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Abstract—Tracking objects in video sequences is a key step 

for applications involving computer vision like traffic 

monitoring and security systems. Occlusion is a frequent 

problem in object tracking which can result in the tracker 

losing track of the occluded object or misidentifying it with 

the occluding object. Moreover, the limited memory and 

computing power of traffic analysis systems presents a 

scaling problem, especially in object tracking applications. 

This paper aims to improve object tracking performance by 

minimizing data association errors in low frame rate tracking 

applications. Reducing frame rates alleviates memory and 

computing power limitations, and utilizing a tracker that can 

handle occlusion can address occlusion-related issues in 

object tracking. The proposed tracking method, Mask-

OCSORT, uses the observation-tracking method with cosine 

similarity, intersection-over-union, and velocity consistency 

metrics for the association problem. The paper analyzes the 

effect of using bounding box and mask predictions of deep 

learning models in generating tracks. This study uses 

evaluation metrics like HOTA, MOTA, and IDF1 to assess 

the proposed tracking method, and employs evaluation 

metrics such as precision, recall, and F-score to assess the 

counting based on generated IDs from the tracking method. 

The study applied the Mask-OCSORT tracking for vehicle 

counting application and achieved an F-score of 87.18% at 5 

frames per second (fps), and 75% at 1 fps.  

Keywords—mask-OCSORT, object tracking, instance 

segmentation, traffic surveillance systems, low framerate, 

data association 

I. INTRODUCTION

The rising number of vehicles on the roads has resulted 

in near-maximum capacity for existing transportation 

networks that causes congested roads in numerous 

countries [1, 2]. To address this issue, many researchers 

studied Intelligent Transportation Systems (ITS). ITS uses 

a range of communication, control, and electronic 

technologies to monitor and manage traffic flow, reduce 

congestion, provide efficient routes for travelers, improve 

productivity, and save time and money [3]. ITS provides 

essential data for transportation planning, urban 

management, and infrastructure maintenance. A traffic 

monitoring system is a vital part of any ITS project since 

it can provide information such as traffic index and traffic 

density, and it can be used in traffic analysis to optimize 

the operation of road systems. ITS can also predict future 

transportation requirements, and improve transportation 

safety [1]. Vehicles as indicators of the performance of 

transport systems became possible because of the constant 

monitoring of traffic parameters from static cameras. 

Computer vision-based vehicle counting is being studied 

by many ITS researchers [4, 5].  

Most vision-based vehicle counting techniques are 

composed of detection, tracking, and counting 

processes  [4–6]. The detection stage is the method of 

classifying and localizing vehicles in video frames. The 

tracking stage, on the other hand, is the process of 

preserving the vehicles’ identities and extracting further 

their trajectories data to ensure that each vehicle is only 

counted once [5]. 

Tracking vehicles at low frame rates is necessary for 

applications such as visual surveillance and embedded 

systems because of factors such as the cost of hardware 

and the size of source data. However, lowering the frame 

rate of the video or skipping some video frames from the 

traffic video is equivalent to sudden or abrupt motion that 

may affect the accuracy of vehicle tracking and counting. 

Most existing tracking approaches, with only a few 

exceptions, cannot be easily implemented because they are 

vulnerable to motion and appearance discontinuity from 

the low frame rate data [7, 8].  

Urban traffic monitoring systems may observe the 

occlusion issue in vehicle tracking. Simple Online and 

Realtime Tracking (SORT) [9] was utilized by some 

researchers for vehicle tracking for traffic monitoring but 

experienced missing and multiple counts [4, 10]. SORT 

uses linear estimation and is more appropriate in high 
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frame rate videos and may produce errors when occlusions 

and non-linear object motion were encountered [11]. On 

the other hand, Observation-Centric SORT, i.e., OCSORT 

was introduced by Cao et al. [11] which is more robust 

over occlusion and nonlinear motion. However, 

experiments conducted on OCSORT show that it has 

limitations on tracking objects in low frame-rate videos or 

tracking fast-moving objects like cars in the KITTI 

dataset  [12]. OCSORT finds it difficult to match objects 

by only using the Intersection Over Union (IOU) and 

direction consistency of tracks and observations [11]. 

This study aims to decrease data association errors 

during the tracking of vehicles in low-frame-rate videos by 

utilizing appearance features from the instance 

segmentation algorithm. The method proposed for 

localizing the vehicle is an instance segmentation method. 

This paper proposes Mask-OCSORT, a modification of the 

OCSORT tracker that uses mask features and predictions 

from the instance segmentation for tracking vehicles in a 

traffic video. Mask-OCSORT combined the cosine 

similarities of tracked features and new observation 

features with IOU and velocity consistency metrics. 

II. LITERATURE REVIEW 

A. Instance Segmentation 

Instance segmentation performs both detection and 

semantic segmentation within an image. Object detection 

identifies the classification and coordinates of objects in 

the image, while semantic segmentation gives labels to 

each picture element of an image. Instance segmentation 

identifies and segments pixels belonging to each object 

instance. It is crucial for many computer vision tasks 

because of its applications, including scene understanding, 

autonomous driving, agricultural analysis, and medical 

image analysis [13]. 

According to Ref. [14], detection quality is necessary 

for vehicle tracking and counting and the use of deep 

learning-based detectors can enhance the tracking 

performance. Previous studies introduced quality 

detections in tracking to lessen the false negatives. Most 

tracking algorithms use the detection precision provided 

by Faster Region-based Convolutional Neural Networks 

(R-CNN) [15] or Single Shot MultiBox Detector 

(SSD)  [16] but other methods that utilize different 

detection algorithms like You Only Look Once 

(YOLO)  [17] series, which includes YOLO9000  [18], 

YOLOv3 [19], also exist.  

