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Abstract—Rice demand is increasing with the rise in 

population worldwide, but this crop production is negatively 

affected due to different fatal diseases. Reported rice disease 

diagnosis models are imprecise, inefficient, and Taylor made. 

Hence, this research presents an efficient hybrid model of 

different rice disease diagnoses to support the agricultural 

industry's economic growth. The proposed hybrid model is 

composed of Convolutional Neural Network (CNN), Long 

Short-Term Memory (LSTM), and Self-Attention (SA) 

modules. The fitness level of the proposed model is evaluated 

using a test dataset, 5-fold cross-validation (CV), Hosmer- 

Lemeshow test, Root Mean Square Error (RMSE) and Mean 

Absolute Percentage Error (MAPE). Four rice leave diseases 

(Bacterial blight, Blast, Tungro, Brown spot) are diagnosed 

from the benchmark dataset. From the 5-fold CV metric, the 

proposed model attained 100% with a 0.001 average 

accuracy and loss for training samples. Similarly, got 97.51% 

with a 0.110 average accuracy and loss for validation samples. 

The proposed model also achieved the higher Receiver 

Operating Curve (ROC) with Area Under Curve (AUC) rate, 

precision, recall, and F1-score. The model also obtained 

minimum RMSE, MAPE and Hosmer Lemeshow test values, 

revealing that the proposed model is well-fitted. The 

proposed model also got 100%accuracy, precision, recall, F1-

score as well as for testing samples. The performance metrics 

exhibited that the proposed model's overall performance was 

perfect and could be used in agriculture for disease 

identification of rice leaves. The present investigation 

achieved a high diagnosis rate for rice leave disease 

identification without over and under-fitting issues. The 

model has a 97.5%–100% confidence interval for detecting 

rice leaf disease. Finally, the proposed model will support the 

agriculture industry in diagnosing rice leaf diseases and 

monitoring their growth.  

Keywords—Convolutional Neural Network (CNN), Long 

Short-Term Memory (LSTM), image processing, agriculture, 

economic growth, local investment 

I. INTRODUCTION

Rice is a major crop in the agriculture industry. Though, 

agricultural diseases may lower yield and quality, 

endangering global food supplies. These diseases threaten 

global food production and availability [1, 2]. For instance, 
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millions of people worldwide lack enough food and plant 

pests waste nearly 12% of the global food supply. 

Compared to past metric tons, rice consumption has 

increased [3]. However, poor agricultural monitoring 

caused disease-related rice diseases [4]. Rice diseases are 

the leading cause of large economic losses. To fight plant 

diseases, bactericides, fungicides, and nematicides are 

widely used, harming the agriculture industry. Currently, 

rice disease diagnosis is simple but uses traditional 

approaches that misidentify related diseases and harm rice 

growth [5]. Manually detecting rice diseases is unreliable, 

expensive, and time-consuming. Due to environmental 

impact, slow detection speed, and poor accuracy, 

computer-based identification approaches are seldom 

employed. Thus, precise automated systems for rice 

disease diagnosis are in crucial demand [6]. To enhance 

rice crop production, several studies have used computer 

vision technologies to control crop diseases and proposed 

traditional/ deep learning models in the literature [7, 8]. 

Numerous obstacles have hindered the development of 

a system for automated diagnosing rice ailments. It is 

emphasized that both diagnosis and detection entail 

procedures that might make it exceedingly difficult to 

accurately segment the region of the rice plant where the 

symptoms emerge. The capture circumstances are difficult 

to manage, which may make it more challenging to 

forecast images and identify the disease [9]. Moreover, the 

symptoms produced by several diseases may seem similar, 

and methods of differentiation may be based on minute 

differences. Inconsistencies in the distribution of data 

features used to train and validate the model are common 

issues that pose overfitting issues [10]. This is important 

for automatically diagnosing plant diseases since 

symptoms may vary by region and systems might face 

overfitting issues that reduce accuracy considerably. A 

number of the recommended designs for diagnosing rice 

leaf diseases have been discovered to be offline, while few 

are observed in real-time [11, 12]. However, image 

resolution increased in real-time, which also increased 

computing complexity. In addition, the complexity of real-

time operations grows with a wide range of diseases and 

their vague symptoms. The current research presents a 
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hybrid deep learning model with a self-attention module 

with the following main contributions to address these 

obstacles. 

