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cells that develop in the human brain [2]. The present 

occurrence of malignant tumors is excessive, which has a 

significant impact on persons as well as the 

community  [3−6]. The most essential clinical image 

method for detecting brain cancers is Magnetic Resonance 

Imaging (MRI). MRI seems to be a secure as well as non-

invasive diagnosis technology that delivers more sufficient 

data on brain tissues than computed tomography 

scans  [7−9]. The precise segmentation of brain tumors 

from clinical images are required to give a statistical and 

understandable guideline for medical diagnosis and 

therapy of disorders [10]. As a result, precise segmentation 

of brain tumors is an important phase in brain tumor 

diagnosis and therapy [11]. However, the precise 

segmentation of brain tumors is still considered a highly 

difficult process, because of various reasons such as 

changes in tumor form, size, and location, hazy 

borders  [12], and so on. In recent decades, some brain 

tumor segmentation approaches have been presented. 

Traditional techniques based on handmade features as well 

as Machine Learning (ML) models: Support Vector 

Machines (SVMs) and Random Forests (RFs) typically 

perform poorly [13]. Deep Learning (DL) approaches for 

the segmentation of medical images have attracted a lot of 

interest in current decades, due to many studies with 

remarkable results for detecting and estimating target 

structures in images [14]. The level of user engagement 

with the system and the ease of use of segmentation 

methods often influence their adoption in medical 

applications. Manual brain tumor segmentation is a time-

consuming method that requires researchers to physically 

identify the Region of Interest (ROI) on MRI segments 

utilizing advanced graphical user interface tools. Manual 

segmentation requires a lot of time [15] and is vulnerable 

to user errors, which include inter and intra-variations. An 

autonomous approach for brain tumor segmentation might 

reduce the limitations of human errors while being 

immune to external influences which include disturbances 

as well as the physician’s mental state. Under the related 

works area, current studies have developed several 

efficient automatic systems. As a result, a practitioner 

constructing an autonomous segmentation system really Manuscript received April 6, 2023; revised June 25, 2023; accepted July 

12, 2023; published November 27, 2023. 

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1280doi: 10.12720/jait.14.6.1280-1288

Abstract—A brain tumor is formed by an excessive rise of 

abnormal cells in brain tissue. Early identification of brain 

tumors is essential to ensure patient safety. Magnetic 

Resonance Imaging (MRI) scan is used to diagnose brain 

tumors. Unfortunately, because of the varying form of 

tumors and their location in the brain, physicians are unable 

to provide good tumor segmentation in MRI images. 

Accurate brain tumor segmentation is required to identify 

the tumor and offer the appropriate therapy to an individual. 

In this research, a novel hybrid deep learning technique 

termed Convolutional Neural Network and ResNeXt (CNN-

ResNeXt) is introduced to segregate and classify the tumor 

automatically. Firstly, the MRI image is collected from the 

standard datasets known as BRATS 2015, BRATS 2017 and 

BRATS 2019. Then the collected data is smoothed and 

enhanced by batch normalization technique and the features 

are extracted from the smoothened image based on tumor 

shape position, shape and surface features using AlexNet 

model. Next, using an Adaptive Whale Optimization (AWO) 

approach, the optimal features are selected for effective 

segmentation. Consequently, the image segmentation process 

is done using CNN–ResNeXt depending on the selected 

features. Finally, the segmented image is used for the 

classification which is also done by employing CNN-ResNeXt. 

Whereas compared to the other existing models, the proposed 

CNN–ResNeXt model achieved a greater accuracy of 98% for 

the tumor core class. This demonstrates that the proposed 

methodology segregates and classifies brain tumors 

effectively. 

Keywords—Adaptive Whale Optimization (AWO), AlexNet, 

brain tumor, Convolutional Neural Network (CNN), 

Magnetic Resonance Imaging (MRI), and ResNeXt 

I. INTRODUCTION

The brain is a major organ consisting of nerve cells with 

supporting tissues such as glial cells as well as meninges. 

Damage to these specific brain subparts is irreversible and 

can lead to severe conditions, including life-threatening 

brain tumors [1]. Brain tumors are formed by abnormal 
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shouldn’t concentrate only on creating a model that learns 

and does the segmentation autonomously. More efforts 

must be put towards delivering enhancements such as, 

modifying the model’s design to utilize lower assets and 

provide greater accessibility to users [16]. As a result, the 

current study offers a model based on deep Convolutional 

Neural Network (CNN) and ResNeXt for segmentation 

and effective classification. The main contributions 

included in this research are stated as follows: 

• A deep learning-based CNN with ResNeXt is 

proposed for effective brain tumor segmentation 

and classification using MRI images. 