In Ref. [20], instead of using appearance features inside 

the bounding box region for affinity computation of data 

association, the appearance features were extracted from 

the mask using a network based on Mask R-CNN [21] for 

pedestrian tracking. Chang et al. [22] utilizes the instance 

segmentation masks from YOLACT [23] for autonomous 

vehicles. The embedding vectors that represent the object 

information will not be accurate because the bounding-box 

region from the detectors contains background information 

or other objects [22]. This study aims to utilize the instance 

segmentation masks for appearance features in counting 

vehicles in low frame rate video. 

B. Multiple Object Tracking 

Multiple Object Tracking (MOT) is responsible for 

classifying and localizing objects, preserving their 

identifications, and extracting their trajectories from a 

video [24]. Fig. 1 shows the framework of the MOT 

system where detections are produced by the object 

detection module from the video frames. The tracks are 

generated by matching the visual and motion features of 

the detections from prior frames and the present frame 

using the data association algorithm. The output of the 

MOT system is unique identifications of objects on the 

video frames [25]. 

 

 

Figure 1. MOT general framework [25]. 

MOT systems can be classified based on their primary 

components. Appearance models are utilized for spatial 

information extraction from detections and similarity 

computation. An end-to-end MOT method was proposed 

by Wan et al. [26] that filters and refines the search region 

for association using template information from previous 

frames and detections from the current frame. Chen 

et  al.  [27] designed a reference search component for data 

association that uses past tracks as the reference for each 

track’s current state based on visual temporal data. A graph 

tracker was proposed by Hyun et al. [28] that uses 

relational features to associate previous detections with the 

detections of the current frame. Dai et al. [29] utilized self-

attention and cross-attention mechanisms in learning the 

features of each track and in modeling similarities between 

tracks and detections. According to the research of 

Gad  et  al. [25], these appearance-based studies rely only 

on visual features and did not perform well in terms of 

accuracy. 
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However, motion models are utilized for predicting the 

next locations of the detections. For the MOT problem, 

SORT [9] presented that utilizing Faster R-CNN [15] for 

object detection, the Kalman filter [30] for motion 

estimation and the Hungarian method [31] for the 

association of objects can improve the tracking 

performance.  

OCSORT was introduced by Cao et al. [11] which is an 

observation-centric motion-based tracking algorithm 

capable of handling non-linear movements. According to 

Ref. [11], SORT accumulates state noises when no new 

detection matches with tracks caused by non-linear motion 

or occlusion. Also, SORT tracker relies on Kalman filter 

state’s estimation.  

According to a study on traffic monitoring by Khazukov 

et al. [10], vehicle counting errors caused by prolonged 

occlusions when utilizing a SORT tracker can be solved by 

using re-identification based on appearance cues. Also, 

Gad et al. [25] noted that utilizing both motion features 

and appearance features can achieve better accuracy [32]. 

Intending to count vehicles, this study proposes a 

modification to the OCSORT tracker by adding 

appearance features from instance segmentation as an 

association metric. Aside from the IOU and direction 

consistency of tracks and observations, the proposed 

method used appearance features from the cropped vehicle 

image or prediction mask of the instance segmentation as 

an association metric. 

III. PROPOSED METHOD 

This paper proposes a framework for vehicle counting 

in low-frame rate video using a modified OCSORT called 

Mask-OCSORT. As illustrated in Fig. 2, Mask-OCSORT 

adds appearance features from the instance segmentation 

into the association cost of the OCSORT tracker. The 

major components are instance segmentation and modified 

OCSORT Tracker. 

The aim of the instance segmentation is to create mask 

features and locations of vehicles in the segmentation 

mask with corresponding classification and confidence 

scores. The bounding box can be generated from the 

segmentation mask to be used by Mask-OCSORT in state 

estimation and data association. Mask-OCSORT uses the 

bounding boxes, classifications, confidence scores, and 

appearance features as its inputs. This study proposes a 

combination of metrics: cosine similarity measure of 

appearance features, IOU, and the velocity consistency in 

the data association. The tracker outputs track 

identifications, classes, and vehicle locations. The number 

of generated track identifications from the tracking module 

is equivalent to the vehicle count in the traffic video.  

To analyze the effect of using appearance features 

inside the bounding boxes and segmentation masks in 

generating tracks, the study compared Mask-OCSORT to 

OCSORT with a deep appearance descriptor (OCSORT-

DA) as shown in Fig. 3. The difference between these 

methods is the appearance feature that they used. Mask-

OCSORT directly used the output of the instance 

segmentation while OCSORT-DA’s appearance features 

come from the output of a feature extraction model with 

the cropped vehicle as the input.  

 

 

Figure 2. Vehicle counting framework using Mask-OCSORT. 

 

Figure 3. Difference of Mask-OCSORT with OCSORT+DA. 
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A. Vehicle Detection Using Instance Segmentation 

Instance segmentation identifies the position of objects, 

marks the boundary of single instances, and distinguishes 

the category of each instance. In this study, the 

implementation of the proposed method used three known 

instance segmentation methods: (1) Mask R-CNN, (2) 

SOLOv2, and (3) YOLOv7. 

 

Figure 4. Mask R-CNN [21]. 

The first instance segmentation algorithm that this study 

used is the Mask R-CNN [21]. As shown in Fig. 4, in 

parallel with the classification and box prediction, Mask 

R-CNN performs the mask prediction from each region 

proposal using a Fully Connected Network (FCN) [30]. 

The study utilizes the segmentation masks, classifications, 

and scores from the output of the Mask R-CNN for the 

input of the proposed tracking method. The mask feature 

of size 256×14×14 received from the output of the mask 

head of Mask R-CNN was reduced to 256×4×4 using max-

pooling for the data association of Mask-OCSORT. 

Table  I shows the hyperparameters used in the Mask R-

CNN implementation. 

