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Abstract—Mobile face recognition has become increasingly 

important, especially during the COVID-19 pandemic when 

the use of masks has become ubiquitous. The area that can be 

analyzed for face recognition is narrowed down only to the 

periocular area. This resulted in many studies of face 

recognition in the periocular area which require appropriate 

datasets, one of which is M2FRED, introduced by University 

of Salerno. Previous research on M2FRED using supervised 

learning algorithms such as Support Vector Machine (SVM), 

Multilayer Perceptron (MLP), Random Forest (RF), and 

Decision Tree (DT) shows promising results on M2FRED 

with accuracy at 95.4% using MLP. However, study on 

M2FRED using deep learning models has yet to be done. In 

this paper, we compare the performance of MobileNet and 

Siamese neural networks on M2FRED, a face dataset 

specifically designed for mobile face recognition that contains 

videos of 43 subjects with and without masks taken in 

uncontrolled environments using mobile devices. We employ 

this range of M2FRED to evaluate the performance of 

MobileNet and Siamese neural networks in handling 

challenges like face masks, various lighting conditions, and 

limited computational resources. MobileNet outperformed 

the Siamese neural network in every aspect with an average 

accuracy score of 99.77% for overall performance (99.85%), 

mask usage scenarios (100%), and lighting context (99.72% 

for indoor evaluation and 99.52% for outdoor evaluation). 

With its simple architecture, MobileNet also surpassed 

Siamese neural networks in terms of complexity.  

Keywords—face recognition, mobile, MobileNet, Siamese 

neural networks, M2FRED  

I. INTRODUCTION

Mobile face recognition has become increasingly 

popular due to its numerous advantages over traditional 

face recognition systems that typically run on desktop or 

server-class hardware [1, 2]. Some of the advantages are 

that it is easy, convenient, and enables real-time 

recognition. These benefits allow the application of mobile 

face recognition to be prevalent across several domains, 

for example, security, healthcare, law enforcement, 

entertainment, education, and marketing [3]. 

However, several challenges commonly emanate when 

implementing face recognition on mobile devices, such as 

limited computational resources for processing [4], 

varying lighting conditions [5], and changes in facial 

appearance due to aging [6−8], makeup [9−11], 

expression  [11, 12], mask usage [9, 13], low-resolution 

image [13], or facial hair [11]. 

Moreover, anti-COVID regulations that started in 2020 

globally made mask applications for any activity 

mandatory in almost any nation. This policy affected face 

recognition applications in many ways. The portion of the 

face usable for recognition had become restricted, leaving 

only the periocular area, therefore decreasing the accuracy 

in face recognition. Studies on mask detection and face-

masked recognition are increasing rapidly to deal with this 

situation not only in algorithms but also in datasets. One of 

them was the Mobile Masked Face Recognition through 

Periocular Dynamics Analysis (M2FRED) dataset that was 

introduced by Cimmino et al. [14] to study the periocular 

dynamic influence on face recognition.  

In addition, several popular deep learning algorithms 

have been developed to overcome those challenges, such 

as the Siamese neural networks and MobileNet. Siamese 

neural networks are a type of neural networks that can be 

very helpful in tasks where it is necessary to assess how 

similar or dissimilar two inputs are to each other. 

Therefore, it is commonly used to address challenges such 

as slight variations in the appearance [15] of the face due 

to various factors including aging, makeup, facial hair, and 

lighting conditions. Meanwhile, challenge in limited 

resources was emphasized in [16] by using an architecture 

called MobileNet which was specifically designed to be 

computationally efficient and small in size [17]. This is 

accomplished by using a combination of depth-wise 

separable convolutions followed by a pointwise 

convolution to reduce the number of computations 

required while maintaining accuracy. Siamese neural 

network and MobileNet can prove that deep learning 

algorithms can be modified to resolve frequently 

encountered obstacles in applying face recognition in 

mobile devices. 

To gain a more comprehensive understanding of the 

strengths and weaknesses of MobileNet and Siamese 

neural network in dealing with challenges such as lighting 

conditions, mask usage, and device limitations, we utilized 

the M2FRED dataset. The dataset includes a set of short 

videos captured using mobile devices in both indoor and 
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outdoor environments, with subjects wearing and not 

wearing masks [12].  