• The MRI images are collected from the BraTs 

2015, BraTs 2017, and BraTs 2019 datasets where 

both are publically available standard datasets. 

• In the preprocessing phase, the batch 

normalization technique is used whereas the 

feature extraction phase is done using the AlexNet 

model which extracts the features from the 

preprocessed MRI images.  

• Later, the feature selection process is performed 

using the AWO which selects the optimal features 

for effective segmentation and classification. 

The organization of the research is as follows: 

Section  II describes the related works of the methods used 

for the detection and classification of brain tumors. 

Section  III offers a detailed explanation of the proposed 

methodology. In Section IV, the simulation results are 

described. Finally, the overall conclusion is provided in 

Section V. 

II. RELATED WORKS 

Khairandish et al. [17] presented a hybrid CNN-SVM 

model for the detection as well as classification of brain 

tumors. The BraTs 2015 dataset is utilized in this study 

which is publically available. The key preprocessing 

procedures were conducted to normalize the input images, 

then relevant features were extracted from the 

preprocessed image through the Maximally Stable 

Extremal Regions (MSER) approach, and then for 

segmentation threshold-based segmentation algorithm was 

used. To categorize brain MRI images, the labeled 

segmented features are fed into hybrid CNN & SVM 

methods. The suggested hybrid model demonstrates that 

merging the benefits of CNN and SVM can result in 

superior models with classification accuracy of 98.4%. 

However, when additional evaluation criteria such as PPV 

and FPV were considered, the classification performance 

for these parameters was similar for CNN, SVM, and 

hybrid CNN-SVM. 

Ilyas et al. [18] established a Hybrid Weights Alignment 

with Multi-Dilated Attention Network (Hybrid-DANet) to 

perform segmentation automatically. The performance of 

the Hybrid-DANet is validated on two well-known 

datasets (BraTS 2017, 2018). Next, a Multi-Channel 

Multi-Scale (MCS) component was added to the basic 

component whereas the Residual Module (RM) was 

utilized to decrease the saturated accuracy caused by the 

vanishing gradient issue. Hence, the RM, as well as MCS, 

are beneficial for obtaining the deep, intrinsic, channel-

wise feature while avoiding depth as well as height 

extension. On the BraTS 2018 dataset, HWADA achieved 

comparable Dice Similarity Coefficient (DSC) results of 

0.892, 0.764, 0.680 for the Whole Tumor (WT), Tumor 

Core (TC) and Enhanced Tumor (ET), respectively, 

because the basic to deeper characteristics were extracted. 

However, the suggested model was only evaluated for an 

encoder component in this study. 

Almajmaie et al. [19] created a hybrid deep learning 

architecture for segmenting brain tissue that combines 

SegNet with U-Net algorithms. The proposed SegNet-

UNet technique was assessed using the BRATS 2017 and 

BRATS 2018 datatsets.  In this case, a skip connection of 

the relevant U-Net network was thoroughly investigated. 

Whenever pooling indices flow via de-convolution layers, 

the model achieved quicker convergence. After that, by 

merging more level set layers inside this design, counters 

of brain tissue borders are retrieved. The suggested 

SegNet-UNet model achieved a better DSC of 0.82, 0.73 

and 0.68 for WT, CT, and ET, respectively. The findings 

show that by combining level sets with repetitive FCN 

architectures, the suggested DRLs provide a better solution 

in terms of resilience over anomalies, speed, and 

consistency in segmenting core tumors. Furthermore, 

DRLs significantly enhance the pace of segmenting brain 

tumors, which makes it an effective method. 

Lamia and Barzegar [20] established a semi-supervised 

multi-labeling system named Weighted Label Fusion 

learning Framework (WLFS) for automated glioma 

segmentation. The proposed technique was assessed using 

the datatsets such as BRATS 2015, BRATS 2017 and 

BRATS 2019. The system was divided into three sections: 

image preparation, graph creation, as well as segmentation. 

By estimating the transmitted data, the labels were 

extended between the atlas as well as target images. The 

suggested WLFS achieved a better segmentation accuracy 

of 90.1%, 88.7% and 89% for WT, TC, and ET, 

respectively. Because data propagates repeatedly from 

vertices with great trust, to vertices exhibiting little trust, 

segmentation accuracy may be steadily increased in target 

images that are less closely related to atlas images. Due to 

the suggested approach’s time evaluation, the running time 

was strongly dependent on the total amount and size of the 

samples. 