a) The proposed system combines deep learning 

models such as Convolutional Neural Network 

(CNN) and Long Short-Term Memory (LSTM) 

with the Self-Attention (SA) model based on 

disease identification on rice leaves. 

b) The proposed CNN+LSTM+SA model for rice 

leaves disease diagnosis using Mendeley data 

reached a 100% accuracy rate for training and 

97.51% for validation samples, 100% for testing 

samples. 

c) The proposed model can identify rice leaves 

disease with a 97.51%–100% confidence interval 

without the problem of under and overfitting. 

Therefore, it will be helpful in the agriculture 

sector to enable early identification of rice leaf 

diseases. 

II. LITERATURE REVIEW 

Currently, researchers have estimated agricultural 

yields using computer vision for decades. Image 

processing, pattern recognition, machine and deep learning 

models have been utilized to diagnose agricultural diseases 

using computer vision. SVMs identified bacterial rice leaf, 

sheath, and blast shape and texture. A genetic algorithm 

and support vector machine recognized damaged crop 

leaves [13]. Islam et al. [14] employed Naive Bayes to 

categorize brown rice spot, bacterial blight, and blasts 

using RGB values of afflicted areas. Infrared thermal 

imaging could detect tomato mosaic disease and wheat leaf 

rust. The diagnosis rate for Blast disease was above 89%, 

and Bacterial, Blight, Brown Spot were above 90% 

reported. Most crop disease diagnostics need manual 

feature extraction. Thus, expressiveness is confined and 

consequences are hard to generalize. Some methods need 

expensive equipment. Limitations make crop disease 

diagnosis difficult [15, 16]. 

Deep learning might enhance agricultural disease 

diagnosis. Deep learning is used to detect crop diseases 

thru image classification, object identification and spray 

recommendation. Lu et al. [17] proposed an in-field deep 

learning based CNN model to identify ten common rice 

diseases. They reported 95.48% accuracy on a dataset of 

500 images. Islam et al. [18] proposed a modified CNN 

model to diagnose Paddy leaf disease from 984 images and 

reported 92.68% accuracy using InceptionResNet-V2. 

Zguven and Adem [19] identified sugar beet leaf spot 

disease using Faster R-CNN and reported 95.48% 

recognition accuracy for using 155 images test dataset.  

Chen et al. [20] enhanced VGGNet with an inception 

module with migration learning and diagnosed correct rice 

diseases 92%.  Picon et al. [21] extended the Deep 

Residual Neural Network-based algorithm to diagnose 

multiple plant diseases and claimed 96% accuracy on a 

polit test conducted in Germany. Barbedo [22] 

investigated 14 plants and 79 conditions using a lesions-

and-spots-based image classification approach that was 

more accurate than original images. This method claimed 

accuracies 12% better than the authentic images. However, 

no crop had an accuracy below 75%, even with 10 plagues. 

These findings show that deep learning could identify and 

recognize plant diseases with adequate data, even when the 

database does not cover all realistic possibilities. Karlekar 

and Seal [23] recommended SoyNet for soybean leaf 

image disease detection. Tomato, cassava, tulip, and millet 

disease detection also uses deep learning. Their model has 

two modules. By eliminating complicated backgrounds, 

the first module separates leaf components from complete 

images. The second module presents SoyNet, a deep-

learning CNN for soybean plant disease identification 

using segmented leaf images. They claimed 98.14% 

identification accuracy.  

Rahman et al. [24] recently presented a CNN model to 

detect rice plant diseases and pests using camera images. 

Four cameras were used to gather 1426 ideas and reported 

94.33% mean validation accuracy. Their model used two-

stage training to reduce model size while retaining high 

classification precision dramatically. When stacked CNN 

was used instead of VGG16, test accuracy increased by 

95% while model size lowered by 98%. Hence, an 

outstanding model free from over and under-fitting issues 

is needed to precisely diagnose rice leave diseases [25, 26]. 