TABLE I. HYPERPARAMETERS OF MASK RCNN MODEL 

Name Value 

Anchor Generator Sizes [32, 64, 128, 256, 512] 

Anchor Generator Sizes [0.5, 1, 2] 

RPN Top scoring RPN before NMS 1000 

RPN Top scoring RPN after NMS 1000 

RPN NMS Threshold 0.7 

ROI BoxHead Pooler Resolution 7 

ROI MaskHead Pooler Resolution 14 

ROI BoxHead Number of FC Layers 2 

ROI MaskHead Number of Convolutions 4 

ROIHead IOU Threshold 0.5 

ROIHead Score Threshold 0.05 

ROIHead NMS Threshold 0.5 

ROIHead Number of Classes 80 

Maximum Detections per Image 100 

Solver Base Learning Rate 0.02 

 

Another instance segmentation that this study used is 

the Segmenting Objects by Locations (SOLO) [33] which 

is shown in Fig. 5. SOLO generates grids S×S leading to 

S2 center location classes and predicted masks from the 

input image. It utilizes a backbone network and Feature 

Pyramid Network (FPN) [34] to produce features used in 

the category and mask branches. With the backbone and 

FPN, SOLOv2 predicted the kernel at each pyramid level. 

To construct the mask feature, SOLOv2 utilized all FPN 

levels to represent the mask feature by merging FPN 

feature maps. SOLOv2 used the normalized pixel 

coordinates by the deepest FPN level before convolutions 

and up-sampling layers to have accurate position data.  

 

Figure 5. SOLOv2 [35]. 

Table II shows the hyperparameters used in the 

SOLOv2 implementation. 

TABLE II. HYPERPARAMETERS OF SOLOV2 MODEL 

Name Value 

Anchor Generator Sizes [32, 64, 128, 256, 512] 

Anchor Generator Sizes [0.5, 1, 2] 

RPN Top scoring RPN before NMS 1000 

RPN Top scoring RPN after NMS 1000 

RPN NMS Threshold 0.7 

ROI BoxHead Pooler Resolution 7 

ROI MaskHead Pooler Resolution 14 

ROI BoxHead Number of FC Layers 2 

ROI MaskHead Number of Convolutions 4 

ROIHead IOU Threshold 0.5 

ROIHead Score Threshold 0.05 

ROIHead NMS Threshold 0.5 

ROIHead Number of Classes 80 

Maximum Detections per Image 100 

Solver Base Learning Rate 0.02 

 

Same with the implementation of tracking with Mask R-

CNN, the bounding boxes from the segmentation masks 

were used for the motion estimation. The masks with the 

size of 192×336 from SOLOv2 were reduced to 192×28 

using max-pooling for the data association. 

 

Figure 6. YOLO [17]. 

The last instance segmentation method that this study 

used is based on the YOLOv7 model [36]. Fig. 6 shows the 

YOLO model which can predict bounding boxes with 

confidence scores and class probabilities directly by also 

dividing the image into a grid [17, 37]. Table III shows the 

hyperparameters used in the YOLOv7 implementation. 

Wang et al. [36] proposed a new re-parameterization 

module and scaling methods to enhance the accuracy of 

YOLO. This study utilized the instance segmentation 

implementation of YOLOv7.  

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1264



TABLE III. HYPERPARAMETERS OF YOLOV7 MODEL 

Name Value 

Optimizer Initial Learning Rate 0.01 

Optimizer Final One Cycle Learning Rate 0.1 

Optimizer Momentum 0.937 

Optimizer Weight Decay 0.0005 

Warmup Epochs 3.0 

Warmup Initial Momentum 0.8 

Warmup Initial Learning Rate 0.1 

Box Loss 0.05 

Classification Loss 0.3 

Classification Binary Entropy (BCE) Loss Positive Weight 1 

Objectness Loss 0.7 

Objectness BCE Loss Positive Weight 1 

Mask Loss 0.05 

Mask BCE Loss Positive Weight 1 

PointRend Loss 0.05 

IOU Training Threshold 0.2 

Anchor Multiple Threshold 4 

Anchors per Output Layer 3 

Attention Resolution 14 

Mask Resolution 56 
 

B. Vehicle Tracking 

This study adopts OC-SORT and performs some 

modifications for tracking vehicles at low frame rates. OC-

SORT proposed an observation-centric tracker that is more 

robust over occlusion and nonlinear motion. It conducts 

online smoothing over the Kalman filter’s parameters back 

to the time of being untracked 𝑡1 through a virtual 

trajectory Trajvirtual  of observations to prevent error 

accumulation due to lost detection or occlusion as shown 

in Eq. (1). In this equation, the last detection or recognition 

before being lost is represented as 𝑧𝑡1 and the reassociated 

detection is represented as 𝑧𝑡2. OSS starts backchecking 

the Kalman filter’s parameters from  𝑡1 by alternating 

between its prediction and update stages when a lost track 

is reassociated along this virtual trajectory [11].  

 𝑧�̂�  = Traj𝑣𝑖𝑟𝑡𝑢𝑎𝑙(𝑧𝑡1, 𝑧𝑡2, 𝑡), 𝑡1 <  𝑡 < 𝑡2  (1) 

OCSORT smoothing is effective when the object is 

associated again after being untracked. A problem occurs 

when the tracker failed to reassociate the object and 

assigned it a different track identification. This can be 

observed when the video has a low frame rate since 

OCSORT’s association depends on the IOU of the 

previous and current boxes. 

DeepSORT [38] overcomes the issue of occlusion in 

SORT by combining motion and appearance data for its 

association metric. DeepSORT integrated a Convolution 

Neural Network (CNN) model for generating features used 

as a deep association metric. According to the research of 

Perera et al. [39], DeepSORT’s feature extractor is not 

suitable for vehicles since the CNN model was trained 

using a large-scale person reidentification dataset [40]. 

