝐻0: 𝑌𝑛 = 𝑈𝑛 

 𝐻1: 𝑌𝑛 = ℎ𝑛𝑋𝑛 + 𝑈𝑛  (2) 

where H0 denotes the absence of PU and 𝐻1 represents the 

presence of PU, i.e., PU is in silent state and active state, 

respectively. 𝑋𝑛  denotes the transmitted signal, whereas 

𝑌𝑛 denotes the received signal vector. The channel index 

value between PU and SU can be denoted as ℎ𝑛 ∈ 𝐶𝑚and 

𝑈𝑛 denotes the noise vector. By utilizing the signal vector, 

it is possible to create decision statistics that identify the 

state of the PU as 𝐻1  in the test statistics (𝑇)  using a 

decision threshold (Ds). If 𝑇 exceeds the value of 𝐷𝑠 , it 

indicates the presence of PUs; otherwise, their absence is 

indicated. If 𝑇 > 𝐷𝑠 condition is satisfied then it shows the 

presence of PU otherwise it denotes the absence of PU. 

2) CNN model for feature extraction 

In this research, we have adopted the CNN based model 

to improve the spectrum sensing performance because the 

traditional machine learning schemes have overfitting 

issue and outperformed by DL methods. This research 

utilizes a training set, denoted as 𝑌, consisting of N pairs 

of input data (𝑥𝑁)and labeled data (𝑙𝑁)  represented as 

𝑌 =  {(𝑥1, 𝑙1), (𝑥2, 𝑙2), (𝑥3, 𝑙3), … , (𝑥𝑁, 𝑙𝑁)}. The presence 

of PUs is indicated by 𝑌. However, increasing the size of 

the training input leads to a rise in computational 

complexity. Sampling statistics used for PU sensing may 

include redundant data from the same distribution source. 

Thus, pre-processing of the input data is necessary before 

starting the training process. In this work, we employed 

energy and time shifted signal correlation, and STFT as the 

important attributes. 

 

 

Figure 1. Proposed model. 

 

Figure 2. CNN feature extraction module. 

 

Figure 3. RNN feature extraction module. 

In feature extraction phase, the covariance matrices are 

given as input to the CNN and RNN layers to extract the 

corresponding features. Similarly, these matrices are given 

as input to the STFT feature computation model. The 

convolution block consists of Leaky Rectified Linear Unit. 

The obtained spatial features are fed to the 2D convolution 

layer which contains filter of size 33 convolution. In 

order to maintain the consistency between input and output, 

zero padding and stride operations are also included. 

Finally, the fully connected layer is implemented which is 

used to perform the classification. Figs. 2 and 3 depicts the 

architecture of CNN and RNN models for feature 

extraction.  

Similarly, we implement short time Fourier transform 

analysis for feature extraction which can be expressed as: 
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 𝑆𝑇𝐹𝑇𝑥(𝑡, 𝜔) = ∑ 𝑥(𝑛)𝑔(𝑛 − 𝑡)𝑒−𝑗𝑚𝜔𝐿−1
𝑛=∞  (3) 

where  g(n) denotes the window function. In this work, we 

have adopted Hamming window function because of it 

achieves good performance and reduces spectrum leakage. 

Further, the spectrogram of the input signal can be 

computed as: 

 𝑆𝑃𝑥(𝑡, 𝜔) = |𝑆𝑇𝐹𝑇𝑥(𝑡, 𝜔)|2 (4) 

With the help of spectrum sensing model, the received 

signal can be simplified as: 

 = [𝑥(1), 𝑥(2), … , 𝑥(𝑛)] (5) 

Final, normalized feature vector is generated as: 

 𝑋𝑠 = [𝑥𝑆
(1)

, 𝑥𝑆
(2)

, … , 𝑥𝑆
(𝑛)

 ] (6) 

The combination of these features produces the final 

feature vector to make the final decision about presence of 

PUs as 𝐷𝐻1
(⊚𝑛)or absence of PU as 𝐷𝐻0

(⊚𝑛) such that 

𝐷𝐻0
(⊚𝑛) + 𝐷𝐻1

(⊚𝑛) = 1.  