One significant contribution of this study is the 

exploration of M2FRED dataset using deep learning 

techniques, specifically MobileNet and Siamese neural 

network. To the best of our knowledge, there has been a 

notable research gap in harnessing the potential of deep 

learning approaches, specifically MobileNet and Siamese 

neural network, for M2FRED analysis. Previous studies in 

this domain have predominantly relied on traditional 

machine learning models, including Multilayer Perceptron 

(MLP), Decision Tree (DT), Random Forest (RF), and 

Support Vector Machine (SVM). Therefore, our research 

presents a novel approach by utilizing deep learning 

models to address the challenges posed by M2FRED 

dataset. 

II. LITERATURE REVIEW 

This section delivers an overview of the literature 

regarding datasets and the architecture used for mobile 

face recognition, particularly to overcome challenges in 

mask utilization, light settings, and restricted computing 

resources. 

A. Related Theories 

Siamese neural networks are especially useful in 

applications that require determining the similarity or 

dissimilarity between two inputs. One unique feature of 

Siamese neural networks is that the network consists of 

two identical sub-networks that share the same architecture 

and weights. Each sub-network takes one input (in this 

case, data triplets) and processes it through several layers 

of convolutional, pooling, and activation functions to 

produce a feature vector or embedding. The output 

embeddings from each of the sub-networks are then 

compared using a distance metric, such as Euclidean 

distance or cosine similarity, to determine the similarity 

between them. Siamese neural networks are often used for 

tasks such as image comparison, object tracking, and facial 

recognition. They are especially useful in situations where 

there is limited training data available or where the input 

data is noisy or ambiguous. Siamese neural network can be 

simply described in Fig. 1 below. 

 

 

Figure 1. Data flow on Siamese neural network. 

On the other hand, Siamese neural networks can require 

significant computational resources, particularly during 

training, due to their large number of parameters and the 

need to compute distances between pairs of images.  

In the meantime, MobileNet architecture integrates the 

concept of depth-wise separable convolution, which splits 

the convolution operation into two separate operations: 

depth-wise convolution and point-wise convolution. The 

depth-wise convolution applies a single filter per input 

channel, while the point-wise convolution applies a 11 

convolution to combine the results of the depth-wise 

convolution across channels. Depiction of these two kinds 

of convolutions is in Fig. 2. 

 

 

Figure 2. Depth-wise and point-wise convolutions on MobileNet. 

This approach reduces the computational requirements 

and number of parameters needed for the convolutional 

layer, making it more efficient for applications on mobile 

and embedded devices. 

B. Previous Researches 

Siamese neural networks were initially introduced by 

Bromley et al. [18] to address the task of signature 

verification, treating it as an image-matching problem. 

Later, Taigman et al. [19] tried to implement the Siamese 

neural network to handle a slightly different task from 

signature verification, namely face recognition. Wolf 

et  al.  [19] proposed DeepFace-Siamese, a deep neural 

network architecture for face verification that uses a 

Siamese neural network to learn a similarity metric 

between pairs of face images. The network was trained on 

a large-scale dataset of face images (SFC) and then tested 

on LFW with an accuracy as high as 97.35%. Another 

research done by Song and Ji [20] can improve face 

recognition accuracy under non-restricted conditions, as 

demonstrated by simulation exploration using standard 

face datasets such as CASIA-WebFace [21], Yale-B [22], 

and LFW [23]. Further, Aufar and Sitanggang [24] tested 

implementing a Siamese neural network on a mobile 

application built using the Kivy framework using the LFW 

image dataset and achieved a classification accuracy rate 

of 98%. 

In the meantime, MobileNet was proven to be well-

suited for computer vision tasks for mobile devices such as 

object detection, fine-grain classification, facial attributes, 

and large-scale geo-localization [16]. A comparative study 

on four different CNN architectures: VGG16, Inception-

V3, ResNet50, and MobileNet was conducted by Ahmed 

et al. [25], resulting in the finding that MobileNet 

performed better in test accuracy amongst all. 

Subsequently, an attempt to implement MobileNet on 

mobile attendance systems has been managed by 
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Brown  [26] by also utilizing an IoT toolkit, namely 

OpenVINO. Evaluation is carried out by considering pose 

angles, and MobileNet can achieve a maximum accuracy 

of 100% at angles of +25o, 15o, −15o, and −25o, while the 

lowest accuracy is 89.25% at an angle of +60o. 