Shehab et al. [21] presented a ResNet-based automated 

system for brain tumor segmentation. To validate the 

efficacy of the suggested approach, simulation 

experiments were run using the dataset BRATS 2015. An 

“identity shortcut connection” in ResNet allowed the 

gradient to be back-propagated to previous layers. The 

shortcut connection in the ResNet model managed the 

vanishing gradient issue. It enabled the exhibited model to 

acquire an identity function, thus ensuring that the upper 

layer performed better than the bottom layer. Whereas, the 

suggested ResNet system achieved a greater segmentation 

accuracy of 84%, 90%, 86% for TC, ET, and WT, 

respectively. Furthermore, feature extraction of LGG brain 

tumors demanded a little alteration in model architecture 

to enhance segmentation results. 
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Brain tumor segmentation using K-means clustering 

and deep learning with synthetic data augmentation for 

classification has been demonstrated by Khan et al. [22]. 

In the experimentation, the proposed technique was 

assessed using the BraTS 2015 data. Here, the 

segmentation was done using k-means clustering and 

classification was done using a refined VGG19 (i.e., 19-

layered Visual Geometric Group). Additionally, the 

synthetic data augmentation idea was introduced to expand 

the amount of data that could be used for classifier training 

to enhance accuracy. By performing this, the overall 

accuracy achieved by the suggested method was 94%.  

However, approaches for identifying and categorizing 

tumors in MR images are still required to be specific, 

efficient, and dependable. 

A Multiscale 3D U-Net’s design employs a number of 

U-net blocks to gather long-distance spatial data at various 

resolutions which was demonstrated by Peng et al. [23]. 

Then, to extract enough features, the feature maps were 

upsampled at various resolutions to understand and 

process the optimized features. On the BraTS 2015 testing 

set, 3D depth-wise separable convolution was utilized to 

lower the computational cost, temporal, and space 

complexity. The suggested multiscale 3D U-Net achieved 

a greater DSC of 0.85, 0.72, 0.61 for WT, TC, and ET, 

respectively. It was regrettable that many Low-Grade 

Gliomas (LGG) images lack an enhancing zone. Those 

issues reduce the model’s ability to optimize by making 

the tumor core and augmenting region less dominant 

during the training phase. 

Latif et al. [24] developed a novel brain tumor 

segmentation system using a Multi-Inception-UNET (MI-

UNET) architecture. The system incorporates two key 

components to improve the accuracy of tumor 

segmentation. Firstly, a CNN was employed to classify 

slices as tumorous or non-tumorous, effectively reducing 

false positives within the system. Secondly, a novel 

architecture named MI-UNET is used to segment the 

tumorous slices. MI-UNET extends the baseline UNET 

architecture by integrating inception modules at each level. 

This integration enhanced the scalability and 

representation capability of the UNET model, led to more 

accurate tumor segmentation results. To train the MI-

UNET model, a weighted dice loss function is utilized. 

Whereas, the suggested MI-UNET achieved the greater 

accuracy of 94% with data augmentation. Due to 

limitations in computational resources and time constraints, 

certain aspects, such as further observations, variations, 

and experimentations were left as potential future work. 

III. PROPOSED METHODOLOGY 

In this research, a batch normalization with a transfer 

learning-based classification is proposed for the effective 

classification of brain tumors. The BRATS 2015, BRATS 

2017, and BRATS 2019 are considered for evaluating the 

proposed system. Initially, batch normalization is used for 

the images followed by the AlexNet model for extracting 

features from images. Next, an AWO algorithm is used for 

the effective selection of features. A novel approach 

named CNN with ResNeXt is proposed for segmentation 

and effective classification. The flowchart of the proposed 

model is illustrated in Fig. 1. 

 

 

Figure 1. Flowchart of the proposed model. 

A. Dataset 

1) BRATS 2015 

In this research, the standard publicly available dataset: 

BRATS 2015 (https://www.kaggle.com/datasets/xxc025/ 

brats2015) is considered. The BRATS 2015 dataset is a 

widely used benchmark in the medical imaging 

community for evaluating brain tumor segmentation 

algorithms [25]. The overall amount of 2D FLAIR axial 

images of HGG, as well as LGG individuals in the 2015 

dataset, was 220 as well as 54, respectively. T1, T1Gd, T2, 

as well as T2 FLAIR volumes, are the MRI scan 

modes/modalities used on every patient. Every image in 

this collection is 512×512 pixels in size, with pixel sizes 

of 49 mm × 49 mm. 