3) State space model for RL 

Further, we implement Reinforcement learning 

mechanisms to learn the patterns. a brief discussion or this 

approach is presented in aforementioned sub-section. In a 

wireless network, a shared bandwidth is divided into 𝑵 

correlated channels. At this stage, the occupied channel is 

(1) and vacant (0). The entire system can be modelled 

using a Markov model with 2𝑁 states. MDP is a 

mathematical framework used for modeling decision-

making problems in situations where outcomes are partly 

random and partly under the control of a decision maker. 

It consists of several components such as States (S), 

Actions (A), Transition Probabilities (P), Rewards (R), 

Policy (π) and optimal policy etc. It comprises of a finite 

collection of states; these states symbolize distinct 

scenarios or setups within a system. The decision maker 

engages with the environment, causing the system to shift 

from one state to another. In every given state, there exists 

a finite collection of actions accessible to the decision 

maker. These actions serve as the available choices or 

decisions that can be executed within that specific state, 

ultimately resulting in transitions between states. The 

transition probability ensures the movement from one state 

to another state when any particular action is performed. 

For each transition, there is a certain reward is assigned for 

the action performed. With the help of this, the state space 

can be represented as: 

 𝑆 = {𝑠 = (𝑠1, … , 𝑠𝑁)| 𝑠𝑖 ∈ {0,1}, 𝑖 ∈ {1, … , 𝑁}} (7) 

The state transition of each channel can be denoted as: 

𝑃 = [
𝑝00 𝑝10

𝑝01 𝑝11
]. 

4) Action space model for RL 

In these communication systems, a single user requires 

a certain bandwidth or vacant channels to aggregate all the 

channels in the range of aggregation capacity. Initially, 

user either remain ideal or selects a certain length 𝐶 from 

whole channel to sense. Thus, the remaining segment for 

selection can be denoted as 𝑁 − 𝐶 + 1. By repeating this 

process, the vacant channels will be aggregated for 

transmission. Let the action can be denoted as 𝐴 =
{0,1, … , 𝑁 − 𝐶 + 1}  and user selects 𝑖𝑡ℎ  segment at the 

initialization of slot 𝑡  if 𝑎𝑡 = 𝑖(𝑖 ∈ 𝐴, 𝑖 ≠ 0)  or remains 

ideal it  𝑎𝑡 = 0.  

5) Reward model for RL 

After taking the action 𝑎𝑡 at time 𝑡 and we consider that 

user can receive a binary feedback 𝑓𝑡  as 

Acknowledgement (ACK) regarding successful packet 

delivery. For successful transmission, 𝑓𝑡 = 1and failure 

transmission is characterized by 𝑓𝑡 = 0. Then, the reward 

function for this action at time 𝑡, can be expressed as: 

 𝑟𝑡(𝑠𝑡 , 𝑎𝑡) = {
0, 𝑖𝑓 𝑎𝑡 = 0

4𝑓𝑡 − 2, 𝑖𝑓 1 ≤ 𝑎𝑡𝑁 − 𝐶 + 1 
 (8) 

where 𝑠𝑡 denotes the state of system at a given time slot 𝑡. 

Here, our main aim is to find the optimal policy 𝜋 which 

is used in drawing the observations 𝑜𝑡 to the next action 

𝑎𝑡+1 at each time slot to exploit the collected reward. This 

policy can be expressed as: 

 𝑉𝜋(𝑜) = 𝔼𝜋[∑ 𝛾𝑡𝑟𝑡+1(𝑠𝑡+1, 𝜋(𝑜𝑡))|𝑜0 = 𝑜∞
𝑡=0 ] (9) 

Where ∈ (0,1) denotes the discount factor, 𝜋(𝑜𝑡) 

represents the action under policy 𝜋  for current 

observation 𝑜𝑡. Based on this, the optimum policy 𝜋∗can 

be expressed as: 

𝜋∗ = 𝑎𝑟𝑔 max
𝜋

𝑉𝑝𝑖 (𝑜) 

= 𝑎𝑟𝑔 max
𝜋

𝐸𝑝𝑖 [∑ 𝛾𝑡𝑟𝑡+1(𝑠𝑡+1, 𝜋(𝑜𝑡))|𝑜0 = 𝑜 ∞
𝑡=0 ] (10) 

6) Classification  

In order to classify the spectrum sensing patterns, we 

present a CNN based classification architecture for 

spectrum sensing. The proposed architecture uses a 

residual block model to improve the learning performance.  