As for datasets, according to the file type, datasets can 

be categorized into two types, image-based face datasets, 

and video-based face datasets. However, the availability of 

face datasets focusing on mask usage is relatively limited. 

For image-based face datasets, Ge et al. [27] introduced 

MAFA which contains only masked face images. Another 

mask detection dataset, MOXA [28] and MFDD [29], 

consists of both ‘masked’ and ‘no mask’ labels. A more 

comprehensive dataset on mask detection is FMD [25], 

which also has ‘incorrect mask’ label aside from ‘mask’ 

and ‘no mask’. There are also RMFRD and SMFRD that 

were introduced by Huang et al. [29]. RMFRD was 

collected from public images available on the internet, 

with the corresponding masked faces. In the meantime, 

SMFRD was using the existing public face dataset with 

artificial masks [30]. 

Meanwhile for the video-based face datasets that 

consider mask usage, there is Youtube Faces Database 

(YFDB) [31] that is collected from Youtube. YFDB was 

created to investigate the challenges of face recognition in 

uncontrolled video settings. As for video-based face 

dataset in controlled settings, there is XM2VTS [32] that 

is ideal to use in an environment where it can be reasonably 

expected that the client will be cooperative. Yet video-

based face dataset that focuses on mask usage is very 

limited. One we can find is M2FRED, which is a dataset 

that tries to answer the need for facial recognition during 

the pandemic era due to COVID-19. This dataset contains 

videos of the subject speaking short sentences both using 

and not using mask. However, there is only a small number 

of research on mobile face recognition utilizing M2FRED. 

In [14], M2FRED was tested using MLP, SVM, DT, and 

RF, resulting in better performance compared to XM2VTS. 

Summary of the previous researches can be seen in Table  I.  

The literature review reveals the noteworthy 

development of Siamese Neural Network and MobileNet, 

which have attained state-of-the-art status in face 

recognition. Therefore, based on their exceptional 

performance, the author selected these two models for the 

experiments conducted in this research paper. 

Subsequently, from Table I, we notice that more 

exploration has yet to be done on M2FRED despite its 

potential. Therefore, we try to cultivate more on M2FRED 

using state-of-the-art deep learning models which are 

MobileNet and Siamese neural networks. 

TABLE I. SUMMARY OF THE LITERATURE REVIEW 

Ref. Model Dataset Description Features 

Bromley et al. 

[18] 

Siamese 

Neural 

Network 

2190 up to 4380 

signatures 

Research done on signature 

verification with accuracy 97% 

“pud” feature, x and y position, speed at 

each point, centripetal acceleration, 

tangential acceleration, direction cosine of 

the tangent, direction sine of the tangent, 

cosine of the local curvature, sine of the 

local curvature 

Taigman et al. 

[19] 

Siamese 

(DeepFace-

Siamese) 

Trained on SFC, 

tested on LFW 
Accuracy is 97.35% Simple edges, texture 

Aufar Sitanggang 

[24] 
Siamese CNN LFW Classification accuracy is 98% N / A 

Ahmed et al. [25] 

MobileNet, 

VGG16, 

Inception-V3, 

ResNet50 

130 images for 

each 10 celebrities 

obtained from 

internet 

MobileNet performed best accuracy 

84% 

VGG16 was fine tuned to have 13.504.778 

parameters, MobileNet was also fine tuned 

to 3.217.226 parameters, as for AlexNet N/A 

Brown [26] MobileNet 

FERET B-series 

Face Dataset, 

CrowdHuman and 

Classroom 

Dataset (collected 

by researchers) 

Experiment done by using IoT 

toolkit on mobile attendance 

system. Best MobileNet accuracy 

was 100% 

N/A 

Cimmino et al. 

[14] 

MLP, SVM, 

DT, RF 

M2FRED and 

XM2VTS 

The quality of M2FRED is 

equivalent to XM2VTS despite 

M2FRED was taken under 

uncontrolled environments, and 

conducted by involving mask usage 

Geometric features, facial landmarks, texture 

patterns, temporal information 

 

III. MATERIALS AND METHODS 

This section discusses datasets, processes, and the 

architecture used for the research. The aim of this study is 

to determine which method is more suitable to be 

implemented in a mobile-based face recognition system. 

To achieve this goal, we conducted experiments using the 

M2FRED dataset and two different algorithms, namely 

MobileNet and Siamese neural networks.  