2) BRATS 2017 

The BRATS 2017 dataset  (https://www.kaggle.com/ 

datasets/abdullahalmunem/brats17) is an updated version 

of the BraTS dataset, with improvements and additional 

features. It consists of MRI scans from multiple 

institutions, focusing on brain tumor segmentation. Similar 

to BRATS 2015, the dataset includes T1-weighted, T1-

weighted with contrast enhancement, T2-weighted, and 

FLAIR MRI sequences [26]. In BRATS 2017, the dataset 

has been expanded to include more cases, resulting in a 

larger and more diverse collection of brain tumor images. 
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Additionally, the ground truth manual segmentations have 

been enhanced to include more detailed tumor subregions. 

This enables more refined evaluation of segmentation 

algorithms and encourages the development of methods 

that can accurately identify different tumor components. 

3) BRATS 2019 

Similar to the above datasets, the BRATS 2019 dataset 

is an advanced version of the BRATS dataset. The BRATS 

2019 dataset (https://www.kaggle.com/datasets/ 

aryanfelix/brats-2019-traintestvalid) offers several 

advancements over its predecessors. It includes a LGG and 

HGG of 76 and 259, respectively, allowing for more robust 

analysis and evaluation of brain tumor segmentation 

methods [27]. Additionally, BRATS 2019 introduces a 

survival prediction task, where participants are challenged 

to predict the overall survival time of patients based on 

their MRI scans. This expansion aims to foster the 

development of models capable of not only segmenting 

tumors but also predicting patient outcomes, potentially 

aiding in treatment planning and prognosis estimation. 

B. Data Pre-processing 

Batch normalization is the chosen pre-processing 

technique in this experiment, where the term batch refers 

to the set of input data and the process takes place in 

batches. Normalization is referred to as a tool that is used 

in converting numerical data to a common scale while 

preserving its shape. In other words, it is the process of 

transforming the data to have a 0 as the mean value and 1 

as a standard deviation. The procedure of making Neural 

Networks (NN) faster and highly stable by adding more 

layers to the DNN is known as batch normalization. The 

standardization and normalization operations are 

performed by the new layer by considering the values of 

the previous layer. The mean and standard deviation of the 

hidden activation are calculated by taking batch input from 

layer ℎ using Eqs. (1) and (2). 

 𝜇 =
1

𝑚
∑ ℎ𝑖  (1) 

  𝜎 = [
1

𝑚
∑(ℎ𝑖 − 𝜇)2]

1

2
  (2) 

where,  

𝜇 —mean,  

𝜎 —standard deviation, 

𝑚 —number of neurons at layer ℎ. 

Using the values of Eqs. (1)−(2), the hidden activations 

are normalized. The mean value is subtracted from each 

input and then divide into the total value with the sum of 

the standard deviation and the smoothing term (휀). The 

smoothing term ensures the numerical stability inside the 

operation by preventing division by zero and it is 

calculated using Eq. (3). 

 ℎ𝑖(𝑛𝑜𝑟𝑚) =
(ℎ𝑖−𝜇)

𝜎+𝜀
  (3) 

Then, the normalized images are sent to the further 

feature extraction process for extracting the features from 

these images. 

C. Feature Extraction 

AlexNet is a deep CNN architecture which plays a 

significant role in DL for computer vision tasks. Here, to 

extract the features from the preprocessed data, the 

AlexNet model is employed. It consists of 5 convolutional 

layers, 3 max-pooling layers, 2 normalization layers, 2 

fully connected layers, and 1 softmax layer. The activation 

function was only the model’s initial enhancement, which 

was then put to a NN for efficient evaluation. The AlexNet 

model contains 96 neurons, which trained for 100 epochs, 

and incorporates a dropout rate of 0.5. Conventional 

activation functions include the arctan function, 

𝑡𝑎𝑛 𝑡𝑎𝑛 ℎ  function, as well as the logistic function. DL 

models encounter the disappearing gradient issue because 

of the presence of huge gradient values whenever input 

data is close to zero. The Rectified Linear Unit (ReLU) is 

used, and the activation function for the ReLU is stated in 

Eq. (4). 