 

 

Figure 4. Proposed CNN. 

Fig. 4 shows the proposed architecture and Fig. 5 shows 

the residual block model. The proposed residual block 

includes the insertion of a ReLU activation function after 

each convolution layer, resulting in three linear regression 

activation functions that are better at extracting feature 

information compared to a single one. 

To enhance the network’s extraction efficiency, Batch 

Normalization (BN) is introduced, which speeds up the 

network’s convergence process and makes the entire 
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network’s training more robust. Because the spectrum 

sensing model can overfit with limited training data, 

especially when deepening the network, a dropout layer is 

also included in the residual block to prevent this. 

 

  

Figure 5. Residual block. 

The outcome of residual block is 𝐻(𝑥) = 𝑓(𝑧) + 𝑥, and 

output of layer 𝑙 of residual network is 𝐻1(𝑥) = 𝑓(𝑧𝑙) +
𝑥𝑙. In order to train the network, samples of signal 𝑋𝑠 are 

labelled and used for training which are represented as:  

𝑌𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = 

{(𝑥𝑠
(1)

, 𝑦(1)), (𝑥𝑠
(2)

, 𝑦(2)), … , (𝑥𝑠
(𝑚)

, 𝑦(𝑚))} (11) 

Similarly, the test samples are denoted as: 

 𝑌𝑡𝑒𝑠𝑡 = {
(𝑥𝑠

(𝑚+1)
, 𝑦(𝑚+1)), (𝑥𝑠

(𝑚+2)
, 𝑦(𝑚+ 2)), …

, (𝑥𝑠
(𝑛)

, 𝑦(𝑛))
} (12) 

In this training process, we have used cross-entropy loss 

function which is expressed as follows: 

 𝐿 = [∑ 𝑦(𝑖) log 𝑦̂(𝑖) + (1 − 𝑦(𝑖) log(1 − 𝑦̂(𝑖))𝑁
𝑖=1 ] (13) 

IV. RESULT AND DISCUSSION 

This section presents the experimental analysis of 

proposed model where obtained performance is compared 

with existing scheme. First sub-section presents the dataset 

generation process and second section presents simulation 

analysis.  

A. Dataset Generation 

In this work we have used publically available Radio 

ML dataset. In this work, we have considered five different 

nodulation schemes such as BPSK, QPSK, 8PSK, QAM16, 

and QAM64. The SNR distribution variation is considered 

from −20 dB to +18 dB with an increment of 2 dB. 

These signals are represented as positive samples 

whereas the complex additive Gaussian noise is used to 

generate the negative samples. The complete training set 

contains ′𝑛′ samples which are processed through the deep 

neural network in the form 2n vector with in phase and 

quadrature phase components. Table II shows the 

parameter details used during dataset generation.  

TABLE II. SIMULATION PARAMETERS FOR DATASET GENERATION 

Parameters Considered value 

Modulation BPSK, QPSK, 8PSK, QAM 16 and QAM 64 

Sample Size 64, 128, 256, 512 

SNR −20 dB to +18 dB 

Training Samples 153,000 

Validation samples 51,000 

Testing Samples 51,000 

B. Performance Measurement Parameters  

The assessment criteria used in this scenario include 

three metrics: Probability of detection (Pd), Sensing Error 

(SE), and Probability of false alarm (Pf). Pd is the 

probability of correctly identifying the presence of the 

primary user in the spectrum when it is being used. Pf, on 

the other hand, is the probability of incorrectly identifying 

the presence of the primary user when the spectrum is not 

occupied.  

These probabilities were calculated across various 

Signal-to-Noise Ratio (SNR) levels. To compute SE, the 

average of Pf and the probability of miss detection (Pm) 

was determined. Pm is the probability of wrongly 

identifying that the spectrum is not in use when the 

primary user is actually using it. The overall performance 

of this system is measured based on confusion matrix. 

Below given Table III shows the confusion matrix.  