A. Dataset 

This research employed the Mobile Masked 

Recognition Through Periocular Dynamics Analysis 

(M2FRED) dataset [14], which consists of short videos of 

43 subjects of various genders and ages uttering 

predetermined sentences or phrases. The videos were 

captured in an uncontrolled environment with four 

different conditions: indoors without a mask, indoors with 

a mask, outdoors without a mask, and outdoors with a 

mask as seen in Fig. 3. 
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Figure 3. Samples of Subject 036 from M2FRED. 

The structure of the dataset is as follows: 

1) It consists of 43 subjects with ID numbers from 000 to 

042. 

2) The dataset is stored in two directories for each subject: 

one for videos without masks (i.e., 000_0), and the 

other for videos with masks (i.e., 000_1). 

3) There are a total of 16 videos for each subject: 

• 4 masked videos taken indoors. 

• 4 masked videos taken outdoors. 

• 4 non-masked videos taken indoors. 

• 4 non-masked videos taken outdoors. 

The best result for face recognition on the M2FRED 

dataset was achieved by using MLP with an accuracy of 

95.4% [14]. 

This dataset was originally created to investigate face 

recognition during the pandemic, when masks are 

commonly used, leading to a shift in focus to the periocular 

area for facial recognition. But with its characteristics, 

M2FRED can also be used to analyze deep learning 

performance under various lighting conditions. 

B. Preprocessing 

We analyzed the M2FRED dataset thoroughly, and we 

found some inconsistencies in labeling. There is a data 

labeling mistake on Subject 15. Two videos (masked and 

indoor) of Subject 15 were mistakenly labeled as Subject 

14. This causes the data on Subject 14 to be incomplete, as 

can be seen in Fig. 4. There is also one video with too short 

duration (only 1s) on Subject 22 (file 022_1_0_2.avi), 

resulting in only a few frames that can be extracted from 

that video. 

 

 

Figure 4. Samples of Subject 15 mistakenly labeled as subject 14. 

There is also incomplete data for Subject 002, which 

only consists of 3 videos for each sub-directory when there 

should be 4 videos. 

However, these inconsistencies do not significantly 

affect the total number of frames that can be generated 

from each subject considering that each subject does not 

only have one video sample. Therefore, we use a fixed 

number of frames to cope with these inconsistencies. 

Tables II and III give the idea of the preprocessing result. 

TABLE II. FRAME EXTRACTION FOR MOBILENET 

Scheme 
Frame of each subject Total Num of Frames 

Training Testing Training Testing 

MobileNet 

(overall) 
138 32 5,934 1,376 

MobileNet 

(mask) 
138 13 4,644 559 

MobileNet 

(indoor) 
138 13 4,644 559 

MobileNet 

(outdoor) 
138 13 4,644 559 

TABLE III. FRAME EXTRACTION SIAMESE NEURAL NETWORK 

Scheme 

Num of Subdirectories 

(each has 135 frames) 

Total Num of 

Frames 

Training Testing Training Testing 

Siamese 

(overall) 
34 9 4,590 1.215 

Siamese 

(mask) 
34 9 4,590 1.215 

Siamese 

(indoor) 
34 9 4,590 1.215 

Siamese 

(outdoor) 
34 9 4,590 1.215 

 

1) Preprocessing result of mobileNet 

For MobileNet, frames are extracted from videos of 

each subject using the OpenCV (CV2) library. An 

extraction rate of 20 frames is used, meaning every 20th 

frame is extracted. For each subject, the first 6 extracted 

frames are used as training data, and the remaining frames 

are used as testing data. 

The total number of frames collected for training data is 

7,662 frames, and for testing data, it is 2,914 frames. 

However, it was observed that some subjects had fewer 

frames than others, with a minimum of 138 frames for 

training, 32 frames for testing the overall performance, and 

13 frames for mask and lighting evaluation. Therefore, to 

ensure uniformity across all subjects, the fixed number of 

138 frames per subject was used for both training and 

testing data. 

After frame extraction, the frames are converted into 

arrays using Image Data Generator, allowing them to be 

read using TensorFlow. During this stage, data 

augmentation is applied, including rotation, horizontal and 

vertical shifting, shearing, zooming in, and horizontal 

flipping. Additionally, a validation set is created by taking 

20% of the training data for each subject. 