With this, instead of using the existing network of 

DeepSORT that was trained for person reidentification, 

AlexNet was used by Perera et al. [39] to extract the 

appearance features of each detected object or vehicle. 

This study extracted the appearance feature with a size of 

4096×1 from the second FCN layer of AlexNet for the 

implementation of OCSORT-DA. 

With this, the study proposed to utilize appearance 

features to associate new observations with the previous 

tracks. The authors modified the association cost of 

OCSORT to integrate the appearance information in the 

data association process. The proposed method computed 

the cosine similarities of previously tracked features and 

new observation features. The cosine similarity measure 

reflects the appearance information to associate identities 

when motion is less discriminative. Mask-OCSORT 

combined the IOU and the cosine distances of previous 

tracks and new observations using a weighted sum for the 

association problem. Eq. (2) shows the modified 

association cost. 

𝐶(�̂�, 𝑍) =  𝜆1𝐶𝐼𝑂𝑈(�̂�, 𝑍) + (1 − 𝜆1)𝐶𝐶𝑂𝑆(�̂�, 𝑍) +

𝐶𝑉(�̂�, 𝑍, 𝑉) )   (2) 

The (�̂�, 𝑍)  are the estimated object states and 

observations while 𝑉 is composed of directions of existing 

tracks from two previous observations. 𝐶𝐼𝑂𝑈(∙,∙) computes 

the IOU, 𝐶𝐶𝑂𝑆(∙,∙) calculates the cosine similarity measure, 

and 𝐶𝑉(∙,∙)  determines the consistency of directions of 

tracks and the direction of the track’s past observations and 

new observations. 

Inspired by Wojke et al. [38], the influence of IOU and 

cosine similarity metrics on the association metric can be 

managed by using a hyperparameter. A hyperparameter 

IOU weight 𝜆1 was used as a multiplier for the IOU matrix 

and (1 − 𝜆1)  for the cosine similarity matrix, while 

velocity direction weight (λ2) is the weighting factor of the 

velocity consistency term of the original OCSORT 

association cost. For the vehicle tracking application, 

vehicles tend to look the same so setting the λ1 equal to 0 

is not advisable. 

IV. RESULTS AND DISCUSSION 

A traffic video with a resolution of 1920×1080 and a 

frame rate of 25 was used to evaluate the proposed method. 

When processing the video, some frames were skipped to 

simulate low frame-rate videos. This paper implemented 

the attributes used by Wen et al. [41] in describing the test 

video. As shown in Table IV, the authors used a one-

minute traffic video, with a single vehicle type, taken 

during the daytime with sunny illumination for evaluation. 

Despite the wet road that indicates previous rainfall, the 

weather on the recorded test video is sunny. Partial 

occlusions were observed in the test video which is based 

on occlusion ratio; occlusion ratio Is measured by 

computing the IOU of vehicles with each other. Moreover, 

the vehicles’ scales can be classified into medium and 

large scales, where scale can be defined as the square root 

of the area in pixels [41]. 

TABLE IV. ATTRIBUTES OF TEST VIDEO 

Attribute Name Classification/Value 

Vehicle Type 1 (car) 

Illumination Sunny 

Scale 
Medium (50–150 pixels), Large (above 150 

pixels), 81–610 pixels 

Occlusion Ratio 
No occlusion, Partial occlusion 

0–22% 
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The frame rates of the test video are 25 frames per 

second (fps), 5 fps, and 1 fps. The test video at 25 fps has 

1500 frames, at 5 fps has 300 video frames, and at 1 fps 

has 60 video frames. 

The study utilized pre-trained models of Mask R-CNN 

and SOLOv2 with ResNet-50 and a pre-trained model of 

YOLOv7 on MS COCO [42] for instance segmentation. 

The pre-trained models have 80 classes, and only the five 

vehicle classes (bicycle, car, motorcycle, bus, and trucks) 

were used during the evaluation. This study conducted 

experiments on the proposed tracking algorithm using 

Nvidia GeForce RTX 2070 GPU. Based on OCSORT, the 

tracking threshold is set to 0.3, and velocity direction 

weight (λ2) is 0.2 while the and the hyperparameter IOU 

weight (λ1) is set to 0.3. 

The study’s main objective is to count the vehicles in 

traffic videos at low frame rates. The authors visually 

checked the True Positive (TP), False Positive (FP), and 

False Negative (FN) to evaluate the proposed counting 

system, on the traffic video. TP indicates that an 

Identification (ID) was assigned to a vehicle, FN denotes 

no ID was assigned to a vehicle from the start until the 

vehicle is out of the frame and FP implies multiple counts 

of an object. For instance, a vehicle has three unique IDs, 

with one counted as TP and the remaining two IDs are 

considered FPs. There are also instances where an ID was 

reassigned to a new vehicle after the original vehicle was 

out of frame. The ID for the new vehicle is considered FP. 

The mathematical equations below evaluate the counting 

performance of the proposed method. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  (3) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (4) 

 𝐹 − 𝑠𝑐𝑜𝑟𝑒 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (5) 

As shown in Tables V and VI, the proposed counting 

system was tested on different instance segmentation 

algorithms: Mask R-CNN, SOLOv2, and YOLOv7. The 

frame rates used for evaluation are 1 fps and 5 fps, and the 

appearance features either come from the bounding box 

region or instance segmentation mask. Mask-OCSORT 

tracker obtained the best results at the evaluation of vehicle 

counting, at both frame rates. The proposed tracker with 

the appearance features from SOLOv2 achieved the 

highest F-scores, but the processing time is longer than 

other instance segmentation. YOLOv7 can attain a lower 

processing time compared to using the other instance 

segmentation methods. Considering the results of the 

evaluation at 1 fps and 5 fps, the study’s implementation 

of SOLOv2 with the Mask-OCSORT is advisable if the 

processing time is not necessary. However, if high 

accuracy with lower processing time is needed, Mask-

OCSORT with Mask R-CNN is recommended. 