Overall, deep learning can accurately diagnose diseases 

[27]. However, deep learning research on rice diseases 

focused only on a few conditions. For example, rice leaf 

blast, fake smut, neck blast, sheath blight, bacterial stripe 

disease, and brown spot are among the rice diseases seen 

in fields [28]. Furthermore, it is observed from the 

evaluation of reported techniques that one prediction 

model may overfit machine learning algorithms. Therefore, 

it is concluded that ensemble learning is the possible 

solution, and so it was used to predict disease  

diagnosis [29, 30].  

Further, this paper has three main sections: Section III 

presents the proposed hybrid model, Section IV exhibits 

experimental results, detailed analysis and comparisons. 

Finally, Section V concludes the research.   

III. MATERIALS AND METHODS 

CNN has exhibited excellent performance pattern 

recognition applications in agriculture, such as pests’ 

recognition, disease classification, pests spray needs and 

forecasting, etc. [31–33]. The LSTM model has various 

applications, such as image classification, speech 

recognition, machine translation, language modelling, 

stock prediction, etc. [34, 35]. The self-Attention is widely 

used for test classification, image data recognition, and 

classification [36]. Its extended architecture produces 

good results in NLP (Natural Language Processing) tasks 

than CNN and Recurrent neural network (RNN) [37, 38]. 

All three models have good properties of image 

recognition and classification.  

This paper proposed hybrid model composed of CNN, 

LSTM, and SA to identify the rice leave diseases using 

their image data. The rectified linear unit (ReLU) function 

is employed in CNN, LSTM, and SA layers. The ReLU 

function is less expensive and faster than other functions. 

It is also considered an efficient function that is always 
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leveled as 0 and 1 [39]. The SoftMax activation function 

was used in the output layer due to multi-class 

classification. The SoftMax can be used for multi-class 

type in the dense layer / output layer [40]. The architecture 

of the hybrid model is exhibited in Fig. 1.  

The model consists of three convolutional layers, three 

max-pooling layers, two dense layers, two LSTM layers, 

and one SA layer. The grey area in the diagram presents 

the convolutional layers, the brown site presents the 

functions such as Relu and softmax, blue colour presents 

the max-pooling layers, the green color with dense layers, 

the red colour with LSTM layer and the yellow color 

presents the self-attention layer. The 32 (3  3), 64 (3  3), 

and 64 (3  3) were the shapes of three convolutional 

layers, respectively. The (2  2) kernel size is used for all 

max pooling layers. The two layers of LSTM contain 32 

filter size. 

 

 

Figure 1. Architecture of hybrid model. 

The raw images were preprocessed using OpenCV in 

python [40]. First raw images are imported in Python, and 

finally, through OpenCV, we normalised, smoothed and 

reshaped the rice leave ideas for disease classification.  

 

 

Figure 2. Proposed research framework. 

The dataset comprises 5932 images divided into train, 

validation and test datasets. 70% (4152) images were used 

as training samples and 20% (1602) images were used as 

validation samples and 10% (178) were used as testing 

samples or holdout sample groups. The 5-fold Cross-

Validation (CV) approach was also applied to the proposed 

model to measure whether any overfitting exists. The other 

benefit of the CV approach is to check the predictive 

accuracy and to minimize the bias of train/ test datasets. 

The detailed framework of the proposed methodology is 

exhibited in Fig. 2. First, the accuracy, loss, precision, 

recall, F1-score, RMSE, MAPE, Hosmer and Lemeshow 

goodness of fit test was calculated to observe the depth 

results of the proposed model.  

IV. EXPERIMENTAL RESULTS  

A. Dataset 

The images of rice leave diseases employed in 

experiments were downloaded from the publicly available 

Mendeley dataset [41]. The dataset composed of 5932 

images of rice leave diseases (Bacterial Blight, Blast, 

Brown Spot, Tungro) exhibited in Fig. 3. Where 1584 

(26.70%) samples were Bacterial blight, 1440 (24.25%) 

samples were Blast disease, 1308 (22.04%) were Tungro 

disease, and 1600 (26.97%) were Brown spot out of 5932 

samples used in experiments. 