 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥 (𝑥, 0)  (4) 

If the input data is greater than zero, the ReLU gradient 

is updated to 1. The ReLU in deep networks has a higher 

convergence rate than the Tanh unit, which speeds up the 

training procedure. The feature map of a nearby pixel 

group is reduced in the pooling layer, and several 

approaches are utilized to create a value. In max pooling, 

each 2  2 block max value is created, as well as a 4  4 

feature map is used to minimize feature dimension. Where, 

AlexNet’s feature extraction process is fixed and not 

adaptive to the specific dataset. So, an Adaptive Whale 

Optimization (AWO) algorithm is employed in the feature 

selection process. AWO uses adaptive search mechanisms 

that enable it to adjust the feature selection process based 

on the characteristics of the dataset. 

D. Feature Selection 

The Adaptive Whale Optimization (AWO) algorithm is 

used for selecting features from MRIs. This optimization 

technique is inspired by the foraging behavior of whales 

and aims to enhance the efficiency of the feature selection 

process. By selecting the most relevant features using 

AWO from the MRI scans, the model’s performance is 

improved by reducing noise and irrelevant information. 

Due to the shortcomings of whale optimization algorithms 

such as slow convergence speed, the insufficient ability of 

global optimization, and easily falling into local 

optimization: therefore, AWO is considered in this 

research. There are three stages included in the AWO 

approach which are as follows; 

• Prey search 

• Encircling prey 

• Bubble-net feeding 

1) Encircling prey 

The Humpback whales detect the position of the prey 

and then encircle the prey. WOA’s search agent is target 

prey which is also considered the best among other agents. 

During the iteration procedure, the position updates to the 

best searching agent about the location are achieved by 

utilizing humpback whales. 
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2) Bubble-net feeding 

In the model, Spiral update posting, as well as shrinking 

encircling, are conducted sequentially for the humpback 

whale bubble-net attack technique. 

3) Prey search 

For the prey search, the shrinking encircling approach is 

used and also the coefficient vector |𝐴| > 1 is utilized as 

well to randomly choose the whale from the present 

population the location of the best search agent is modified. 

To increase the search space, a global search is performed 

where from the random whales the humpback whales are 

neglected. 

E. Image Segmentation 

Image segmentation is one of the important processes 

that involve dividing input images into segments for easy 

analysis. In this research, CNN and ResNeXt are used for 

image segmentation due to their high capability of 

segmenting and classifying images. 

1) CNN 

When contrasted to a deep Artificial Neural Network 

(ANN), CNNs have fewer parameters as well as a lesser 

training time. Therefore, CNNs have shown remarkable 

success in various computer vision tasks, including image 

segmentation, identification, as well as classification, due 

to their ability to capture complex patterns and spatial 

relationships. CNN segmentation as well as the 

classification system incorporates layers which include 

convolutional layers, pooling layers, fully connected 

layers, drop-out layers, etc. Fig. 2 shows the basic 

architecture of CNN. 

In Fig. 2, the first layer’s feature map is created by 

combining the input using six convolution kernels. Every 

convolution kernel is 5  5 in size, with a stride of 1. The 

following Eq. (5) is used to calculate the feature map size:  

 𝑛𝑓 =
𝑛𝑖+2𝑝−𝑓

𝑠
  (5) 

where,  

𝑛𝑓 —feature map size  

𝑛𝑖 —input data size 

𝑝 —padding value 

𝑓 —kernels size 

𝑠 —stride value. The basic formula of a convolution 

operation is given in Eq. (6):  

 𝑎𝑙 = 𝛿(𝑊𝑙𝑎𝑙−1 + 𝑏𝑙)  (6) 

where, 

𝑎𝑙— 𝑙th convolution layer’s output 

𝑊𝑙 —𝑙th convolution layer’s convolution kernel 

𝑎𝑙−1 —𝑙 − 1th convolution layer output 

𝑏𝑙 —lth convolution layer’s bias 

𝛿 —𝑙th convolution layer’s activation function. 

 

 

Figure 2. Basic CNN architecture. 

2) ResNeXt 

ResNeXt is a framework that relies on the basic ResNet 

architecture whereas the ResNeXt model integrates the 

ResNet approach of recurring layers. Furthermore, 

ResNEXT was employed to deepen the model’s capacity 

to capture intricate patterns and features within the data. 