TABLE V. VEHICLE COUNTING RESULTS AT 1 FPS 

Tracker Method 
Appearance 

Feature 

True 

Positive 

False 

Positive 

False 

Negative 

Precision 

(%) 

Recall 

(%) 

F-Score 

(%) 

Total Time 

(second) 

DeepSORT 

Mask R-CNN Deep 

Appearance 

Descriptor  

7 7 11 38.889 50 43.750 13.176 

SOLOv2 10 5 13 43.478 66.667 52.632 19.480 

YOLOv7 8 5 16 33.333 61.538 43.243 4.923 

OCSORT 

Mask R-CNN 

None 

10 8 4 71.429 55.556 62.5 11.963 

SOLOv2 9 9 4 69.231 50.0 58.065 18.223 

YOLOv7 9 9 7 56.250 50.0 52.941 3.497 

OCSORT- 

DA 

Mask R-CNN Deep 

Appearance 

Descriptor  

9 4 9 50 69.231 58.065 14.554 

SOLOv2 9 3 11 45 75 56.250 21.585 

YOLOv7 8 9 2 80 47.059 59.259 6.192 

Mask- 

OCSORT 

Mask R-CNN 

Mask 

12 6 2 85.714 66.667 75.0 13.045 

SOLOv2 11 7 3 78.571 61.111 68.750 19.184 

YOLOv7 10 8 3 76.923 55.556 64.516 3.787 

Note: The best score is highlighted in bold while the second and third best results are presented in italics and underlined, respectively. This also 

applies to other tables. 

TABLE VI. VEHICLE COUNTING RESULTS AT 5 FPS 

Tracker Method 
Appearance 

Feature 

True 

Positive 

False 

Negative 

False 

Positive 

Precision 

(%) 

Recall 

(%) 

F- Score 

(%) 

Total Time 

(second) 

DeepSORT 

Mask R-CNN Deep 

Appearance 

Descriptor  

18 0 11 62.069 100 76.596 67.470 

SOLOv2 18 0 7 72 100 83.271 109.213 

YOLOv7 17 1 11 60.714 94.444 73.913 26.399 

OCSORT 

Mask R-CNN 

None 

18 0 6 75 100 85.714 59.407 

SOLOv2 17 1 6 73.913 94.444 82..927 99.217 

YOLOv7 17 1 7 70.833 94.444 80.952 16.536 

OCSORT- 

DA 

Mask R-CNN Deep 

Appearance 

Descriptor  

18 0 6 75.0 100 85.714 72.684 

SOLOv2 10 0 14 41.667 100 58.824 111.692 

YOLOv7 17 1 6 73.913 94.444 82.927 28.474 

Mask- 

OCSORT 

Mask R-CNN 

Mask 

18 0 6 75.0 100 85.714 62.755 

SOLOv2 17 1 4 80.952 94.444 87.179 101.507 

YOLOv7 17 1 8 68.0 94.444 79.070 17.504 
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Since the counting result is based on the tracking 

method, the study used the open-source toolkit of MOT 

Challenge [43, 44] to generate the performance metrics 

like MOTA, IDF1, and HOTA [45] for the tracking 

algorithm. Table VII shows that at different frame rates, 

the Mask-OCSORT with appearance features from 

SOLOv2 obtained the highest, MOTA, IDF1, and HOTA, 

which supports the high F-score achieved in the counting 

evaluation. 

TABLE VII. TRACKING RESULTS OF PROPOSED METHOD VS PREVIOUS METHODS 

Frame 

Rate 
Metric 

DeepSORT OCSORT OCSORT + DA Mask-OCSORT 
Mask 

R-CNN 
SOLOv2 YOLOv7 

Mask 

R-CNN 
SOLOv2 YOLOv7 

Mask 

R-CNN 
SOLOv2 YOLOv7 

Mask 

R-CNN 
SOLOv2 YOLOv7 

25 

HOTA 51.467 54.936 54.813 51.8 55.955 50.884 34.95 42.756 41.551 56.904 62.607 56.426 

MOTA 57.223 54.895 47.423 51.895 52.395 44.836 49.663 51.847 46.23 57.396 63.907 50.529 

IDF1 57.081 61.797 64.196 61.067 63.958 57.324 39.066 46.892 48.566 67.336 70.531 66.501 

5 

HOTA 54.731 58.368 51.499 51.304 56.864 46.254 39.376 52.186 49.533 57.423 63.215 55.254 

MOTA 53.635 50.987 46.413 53.154 52.046 43.572 45.306 49.976 47.857 56.957 60.279 49.831 

IDF1 63.303 68.331 62.971 59.716 65.846 53.764 44.724 61.451 57.998 66.785 73.194 65.563 

1 

HOTA 43.068 42.735 42.885 46.157 50.256 46.238 47.126 47.392 38.674 55.465 59.661 51.295 

MOTA 38.929 33.577 31.144 40.389 41.119 31.873 40.146 36.983 27.251 48.905 49.392 42.336 

IDF1 50.76 51.994 51.371 49.664 55.433 49.595 51.092 51.54 42.93 64.821 69.035 57.521 

 

The Mask-OCSORT tracker can associate tracks better 

compared to OCSORT. Fig. 7 shows that the Mask-

OCSORT maintained the track ID (ID 2) of the object 

while OCSORT assigned a different ID (ID 7) to the same 

vehicle. 

 
(a) 

 
(b) 

 
(c) 

Figure 7. Association of OCSORT and Mask-OCSORT. (a) Previous 

Frame (b) Next Frame (OCSORT) (c) Next Frame (Mask-OCSORT). 