TABLE III. CONFUSION MATRIX FOR SPECTRUM SENSING 

 
Predicted Value 

Signal Noise 

Actual 
Signal A B 

Noise C d 

 

Based on this confusion matrix, the performance 

measurement parameters can be computed as presented in 

Table IV: 

TABLE IV. PARAMETERS FOR SPECTRUM SENSING 

𝑃𝑑 
𝑎

𝑎 + 𝑏
 

𝑃𝑚 1 − 𝑃𝑑 

𝑃𝑓  
𝑐

𝑐 + 𝑑
 

𝑆𝐸 𝑎𝑣𝑒𝑟𝑎𝑔𝑒(𝑃𝑓, 𝑃𝑚) 

C. Comparative Analysis  

In this segment, we present the comparative 

investigation of proposed approach for varied deep 

learning scheme by considering different modulation 

techniques.  

Figs. 6–9 shows the comparative analysis for different 

modulation schemes. 

In this experiment, we measure the performance of 

proposed model and compared it with traditional Deep 

Learning model, CNN, and LSTM model for varied 

modulation such as BPSK, QPSK, QAM 16 and QAM 64. 

For varied SNR levels. The experimental analysis shows 

that probability detection increases for QAM modulations. 
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Figure 6. Performance for BSPK 64. 

 

Figure 7. Performance for QSPK 64. 

 

Figure 8. Performance for QAM 16. 

 

Figure 9. Performance for QAM 64. 

 

Figure 10. Comparative analysis for Proposed 64 samples considering 

different modulation schemes. 

From this experiment, we conclude that the signals with 

lower SNRs carry less information in comparison with 

high SNR because the quality of these signals is 

compromised due to noise. Aforementioned figure shows 

the performance for 64 samples where proposed approach 

obtained improved performance because of its significant 

pattern learning nature. Further, we extended the 

experimental analysis for different number of samples. 

Fig.  10 depicts the comparative analysis for four different 

sample size such as 64, 128, 256, and 512 by considering 

different modulation schemes.  

Comparative analysis for Proposed 64 samples 

considering different modulation schemes is shown in 

Fig.  10. Comparative analysis for Proposed 128 samples 

considering different modulation schemes is shown in 

Fig.  11. Similarly, we have measured the performance of 

proposed approach for different modulation schemes such 

as BPSK, QPSK, 8PSK, QAM16 and QAM 64. The 

obtained performance is depicted in Fig. 12. In an another 

experiment, we have used 512 samples and measured the 

performance in terms of 𝑃𝑑. The obtained performance is 

depicted in Fig. 13.  
 

 

Figure 11. Comparative analysis for Proposed 128 samples considering 

different modulation schemes. 

 

Figure 12. Comparative analysis for Proposed 256 samples considering 

different modulation schemes. 

 

Figure 13. Comparative analysis for Proposed 512 samples considering 

different modulation schemes. 
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This experiment shows that the proposed approach 

achieves better performance for QAM 64 modulation 

scheme for all sample scenarios. In order to compare the 

performance of proposed model, we have extended the 

experimental analysis for 64, 128, 256, and 512 samples 

which are modulated by employing QAM16 and QPSK 

techniques. The obtained performance is compared with 

the existing deep learning mechanism. Below given 

Table V shows the comparative performance for QAM16 

modulation for 64 and 128 sample size.  

TABLE V. COMPARATIVE PERFORMANCE FOR 64 AND 128 SAMPLE 

LENGTH QAM16 MODULATION 

 64 Sample 128 Sample 

Models 𝑷𝒇 𝑷𝒅(−𝟐𝟎 𝒅𝑩) 𝑺𝑬(%) 𝑷𝒇 𝑷𝒅 𝑺𝑬(%) 

CNN 1.75 24.48 14.86 3.60 26.87 15.70 

LeNet 0.89 24.96 14.51 0.84 27.15 14.63 

ResNet 0.68 25.61 14.39 0.55 24.80 14.42 

Inception 14.63 36.17 19.65 20.22 39.91 21.68 

LSTM 0.47 24.13 14.75 3.22 28.40 15.35 

CLDNN 1.25 25.15 14.87 6.93 31.20 17.30 

Proposed 

Model 
0.32 30.25 11.50 2.21 34.30 10.10 

 

The sensing error of proposed model is less for this 

experiment therefore the 𝑃𝑓  and 𝑃𝑑  are reduced in 

proposed model. Thus, it improves the spectrum 

occupancy detection rate. Further, we measure the 

performance for QPSK signal for 64 and 128 samples. 