The ResNEXT component utilized residual 

connections\blocks to facilitate the flow of information 

through the network, allowing for better gradient 

propagation and alleviating the vanishing gradient 

problem that affect conventional CNNs. This enhanced the 

model’s ability to handle complex tumor structures and 

improve segmentation accuracy. The residual block not 

just increases network depth and also enhances system 

performance. The ResNeXt block with cardinality equals 

32, with roughly a similar complexity is depicted in Fig. 3. 

Particularly, ResNeXt networks performed well in the 

ImageNet classification challenge. The residual block in 

ResNeXt performs the residual by combining the inputs 

with the residual block outcomes. The residual function is 

calculated as shown in Eq. (7): 

 𝑦 = 𝐹(𝑥, 𝑊) + 𝑥(3)   (7) 

where, 

𝑥 —residual block input 

𝑊 —residual block weight 

𝑦 —residual block output  

 

 

Figure 3. ResNeXt block. 
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Figure 4. Residual block. 

Here, Fig. 4 depicts the structure of the residual block. 

The ResNeXt network is made up of many residual blocks, 

each with a distinct convolution kernel size. The 

construction block is similar to the Inception network in 

that it allows several conversions such as 11 Conv, 33 

Conv, 55 Conv, and MaxPooling. While the Inception 

model sequentially applies alterations, the ResNeXt model 

takes a different way by incorporating and merging them. 

The independent path value provides an additional level of 

cardinality to this model. It also provides conventional 

depth as well as height measurements. 

Increasing cardinality allows the network to expand 

wider or deeper, which is extremely effective when the 

width as well as depth dimensions give lower outputs for 

typical models. The suggested ResNeXt building block 

comes in three types which are shown in Fig. 5. Experts 

stated that ResNeXt model is simple to train when 

compared with Inception network since it can be trained 

across numerous datasets. The segmented images are then 

sent into a classifier, which classifies brain tumors. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 5. Equivalent building blocks of ResNeXt. (a) ResNeXt model.  

(b) A block equivalent to (a) implemented as early concatenation.  

(c) A block equivalent to (a, b), implemented as grouped convolutions). 

F. Classification 

The classification is performed to test the performance 

of the segmented feature set based on the classification 

method. Each classifier includes training and testing 

phases, where the dataset is also divided into training and 

validation datasets. In this research, a deep learning-based 

CNN and a transfer learning-based ResNeXt classifier is 

used for the effective classification of brain tumor. First, 

the segmented features are given as input to CNN-

ResNeXt model then the classifier passes the images to 

their layers. Finally, the convolutional layers classify the 

image’s features by scanning the input image with several 

filters. 

IV. EXPERIMENTAL RESULTS 

This section provides the results and analysis of the 

proposed CNN-ResNeXt model which is implemented and 

simulated using Python software whereas the computer is 

powered by the following parameters: 

• RAM: 16GB 

• Processor: INTEL i5 

• Operating OS: Windows 10 

• GPU: 6GB 

• HDD: 1 TB 

The common performance measures given in Table I are 

used to assess the performance of the proposed CNN-

ResNeXt model.  

TABLE I. PERFORMANCE MEASURES AND THEIR VALUES 

Performance Measures Values 

Accuracy 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
× 100  

Precision 
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100  

F-measure 
2𝑃𝑅

𝑃+𝑅
× 𝟏𝟎𝟎  

Dice Similarity 

Coefficient (DSC) 

2𝑇𝑃

𝐹𝑁+𝐹𝑃+2𝑇𝑃
× 100  

Sensitivity 
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100  

Specificity 
𝑇𝑁

𝑇𝑁+𝑭𝑷
× 100  

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1285



 

A. Performance Analysis 

The segmentation performance of the proposed CNN-

ResNeXt model is analyzed and contrasted with 

conventional models: CNN, Visual Geometry Group 

(VGG-Net) and Residual Network (ResNet) in terms of 

sensitivity, and specificity, which are given in Table II. 

Where, the Tumor Core (TC), Whole Tumor (WT), and 

Enhanced Tumor (ET) are the tumor classes. Similarly, 

Table III represents the performance analysis of the CNN-

ResNeXt model and other existing models in terms of DSC. 