This data pipeline ensures that the extracted frames are 

processed, augmented, and divided into training and 

validation sets for each subject, making the data ready for 

training a MobileNet-based model with TensorFlow's 

Keras API. 
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2) Preprocessing result of Siamese neural network 

A different approach is taken for data preprocessing in 

the Siamese neural network. Initially, videos are extracted 

using an extraction rate of 20 frames per video. After 

extraction, the directories are logically split into training 

sets and testing sets with an 80:20 ratio, resulting in 34 

directories for training and 9 directories for testing. Each 

directory contains 135 images. 

From these 135 images in each directory, triplets are 

created to form training and testing pairs. Each triplet is 

composed of an anchor, positive, and negative image, as 

illustrated in Fig. 5. The anchor image represents the 

reference image, the positive image is another image of the 

same identity as the anchor, and the negative image is an 

image of a different identity. 

 

 

Figure 5. Triplets sample of M2FRED. 

Using this setup, we generate a total of 4,590 training 

pairs and 1,215 testing pairs. Each pair consists of an 

anchor image paired with either a positive or a negative 

image. 

In the Siamese neural network, these pairs of triplets 

(anchor + positive) and (anchor + negative) are fed into the 

model, producing vectors for each pair. By calculating the 

distance between these vectors, we can obtain a similarity 

score between the anchor, positive, and negative images. 

A specific threshold (e.g., 1.3) is used to classify whether 

a pair is considered a positive match, or a negative match 

based on the similarity score. 

C. Experiments 

The Experiments section of this research focuses on the 

utilization of two key deep learning models: MobileNet 

and Siamese Neural Network. These models are employed 

to investigate and analyze specific research objectives. 

In the experiments, the MobileNet model is utilized for 

its efficient and lightweight architecture, which is 

particularly well-suited for mobile face recognition tasks. 

The Siamese Neural Network, on the other hand, is 

employed to capture and analyze the similarity between 

pairs of face images. By comparing these two models, we 

aim to determine their respective strengths and limitations 

in addressing the research problem. 

 

Figure 6. MobileNet architecture. 

1) MobileNet 

This study adopted the MobileNet architecture for face 

recognition tasks in resource-constrained environments 

such as mobile devices and embedded systems. To 

implement MobileNet, we use the Keras deep learning 

framework with a pre-trained MobileNet model, discard 

the top layer, and add two new layers to the model: a global 

average pooling layer and a dense layer with 1024 units 

and a ReLU activation function. The model was trained 

using the Adam optimizer with a learning rate of 0.001 and 

a batch size of 32 for 10 epochs. The softmax function was 

used as the activation function in the output layer to 

classify the images. Simply put, the representation of the 

model is as in Fig. 6, meanwhile the summary of the model 

is represented in Fig. 7. 

 

 

Figure 7. MobileNet summary. 

2) Siamese neural network 

For the Siamese neural network implementation, we 

first create sets of triplets that consist of an anchor image, 

a positive image (belonging to the same person as the 

anchor), and a negative image (belonging to a different 

person than the anchor). 

Then the Siamese neural network architecture is defined, 

which consists of two identical CNN models, each 

consisting of a pretrained model, namely the Xception 

model, followed by dense layers and the L2 normalization 

layer. The two sub-networks share the same weights and 
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are fed with a pair of images as inputs. A Distance Layer 

was then applied to calculate the distance between (anchor, 

positive) pairs and (anchor, negative) pairs. Fig. 8 

represents the Siamese neural network’s architecture used 

in this research. 
 

 

Figure 8. Siamese neural network architecture. 

Concurrently, the model's overview is illustrated in 

Fig.  9. 

 

 

Figure 9. Siamese neural network architecture. 

The subnetworks were trained to recognize the 

similarity between two images. The model was trained 

using the Adam optimizer with a learning rate of 0.001. 

We trained the model for 10 epochs with a batch size of 32 

and a similarity threshold of 1.3. The purpose of the 

Siamese neural network was to learn a similarity metric 

between two input images, which can be useful in 

situations where face images may have occlusions or pose 

variations. 

D. Evaluation Metrics 

To evaluate the effectiveness of the deep learning 

models, this study utilizes accuracy, precision, recall, and 

F1-score, which can be generated using the metrics module 

from the scikit-learn library available in Python. 