 

 

Figure 3. Four types of rice disease.  

B. Analysis and Comparisons 

1) Results from CNN model 

The Table I present the results of CNN model of training 

and validation samples in the form of Precision, Recall, 

F1-Score, Support, and Accuracy. The rice types of 

training samples were 99.27% correctly classified and rice 

types of validation samples were 95.61% correctly 

classified. The difference of accuracy of training and 

validation samples lead the over fitting problem. The 

LSTM and SA layers were added to make sure the model 

has no problem of over fitting.  

This study employs the proposed model to identify the 

rice leave disease using the images dataset. 70% (4152) 

images were used as training samples and 20% (1602) 

images were used as validation samples and 10% (178) 

were used as testing samples or holdout samples group. 

The performance metrics and results are presented in Table 

II and Table III.  

The proposed model attained 100% precision, recall, 

and F1-score for training samples for Bacterial blight, 

Blast, Brown spot and Tungro. The accuracy rate for 
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training samples obtained from the proposed model was 

100%. The 100% accuracy was outstanding, and 

unexpected results were obtained from the proposed model. 

The proposed model was trained on a training dataset, and 

tested on Validation dataset and after trained-validated 

model tested on holdout sample or testing samples not 

involved in training. The 100% precision, recall, F1-score 

obtained for the Bacterial Blight class, Blast class, Brown 

Spot class, and Tungro class respectively from training 

samples. The 97% precision, recall, and F1-score attained 

for the Bacterial Blight and Blast class, 98% precision, 

recall, F1-score for Brown Spot class and 97% precision, 

99% recall, 98% F1-score obtained for Tungro class from 

validation samples are presented in Table III. A 98% 

accuracy was obtained for the validation samples with the 

proposed model and 100% accuracy for training samples. 

The results of the proposed model regarding training and 

validation samples were outstanding as compare to CNN 

model. In Fig. 4, the accurate classified numbers of the rice 

leave disease have appeared in 44 diagonal values, and 

alternative incorrect classified numbers are present in the 

off-diagonal in the 44 matrix. Out of 4152 samples, 1108 

samples of Bacterial blight, 1034 samples of Blast, 1111 

of Brown Spot, and 899 Tungro were correctly classified 

from training samples. Two specimens were shown in off-

diagonal, indicating an incorrect classification of the 

proposed model for training samples. 

TABLE I. PERFORMANCE OF CNN MODEL WITHOUT 5-FOLD CV 

APPROACH 

Training Samples 

 Precision Recall F1-

score 

Support Accuracy 

(%) 

Bacterial 

Blight 

0.97 1.00 0.99 1108 

99.27% 
Blast 1.00 1.00 1.00 1034 

Brown 

Spot 

1.00 1.00 1.00 1111 

Tungro 1.00 0.97 0.98 899 

Validation Samples 

Bacterial 

Blight 

0.90 0.99 0.94 428 

95.61% 
Blast 0.95 0.98 0.97 356 

Brown 

Spot 

0.99 0.96 0.98 449 

Tungro 0.99 0.89 0.94 369 

TABLE II. PERFORMANCE METRICS 

Accuracy 
𝑇𝑝 + 𝑇𝑛

𝑇𝑝 + 𝑇𝑛 + 𝐹𝑝 + 𝐹𝑛
 

Precision 
𝑇𝑝

𝑇𝑝 + 𝐹𝑝
 

Recall 
𝑇𝑝

𝑇𝑝 + 𝑇𝑛
 

F1-score 2 ×
Precision × recall

Precision + recall
 

RMSE √
∑ (Actual𝑖 − Predicted𝑖)

2𝑛
𝑖=0

𝑛
 

MAPE 
1

𝑛
∑|

Actual𝑖 − Predicted𝑖
Predicted𝑖

|

𝑛

𝑖=0

× 100 

TABLE III. PERFORMANCE OF PROPOSED MODEL WITHOUT 5-FOLD CV 

APPROACH 

Training Samples 

 Precision Recall 
F1-

score 
Support 

Accuracy 

(%) 