Below given Table VI shows the comparative performance 

for QPSK modulation for 64 and 128 sample size.  

TABLE VI. COMPARATIVE PERFORMANCE FOR 64 AND 128 SAMPLE 

LENGTH QPSK MODULATION 

 64 Sample 128 Sample 

Models 𝑷𝒇 𝑷𝒅(−𝟐𝟎 𝒅𝑩) 𝑺𝑬(%) 𝑷𝒇 𝑷𝒅 𝑺𝑬(%) 

CNN 1.50 27.15 14.91 4.95 23.35 16.10 

LeNet 0.10 23.47 14.36 0.11 26.15 14.20 

ResNet 0.09 23.58 14.60 0.15 25.50 14.50 

Inception 16.98 35.90 20.40 20.30 39.40 21.70 

LSTM 1.29 24.70 14.90 3.86 29.40 15.60 

CLDNN 1.64 26.27 15.20 6.10 31.20 16.30 

Proposed 

Model 
0.06 40.85 10.50 21.50 35.20 10.8 

 

Similarly, we measured the performance for 256 and 

512 samples for QAM16 and QPSK modulation. Below 

given Tables VII, VIII shows the outcome for QAM 16 

and QPSK modulation schemes.  

TABLE VII. COMPARATIVE PERFORMANCE FOR 256 AND 512 SAMPLE 

LENGTH QAM16 MODULATION 

 256 Sample 512 Sample 

Models 𝑷𝒇 𝑷𝒅(−𝟐𝟎 𝒅𝑩) 𝑺𝑬(%) 𝑷𝒇 𝑷𝒅 𝑺𝑬(%) 

CNN 9.54 30.70 17.80 12.90 35.31 19.05 

LeNet 1.40 25.30 14.70 2.70 27.89 15.40 

ResNet 0.015 23.90 14.50 0.20 25.77 14.50 

Inception 21.50 38.40 22.05 17.90 39.70 18.60 

LSTM 3.50 29.40 15.60 1.60 26.40 15.10 

CLDNN 8.30 34.30 16.70 6.96 42.90 14.40 

Proposed 

Model 
0.05 44.50 12.90 0.03 46.95 10.50 

 

TABLE VIII. COMPARATIVE PERFORMANCE FOR 256 AND 512 SAMPLE 

LENGTH QPSK MODULATION 

 256 Sample 512 Sample 

Models 𝑷𝒇 𝑷𝒅(−𝟐𝟎 𝒅𝑩) 𝑺𝑬(%) 𝑷𝒇 𝑷𝒅 𝑺𝑬(%) 

CNN 10.40 32.50 18.40 14.50 34.90 19.50 

LeNet 0.90 26.20 14.65 2.75 26.85 15.50 

ResNet 0.12 25.10 14.30 0.05 24.20 14.43 

Inception 22.98 39.60 22.50 17.60 42.22 18.5 

LSTM 4.51 29.20 15.81 2.60 28.50 15.32 

CLDNN 9.65 35.40 17.40 8.82 43.85 15.15 

Proposed 

Model 
4.20 45.12 13.10 0.05 49.65 10.15 

 

Therefore, based on these studies we demonstrate that 

the proposed model is able to achieve the desired 

performance with less sensing error due to its significant 

nature of pattern learning for different noise levels.  

V. CONCLUSION 

Currently, the cognitive radio networks have gained 

huge attention in this domain of wireless communication 

because the CRs have been identified as the promising 

solution to deal with spectrum scarcity issue. However, the 

traditional spectrum sensing methods suffer from various 

challenges.  

Therefore, machine learning schemes are adopted in this 

domain. The proposed model uses the concept of deep 

learning and introduced a new architecture for spectrum 

sensing. This architecture uses CNN, RNN and STFT for 

feature extraction. The obtained feature vector is combined 

and processed through the reinforcement learning. Finally, 

a CNN based classification module is presented to classify 

the patterns of spectrum of noise. In future, this approach 

can be explored for power control, security enhancement 

and resource allocation to improve the overall performance 

of the communication system.  
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