Subsequently, to determine both models’ performance as 

biometric systems, False Acceptance Rate (FAR), and 

False Rejection Rate (FRR) are obtained by calculating the 

total amount of true positives, false positives, true 

negatives, and false negatives from confusion matrix, as 

can be seen from Eqs. (1)−(2). 

 

 FAR = FP  (FP + TN)  (1) 

 FRR = FN  (FP + TP)  (2) 

 

Meanwhile, to evaluate the resource requirements, we 

take notes on the total average time and parameters utilized 

for the models to do training. 

IV. RESULT AND DISCUSSION 

The focus of this research is on how MobileNet and 

Siamese neural networks perform under three major 

challenges: mask usage, lighting conditions, and limited 

computational resources. The M2FRED dataset provides 

an opportunity to evaluate the performance of the 

MobileNet and Siamese neural network algorithms under 

those conditions. In this section, we elaborate on the results 

of our experiments at every step along with the analysis. 

The overall performance for each model in doing 

classification tasks overall M2FRED dataset can be seen 

in Table IV. This table also shows the distinction between 

models used in the previous research [14]. 

TABLE IV. MODEL’S PERFORMANCE 

Model Accuracy Precision F1-Score Recall 

MobileNet 99.85 99.85 99.85 99.85 

Siamese 92.38 96.17 92.06 88.28 

MLP 95.4 95.1 N/A 95.5 

SVM 92.2 92.2 N/A 92.2 

DT 28.9 27.6 N/A 29 

RF 84.1 83.9 N/A 84 

 

In general, MobileNet outperformed the Siamese neural 

network and models used in prior investigation for every 

metric. Simultaneously, to evaluate the performance of 

these models as biometric systems, metrics such as FAR 

and FRR are used, and the result is shown in Table V. 

TABLE V. FAR AND FRR SCORES 

Model FAR (%) FRR (%) 

MobileNet (Avg) 0.0035 0.145 

Siamese (Avg) 7.6 7.6 

 

The FAR and FRR scores shown in Table V represent 

that MobileNet outperformed the Siamese neural network. 

FAR score indicates the probability that the system will 

incorrectly identify an unauthorized person as authorized. 

The lower the FAR, the better the system’s security level. 

In this case, the average FAR is less than 0.0035%, which 

is a very low error rate and indicates that the system is 
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performing well. The Siamese neural networks, on the 

other hand, is very permissive and got a fairly high score 

for both FAR and FRR, indicating that the Siamese neural 

network gives poor performance as a biometric system. 

There are also three major issues to be analyzed more 

thoroughly in this paper: mask usage, lighting variations, 

and algorithm complexity. Customized M2FRED subsets 

are prepared for each problem, and then processed to suit 

the characteristics of the networks used, both MobileNet 

and Siamese neural networks. All the evaluations are 

depicted in Fig. 10. 

The Siamese neural network never shows better 

performance than MobileNet. And with the FAR and FRR 

scores that resulted, it can be concluded that the Siamese 

neural network is less suitable to be applied to M2FRED. 

 

Figure 10. Bar graph of both model’s performances. 

Meanwhile, more thorough results of the mask and 

lighting evaluation can be observed in Table VI. 

TABLE VI. MASK AND LIGHTING EVALUATION 

Model Accuracy (%) Precision (%) F1-Score (%) Recall (%) FAR (%) FRR (%) 

Mask Evaluation 
MobileNet 100 100 100 100 4.9810−5 0.003 

Siamese 49.41 43.48 7.17 3.91 50.59 50.59 

Indoor Evaluation 
MobileNet 99.72 99.72 99.72 99.72 0.0065 0.205 

Siamese 88.09 94.12 87.21 81.25 11.91 11.91 

Outdoor Evaluation 
MobileNet 99.52 99.52 99.52 99.52 0.011 0,543 

Siamese 92.38 96.17 92.06 88.28 7.61 7.61 

 

A. Results of Mask Usage Evaluation 

We evaluate the performance of the models on masked 

faces, which can simulate real-world scenarios where 

people are wearing masks. A subset of the M2FRED 

dataset where the subjects are wearing masks was created, 

and we evaluated the models’ performance on this subset.  

The Siamese neural networks performed very poorly for 

this mask evaluation. This is due to the nature of the 

Siamese neural network, which works by measuring the 

similarity score of a pair of images. The testing set 

provides only masked images, causing the distance value 

to be too wide, resulting in only 49.41% accuracy and very 

poor FAR and FRR scores.  