Moreover, partial occlusion was observed in the test 

video. As shown in Fig. 8, the proposed tracker was able 

to retain the vehicle's track ID (ID 5). The vehicle was 

partially occluded by other vehicles in the previous frames, 

despite experiencing partial occlusion and changes in 

appearance in subsequent frames. 

 

Figure 8. Partial occlusion of vehicles. 

Similar-looking vehicles are common in traffic videos. 

For instance, in Fig. 9, two vehicles are similar-looking 

and after some time the second vehicle will take the 

position of the first vehicle. The proposed tracker ensured 

that the second vehicle will not take the track ID of the first 

vehicle by considering the computed values for IOU, 

appearance feature, and vehicle direction during data 

association. 

 

Figure 9. Similar-looking vehicles. 
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A. Instance Segmentation 

To further investigate the result of tracking, the study 

evaluated the detection results of instance segmentation 

methods. Padilla et al. [46] utilizes an open-source toolkit 

to compute the detection’s average precision. The average 

precision of the detection results from instance 

segmentation at different frame rates are presented in 

Table VIII. 

TABLE VIII. DETECTION RESULTS OF PRE-TRAINED MODELS OF 

INSTANCE SEGMENTATION 

Frame 

Rate 

No. of Cars 

(GT) 

Average Precision (%) 

Mask R-CNN SOLOv2 Yolov7 

25 411 95.03 95.64 94.64 

5 2077 94.79 95.26 94.18 

1 10398 94.88 95.08 93.60 

 

As shown in Table VIII, SOLOv2 has the highest 

average precision at all frame rates. This supports the 

result of evaluation on trackers, that the highest HOTA, 

MOTA, and IDF1 utilized the SOLOv2 model. 

The processing speed of the vehicle counting method 

depends on the processing speed of the detection and 

tracking modules. Runtime (in frames per second) was the 

metric used by Chen et al. [47] to represent the processing 

speed of its tracker excluding the speed of the detector. In 

this study, both detection runtime and tracker runtime were 

obtained to see how the instance segmentation methods 

and the tracking algorithms affect the processing speed of 

the vehicle counting system. The detection and tracking 

runtime for each method was shown in Table IX. Among 

the instance segmentation methods, YOLOv7 has the 

highest runtime followed by Mask R-CNN. For the 

tracking methods, OCSORT achieved the highest runtime 

since this tracker did not use appearance features. The 

proposed tracker, Mask-OCSORT achieved the second-

highest runtime and was faster compared to other trackers 

that utilized both motion and appearance features. 

TABLE IX. DETECTION AND TRACKING TIME PER FRAME 

Module Method Name Runtime (frame/second) 

Instance 

Segmentation 

Mask R-CNN 5.057 

SOLOv2 3.128 

YOLOv7 22.009 

Tracker 

DeepSORT 23.932 

OCSORT 152.462 

OCSORT+DA 21.640 

Mask-OCSORT 65.517 

 

B. Single-Class Multi-object Tracking 

Since the trackers utilized pre-trained models of 

instance segmentation methods, the authors investigated 

the effect of the number of classes in the tracking and 

counting of vehicles in a traffic video. Instead of using the 

five vehicle classes, the authors restricted the classification 

to one category, specifically cars, when performing vehicle 

tracking and counting. This approach was applied in the 

test video using SOLOv2. 

Comparing the results from Tables VII and X, single-

classification tracking obtained better results. Fig. 10 

shows that there is an error in multi-class tracking when a 

vehicle has multiple classifications which results in 

multiple identifications. This can be attributed to the false 

positives observed in Tables V and VI. 

TABLE X. SINGLE-CLASSIFICATION TRACKING RESULTS 

Frame 

Rate 
Metric 

Deep 

SORT 

OC 

SORT 

OCSORT-

DA 

MASK-

OCSORT 

25 

HOTA 87.066 87.614 23.366 87.614 

MOTA 83.679 83.982 30.86 83.982 

IDF1 91.537 92.305 18.906 92.305 

Count 27/18 23/18 12/18 23/18 

5 

HOTA 86.402 88.323 26.247 88.323 

MOTA 82.717 85.446 28.078 85.446 

IDF1 91.179 92.895 21.569 92.895 

Count 24/18 19/18 10/18 19/18 

1 

HOTA 74.588 80.984 38.089 83.846 

MOTA 70.213 74.468 27.052 78.116 

IDF1 81.62 85.857 37.542 88.169 

Count 12/18 11/18 11/18 12/18 

 

 

Figure 10. Single-class vs multi-class tracking. 

C. Evaluation on Congested Video 

Also, this research evaluated Mask-OCSORT and other 

trackers on a video where the movement of vehicles is 

slow due to congestion and stoplight, as shown in Fig. 11. 

The attributes of this video are the same as the previous 

video except for the occlusion ratios that range from 0 to 

74% where heavy occlusion can be observed. 

 

Figure 11. Congested traffic video. 

Table XI shows that at different frame rates, the Mask-

OCSORT with appearance features from SOLOv2 and 

OCSORT obtained the same metric values: HOTA, 

MOTA, IDF1, and count (ground truth of 18 vehicles). 

Journal of Advances in Information Technology, Vol. 14, No. 6, 2023

1268



Since the movement of vehicles is slow, utilizing IOU is 

enough to associate vehicles with their previous tracks. 