TABLE II. PERFORMANCE ANALYSIS OF PROPOSED MODEL WITH 

EXISTING MODELS 

Methods 

Performance Measures (%) 

Sensitivity Specificity 

TC ET WT TC ET WT 

CNN 75 69 85 91 92 92 

VGG-net 83 75 89 93 94 95 

ResNet 90 85 91 95 94 97 

CNN-ResNeXt 95 95 98 99.8 99.9 99.6 

TABLE III. PERFORMANCE ANALYSIS OF PROPOSED CNN-RESNEXT 

MODEL WITH EXISTING MODELS IN TERMS OF DICE SIMILARITY 

COEFFICIENT (DSC) 

Methods 
DSC (%) 

TC ET WT 

CNN 80 70 85 

VGG-net 89 81 90 

ResNet 94 95 91 

CNN-ResNeXt 97 98 94 

 

Table II and Table III, show that the existing model 

CNN achieved the Sensitivity for TC, ET, and WT classes 

as 75%, 69%, and 85%, respectively, VGG-Net achieved 

the Sensitivity for TC, ET, and WT as 83%, 75%, and 89%, 

then finally ResNet achieved the Sensitivity for TC, ET, 

and WT as 93%, 94%, and 95%, respectively. CNN 

achieved the Specificity for TC, ET, and WT at 91%, 92%, 

and 92%, respectively, VGG achieved the Specificity for 

TC, ET, and WT at 93%, 94%, and 95%, then finally 

ResNet achieved the Specificity for TC, ET, and WT at 

95%, 94%, and 97%, respectively. The DSC values 

achieved by CNN for TC, ET, and WT are 80, 70, and 85, 

respectively, DSC values achieved by VGG-net for TC, 

ET, and WT are 89%, 81%, and 90%, respectively. The 

DSC values achieved by ResNet for TC, ET, and WT are 

94%, 95%, and 91%, respectively. Whereas the new 

proposed CNN-ResNeXt model achieved the Sensitivity 

for TC, ET, and WT as 95%, 95%, and 98%, respectively, 

Specificity for TC, ET, and WT as 99%, 99%, and 99%, 

respectively, and DSC for TC, ET, and WT as 97%, 98%, 

and 94%, respectively. From the analysis, the CNN-

ResNeXt model outperforms the other compared existing 

models. The graphical comparison of the obtained 

performance is illustrated in Figs. 6−8. 

 

 
Figure 6. Analysis of Sensitivity. 

 

Figure 7. Analysis of Specificity. 

 

Figure 8. Analysis of DSC. 

Similarly, the classification performance of the 

proposed CNN-ResNeXt model is analyzed as well as 

contrasted with conventional models which are given in 

Table IV. 

TABLE IV. CLASSIFICATION PERFORMANCE OF PROPOSED CNN-RESNEXT IN TERMS OF ACCURACY, PRECISION AND F-MEASURE 

Methods 

Performance Measures (%) 

Accuracy Precision  F-measure 

TC ET WT TC ET WT TC ET WT 

CNN 85 77 82 80 69 84 90 91 94 

VGG-net 92 88 88 87 78 90 94 94 96 

ResNet 95 92 89 92 87 94 96 95 96 

CNN-ResNeXt 99.2 98.7 98.9 98 98.3 97.9 98.6 99 98.2 
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From Table IV, the CNN achieved accuracies for 

classes TC, ET, and WT at 85%, 77%, and 82%, 

correspondingly. VGG-Net achieved accuracies for TC, 

ET, and WT at 92%, 88%, and 88%, correspondingly. 

ResNet achieved the accuracies for TC, ET, and WT at 

95%, 92%, and 89%, correspondingly. Similarly, CNN 

achieved the precisions for TC, ET, and WT at 80%, 69%, 

and 84%, correspondingly. VGG-Net achieved the 

precisions for TC, ET, and WT at 87%, 78%, and 90%, 

correspondingly. Res-Net achieved the precisions for TC, 

ET, and WT at 92%, 87%, and 94%, correspondingly. 

Likewise, CNN achieved the F-measure for TC, ET, and 

WT at 90%, 98.7%, and 94%, correspondingly. VGG-Net 

achieved the F-measure for TC, ET, and WT at 94%, 94%, 

and 96%, correspondingly, and Res-Net achieved the F-

measure for TC, ET, and WT at 96%, 95%, and 96%, 

correspondingly. Whereas the new proposed CNN-

ResNeXt model achieved the accuracies for TC, ET, and 

WT at 99.2%, 98.7%, and 98.9%. The precisions for TC, 

ET, and WT were measured at 98%, 98.3%, and 97.9%, 

and the F-measures for TC, ET, and WT were measured at 

98.6%, 99%, and 98.2%, correspondingly. From the 

analysis, the CNN-ResNeXt model outperforms the other 

compared existing models. 