On the other hand, MobileNet exhibited robust 

performance even in the presence of occlusion due to the 

mask. It achieved an impressive accuracy of 99.79%, 

outperforming Siamese neural networks by a significant 

margin. This remarkable accuracy suggests that 

MobileNet’s ability to extract informative features from 

the facial images was not severely affected by the presence 

of masks. 

B. Results of Lighting Variations 

M2FRED provides datasets with various lighting 

conditions, both indoor and outdoor. By utilizing this 

M2FRED benefit, we can evaluate MobileNet and 

Siamese neural network performance to handle 

illumination issues. For this scenario, we divided it into 

two sub-scenarios: indoor performance and outdoor 

performance. Both use a subset of the M2FRED dataset 

created specifically according to the purpose of testing 

each scenario.  

Again, MobileNet gives us mostly superior 

performance than the Siamese neural network, though the 

Siamese neural network works better at handling lighting 

obstacles than mask usage. Both models perform better in 

outdoor circumstances, although for outdoor images, there 

are plenty of images that have backlight conditions. 

C. Results on Computational Resource Evaluation 

The models’ performance under computational resource 

constraints is evaluated by calculating the usage of time 

and the number of parameters that need to be trained. 

Figs.  7 and 9 present the summary of MobileNet and 

Siamese neural networks, respectively. 

It was quite clear from the number of parameters that 

need to be trained that the Siamese neural network is more 

complicated than MobileNet by having five times the 

number of parameters. This also influences the amount of 

time required to do training. MobileNet takes 

approximately 3,640 Seconds to do one training (10 

epochs, batch_size = 32), whereas the Siamese neural 

network takes around 17,180 Seconds to perform the same 

training, not to mention the time needed for data 

preparation (creating the triplets). 

The complexity is depicted in Table VII. 

 
TABLE VII. COMPLEXITY COMPARISON 

Model Train Param Train Time 

MobileNet 4,322,539 3,640 s 

Siamese 9,583,800 17,180 s 

 

V. CONCLUSION 

By far, MobileNet can demonstrate superior 

performance over the Siamese neural network in any 

evaluation metrics, be they accuracy, precision, recall, F1 

score, FAR, FRR, and time efficiency. This happened in 

every testing scenario. The transfer of knowledge from the 

Xception module gives MobileNet a more comprehensive 

learning experience rather than the Siamese neural 
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network, which does the learning from scratch. And 

despite the complexity of the Siamese neural network, be 

it in the data preparation process or in the architecture itself, 

the Siamese neural network could not give better outcomes 

compared to MobileNet.  

In our experiments, we applied different preprocessing 

methods for MobileNet and Siamese Neural Network. For 

MobileNet, we extracted frames in all directories and then 

divided them into training, validation, and test sets. Then 

for Siamese Neural Network, after the frame extraction, 

we divided the directories used for training and testing. 

These variations were necessary due to the specific 

requirements of each model and allowed us to conduct a 

fair comparison of their performance.  

We also found that both MobileNet and Siamese neural 

networks exhibited the ability to accurately recognize 

faces in different lighting conditions and backgrounds, 

showcasing their robustness in real-world scenarios. 

Additionally, it is important to note that the Siamese 

neural network performed significantly poorer in face 

recognition tasks that involved mask usage. Due to its 

nature of comparing image pairs, the Siamese network 

struggled when faced with masked images, resulting in 

lower accuracy and subpar FAR and FRR scores. This 

limitation emphasizes the need for further research and 

pre-processing techniques, such as focusing on the 

periocular area, to improve its performance in scenarios 

with occlusions like masks. 

Overall, this research underscores the significance of 

selecting appropriate deep learning models based on 

specific use cases and requirements. Both MobileNet and 

Siamese neural networks showed promise in handling face 

recognition tasks in diverse environments, and while 

MobileNet emerged as the top performer, Siamese neural 

networks still displayed valuable capabilities. 

Further research needs to be done to examine the model 

and architecture that best fit M2FRED, since M2FRED has 

the potential to be studied further, despite its drawbacks 

that have been mentioned in Section IV. It is also possible 

to combine MobileNet and Siamese neural networks by 

using MobileNet as a feature extractor and then continuing 

the training using Siamese neural networks to get the 

similarity score. 
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