TABLE XI. TRACKING RESULTS OF MASK-OCSORT AND PREVIOUS 

METHODS ON CONGESTED VIDEO 

Frame 

Rate 
Metric 

Deep 

SORT 

OC 

SORT 

OCSO

RT-DA 

MASK-

OCSORT 

25 

HOTA 80.382 82.101 22.876 82.101 

MOTA 83.691 83.982 33.636 83.982 

IDF1 91.542 92.304 18.968 92.304 

Count 21 23 27 23 

5 

HOTA 58.150 60.699 19.247 60.742 

MOTA 37.219 38.269 1.720 38.385 

IDF1 63.690 68.921 15.779 68.989 

Count 17 32 31 32 

1 

HOTA 55.919 60.127 18.828 60.127 

MOTA 32.692 39.793 0.343 39.793 

IDF1 63.024 68.425 19.329 68.425 

Count 15 22 23 22 
 

D. Hyperparameters 

TABLE XII. EFFECTS OF HYPERPARAMETERS IN NORMAL-FLOW VIDEO 

fps Parameters HOTA MOTA IDF1 CNT 

1 

λ1=0.3 78.386 78.116 88.169 12 

λ1=0.5 78.153 78.116 87.844 12 

λ1=0.7 76.983 76.596 87.744 12 

MA =10 78.175 78.723 87.884 12 

MA =30 78.386 78.116 88.169 12 

MA =50 78.386 78.116 88.169 12 

MH =1 77.966 80.243 86.446 20 

MH =3 78.175 78.723 87.884 12 

MH =5 77.391 77.204 87.375 11 

λ2=0.2 78.175 78.723 87.884 12 

λ2=0.5 78.175 78.723 87.884 12 

λ2=0.8 78.175 78.723 87.884 12 

5 

λ1=0.3 82.62 85.446 92.895 19 

λ1=0.5 82.62 85.446 92.895 19 

λ1=0.7 82.62 85.446 92.895 19 

MA =10 82.62 85.446 92.895 19 

MA =30 82.62 85.446 92.895 19 

MA =50 82.62 85.446 92.895 19 

MH =1 82.102 84.172 92.406 19 

MH =3 82.62 85.446 92.895 19 

MH =5 82.986 86295 93.225 19 

λ2=0.2 82.62 85.446 92.895 19 

λ2=0.5 82.62 85.446 92.895 19 

λ2=0.8 82.62 85.446 92.895 19 

25 

λ1=0.3 82.063 83.994 92.31 21 

λ1=0.5 82.063 83.994 92.31 21 

λ1=0.7 82.063 83.994 92.31 21 

MA =10 82.101 83.982 92.304 23 

MA =30 82.063 83.994 92.31 21 

MA =50 82.069 84.006 92.322 20 

MH =1 82.026 83.824 92.226 24 

MH =3 82.063 83.994 92.31 21 

MH =5 82.163 84.237 92.297 20 

λ2=0.2 82.063 83.994 92.31 21 

λ2=0.5 82.063 83.994 92.31 21 

λ2=0.8 82.063 83.994 92.31 21 

 

Since this research proposed appearance features 

together with the IOU results for data association, this 

study introduces the IOU weight (λ1) with a default value 

of 0.3. The authors experimented with different values for 

IOU weight (λ1), velocity direction weight (λ2), tracker’s 

minimum hits (MA), and tracker’s maximum age (MA). The 

default weights from OCSORT are MA= 30, MH =0.3, and 

λ2=0.2.  
It was shown in Table XII that processing a normal 

traffic video at 1 fps using λ1 of 0.3 produced better results 

compared to the default value of 0.5 and higher value of 

IOU weight. At 5 fps and 25 fps, changing the value λ1, 

while keeping other hyperparameters at default, does not 

affect the tracking result. 

For the congested video, it was observed in Table XIII 

that changing the λ1 and λ2 does not affect the tracking 

accuracy at different frame rates. It can also be observed at 

the vehicle count of 1 fps, decreasing the value of MH 

produces better results. However, it should be noted that 

decreasing the minimum hits of the tracker can cause more 

false positives. It can also be observed that increasing the 

value MA at higher frame rates increases the tracking 

results. 

TABLE XIII. EFFECTS OF HYPERPARAMETERS IN CONGESTED VIDEO 

fps Parameters HOTA MOTA IDF1 CNT 

1 

λ1=0.3 60.127 39.793 68.425 22 

λ1=0.5 60.127 39.793 68.425 22 

λ1=0.7 60.127 39.793 68.425 22 

MA =10 60.127 39.793 68.425 22 

MA =30 60.187 39.793 68.474 22 

MA =50 60.187 39.793 68.474 22 

MH =1 60.881 38.34 68.904 25 

MH =3 60.127 39.793 68.463 22 

MH =5 59.813 41.124 68.495 21 

λ2=0.2 60.127 39.793 68.425 22 

λ2=0.5 60.127 39.793 68.425 22 

λ2=0.8 60.127 39.793 68.425 22 

5 

λ1=0.3 60.742 38.385 68.989 32 

λ1=0.5 60.742 38.385 68.989 32 

λ1=0.7 60.742 38.385 68.989 32 

MA =10 60.742 38.385 68.989 32 

MA =30 60.715 38.327 68.987 27 

MA =50 60.715 38.385 69.094 25 

MH =1 60.989 37.802 68.989 35 

MH =3 60.742 38.385 68.989 32 

MH =5 60.577 38.823 68.962 30 

λ2=0.2 60.742 38.385 68.989 32 

λ2=0.5 60.742 38.385 68.989 32 

λ2=0.8 60.742 38.385 68.989 32 

25 

λ1=0.3 59.192 37.918 64.407 50 

λ1=0.5 59.192 37.918 64.407 50 

λ1=0.7 59.192 37.918 64.407 50 

MA =10 59.192 37.918 64.407 50 

MA =30 59.841 37.953 65.238 39 

MA =50 60.554 37.942 66.999 33 

MH =1 59.09 37.651 64.065 61 

MH =3 59.255 37.918 64.407 50 

MH =5 59.192 38.116 64.596 45 

λ2=0.2 59.192 37.918 64.407 50 

λ2=0.5 59.192 37.918 64.407 50 

λ2=0.8 59.192 37.918 64.407 50 
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It can be seen in Tables V and VI that there are more 

false negatives when the frame rate is 1 fps compared to 

5  fps. Fig. 12 shows the tracks of an untracked vehicle. 