B. Comparative Analysis: 

The overall comparison evaluation of the proposed 

CNN-ResNeXt model with the existing models such as 

Hybrid-DANet [18], Weighted Label Fusion learning 

Framework (WLFS) [20] and Residual Network 

(ResNet)  [21] is given in Table V.  

TABLE V. COMPARATIVE ANALYSIS OF PROPOSED CNN-RESNEXT 

MODEL WITH EXISTING MODELS IN TERMS OF SENSITIVITY AND 

SPECIFICITY 

Methods 
B RATS 

Dataset 

Performance Measures (%) 

Sensitivity Specificity 

TC ET WT TC ET WT 

HybridDANet 

[18] 
2017 76.1 68.0 89.2 99.8 99.9 99.8 

WLFS [20] 

2015 88.7 88.12 89.32 99.4 99.2 99.6 

2017 87.7 86.9 88.6 98.8 98.7 99.1 

2019 88.6 89.2 90.05 99.4 99.3 99.7 

ResNet [21] 2015 - - - 83 91 91 

CNN-

ResNeXt 

2015 95 95 98 99.8 99.9 99.8 

2017 96 96.2 98.1 99.7 99.8 99.9 

2019 96.5 96 98.2 99.6 99.7 99.6 

 

From Table V, the proposed CNN-ResNeXt model 

outperforms the other compared existing models in terms 

of Sensitivity and Specificity. While Table VI represents 

the comparative analysis in terms of DSC. The DSC values 

achieved by CNN-ResNext for TC, ET, and WT are 97%, 

98%, and 94%, respectively for BraTs 2015 dataset. 

Correspondingly, The DSC values achieved by CNN-

ResNext for TC, ET, and WT are 98%, 98.2%, and 95%, 

respectively for BraTs 2017 dataset. The DSC values 

achieved by CNN-ResNext for TC, ET, and WT are 97.5%, 

97.9%, and 96%, respectively for BraTs 2019 dataset. 

From the analysis, the CNN-ResNeXt model outperforms 

the other compared existing models. 

TABLE VI. COMPARATIVE ANALYSIS OF PROPOSED CNN-RESNEXT 

MODEL WITH EXISTING MODELS IN TERMS OF DSC 

Methods 
Dataset 

(BRATS) 

DSC (%) 

TC ET WT 

Hybrid-DANet [18] 2017 76 68 89 

WLFS [20] 

2015 89.41 90.16 89.32 

2017 87.25 88.65 90.03 

2019 88.73 89.02 90.14 

ResNet [21] 2015 93 96 86 

MI-UNET [24] 

2015 74.6 71.8 89.6 

2017 78.3 75.1 84 

2019 75.8 75.5 83.9 

CNN-ResNeXt 

2015 97 98 94 

2017 98 98.2 95 

2019 97.5 97.9 96 

 

V. CONCLUSION 

Accurate brain tumor segmentation plays a vital role in 

detecting tumors from patients or individuals who are 

suffering from a brain tumor. Firstly, the MRI images are 

collected from the publically available standard datasets 

named BRATS 2015, BRATS 2017 and BRATS 2019. 

Secondly, the batch normalization technique is used in the 

preprocessing stage to enhance the quality of the image. 

Then, the features are extracted from the enhanced images 

using the AlexNet model. After that, the optimal features 

are selected using the AWO feature selection approach. 

Then, the selected features are segmented and classified 

using the proposed CNN-ResNeXt model whereas the 

performance of the proposed CNN-ResNeXt model is 

contrasted with the conventional models which include 

CNN-SVM, U-Net and ResNet. The proposed CNN-

ResNeXt model minimizes the number of hyperparameters 

needed by conventional network models. This is 

accomplished by the usage of “cardinality”, an extra 

dimension on top of the width and depth of ResNet. While 

cardinality describes the size of the transformations set. 

Therefore, the researchers conducted experiments to 

illustrate the significance of an extra dimension in the 

network model which increases the classification accuracy. 
When compared to existing models the CNN-ResNeXt 

model achieves a greater sensitivity of 98%, specificity of 

99.9%, and DSC of 98%. From the overall comparison 

analysis, the outcomes show that the proposed CNN-

ResNeXt model outperforms the other conventional 

models in terms of DSC, Sensitivity, and Specificity. In the 

future, hyperparameters tuning will be performed in the 

classifier to achieve more accurate results. 
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