The change in its scale and the distance it traveled per 

frame may affect its association score during tracking. 

 

Figure 12. False negative. 

An ID should be generated for the vehicle if the 

vehicle’s association costs on these frames are greater than 

the tracking threshold. Fig. 13 shows that IDs were 

assigned to the vehicle when the value of MH is 1. 

 

Figure 13. IDs assigned to a vehicle when MH = 1. 

E. Evaluation on UADetrac 

Table XIV shows the combined tracking and counting 

results of the proposed method evaluated on test videos  

 

from UA-Detrac [41] at different frame rates. 

TABLE XIV. COMBINED TRACKING AND COUNTING RESULTS OF UA-

DETRAC 

Video HOTA MOTA IDF1 COUNT 

MVI_39031 53.467 −1.575 63.64 161/63 

MVI_39051 63.779 45.576 74.583 317/173 

MVI_39211 28.61 −255.899 26.296 116/80 

MVI_39271 56.819 −19.7 58.497 189/153 

MVI_39311 44.619 −24.911 44.651 301/212 

MVI_39361 35.574 −292.292 32.337 50/38 

MVI_39371 59.633 19.201 65.364 267/87 

MVI_39401 44.764 −57.488 52.466 247/250 

MVI_39501 37.325 −55.838 34.918 281/153 

MVI_39511 40.589 −25.34 40.407 398/360 

MVI_40701 55.634 −4.697 58.678 239/204 

MVI_40711 37.839 −101.789 42.163 282/92 

MVI_40712 64.801 21.954 70.267 229/207 

MVI_40714 70.802 52.967 71.674 448/217 

MVI_40742 65.885 31.873 61.837 269/119 

MVI_40743 50.665 −24.317 56.4 171/133 

MVI_40761 38.134 39.441 35.938 196/192 

MVI_40762 54.943 24.26 55.97 246/179 

MVI_40771 45.269 −65.534 50.312 208/140 

MVI_40772 73.215 46.734 77.431 160/92 

MVI_40773 76.263 58.507 81.5 461/388 

MVI_40774 64.804 −14.346 61.698 359/161 

MVI_40775 59.816 −9.056 61.18 158/192 

MVI_40792 57.314 −64.742 53.965 186/152 

MVI_40793 64.267 29.296 66.059 241/219 

MVI_40851 53.219 −38.721 54.539 263/197 

MVI_40852 61.02 19.205 67.042 393/197 

MVI_40853 64.209 19.942 66.02 306/250 

MVI_40854 62.865 15.95 66.162 68/88 

MVI_40855 59.599 26.408 60.81 433/192 

MVI_40863 44.336 −13.472 37.302 268/250 

MVI_40864 52.887 30.666 53.767 254/204 

MVI_40891 62.37 25.562 66.523 113/36 

MVI_40892 57.621 20.124 63.033 196/95 

MVI_40901 66.106 27.057 67.687 209/144 

MVI_40902 44.562 −60.904 45.043 289/144 

MVI_40903 60.241 39.426 64.012 205/182 

MVI_40904 48.47 −45.088 46.283 167/170 

MVI_40905 66.895 29.844 67.823 94/82 

 

Fig. 14 shows the sample view of traffic videos from 

UA-Detrac. The first image shows a sample frame of 

MVI_40773, a dataset from UA-Detrac, that achieved the 

highest combined HOTA. The second image shows a 

sample frame from MVI_39211 that obtained the lowest 

combined HOTA. 

Table XV shows tracking and counting results of the 

proposed method evaluated on test data from UA-

Detrac  [41]. It was shown that the proposed method has 

better tracking and counting accuracy at 25 fps and 5 fps 

compared to 1 fps. 
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(a)  

 
(b)  

Figure 14. Sample Frames from UA-Detrac. (a) MVI_40773 (highest 

HOTA) (b) MVI_39211 (lowest HOTA). 

TABLE XV. EVALUATION OF UA-DETRAC TEST VIDEO AT DIFFERENT 

FRAME RATES 

fps HOTA MOTA IDF1 COUNT 

25 76.919 59.168 82.099 40/28 

5 75.353 58.062 81.033 36/28 

1 60.02 44.309 64.234 18/26 

V. CONCLUSION 

The paper proposes a vehicle counting method using the 

Mask-OCSORT, a modification of the OCSORT tracker 

that uses the mask prediction of instance segmentation to 

associate previously tracked objects with new observations. 

Mask-OCSORT combines the weighted sum of the metrics 

cosine similarity measure and IOU with the velocity 

consistency metric for data association. The study 

evaluated the proposed tracking method using the 

performance metrics from MOT Challenge such as HOTA, 

MOTA, and IDF1 Score. The evaluation shows that 

introducing appearance features in the data association and 

applying mask features produces better tracking results 

compared to previous trackers evaluated. The study also 

utilized metrics such as precision, recall, and F-score to 

assess the vehicle count using the proposed tracker. 

Compared with the previous trackers, employing Mask-

OCSORT in vehicle counting can achieve better counting 

results.  

The proposed method is dependent on the accuracy of 

the instance segmentation method and the authors utilized 

pre-trained models that limit the vehicle classification. 

Also, the proposed method was evaluated on a dataset with 

partial occlusions and medium to large scales. For future 

work, researchers can train their models to accommodate 

other vehicle classes and utilize other instance 

segmentation methods to improve the accuracy of tracking. 

Mask feature extraction methods can also be explored to 

improve the data association and processing time. 

Moreover, different camera viewpoints, vehicle speeds, 

levels of scales, and occlusions can be studied to improve 

tracking performance in more complex environments. 
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