Bacterial 

Blight 
1.00 1.00 1.00 1108 

100% 
Blast 1.00 1.00 1.00 1034 

Brown 

Spot 
1.00 1.00 1.00 1111 

Tungro 1.00 1.00 1.00 899 

Validation Samples 

Bacterial 

Blight 
0.97 0.97 0.97 428 

98% 
Blast 0.97 0.97 0.97 356 

Brown 

Spot 
0.98 0.98 0.98 449 

Tungro 0.97 0.99 0.98 369 

 

Similarly, out of 1602 samples, 416 samples of 

Bacterial blight, 345 samples of Blast, 439 of Brown Spot, 

and 365 samples of Tungro were correctly classified from 

validation samples. Only 37 examples were shown in off-

diagonal, indicating the incorrect classification of the 

proposed model for validation samples. The confusion 

matrix also indicates that the proposed model has a 

wonderful experience with this data. Additionally, we 

applied a 5-folds CV approach on train and test datasets 

for more precise verification. 

 

 

Figure 4. Confusion matrix for train and validation datasets without  
5-fold CV approach. 

2) Cross-validation metrics 

The 5-fold CV approach has been applied to measure 

performance of proposed model. The graphical results of 

5-fold CV approach with accuracies and losses of training 

and validation samples against 25 epochs are given in Fig. 

5. The solid black, red, blue, green, and grey lines present 

the accuracy and losses of the 5 folds of training samples, 

respectively. Similarly, the dotted black, red, blue, green, 

and grey lines present the accuracy and losses of the 5 folds 

of validation samples, respectively. From 1 to 25 we can 

observe that the accuracies of each fold increase as epoch 

increase and loss decrease as epochs increase which is the 

best part of the proposed model.  

By adopting the CV approach 100%, 100%, 100%, 

100%, and 100% accuracies were achieved from 5-folds 

with training samples with the proposed model in Table IV. 

The 0.001, 0.003, 0.003, 0.001, and 0.002 losses were 

obtained from 5-folds for training samples. Similarly, 
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97.40%, 97.62%, 97.58%, 97.52%, and 97.47% accuracies 

were achieved from 5-folds with validation samples. The 

0.102, 0.098, 0.121, 0.132, and 0.101 losses were obtained 

from 5-folds for validation samples. The average accuracy 

of the 5-fold CV method for training samples was 100% 

with a 0.001 loss rate. Similarly, the proposed model got 

average accuracy 97.51% by 5-fold CV method for 

validation samples with a 0.110 loss rate. 

 

 
(a) Losses 

 
(b) Epochs 

Figure 5. 5-fold CV accuracies and losses against the 25 epochs of 

hybrid model. 

TABLE IV. PRESENTS THE PERFORMANCE OF THE PROPOSED 5-FOLD 

CV 

Training Samples 

 Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Mean 

Accuracy 100% 100% 100% 100% 100% 100% 

Loss 0.001 0.003 0.002 0.001 0.002 0.001 

Validation Samples 

Accuracy 97.40% 97.62% 97.58% 97.52% 97.47% 97.51% 

Loss 0.102 0.098 0.121 0.132 0.101 0.110 

 

The CV approach also revealed that the overall 

performance of proposed model is good enough and has no 

overfitting issues. Therefore, highly fruitful for the 

prediction process. The CV method has also shown high 

predictive accuracy of the proposed models on random 

sampling from training and validation datasets. After the 

5-fold CV, we also calculated the actual quantity of four 

classes from training samples, validation samples, train 

predicted classes, and validation predicted classes. Fig. 6 

specifies a graphical depiction of actual and expected 

classes. It also presents the actual and prediction quantity 

for both train/test datasets for Bacterial Blight, Blast, 

Brown Spot, and Tungro for both train/ test datasets. The 

green, blue, sky blue, brown colors with dotted style 

denote the actual and predicted quantity of Bacterial Blight, 

Blast, Brown Spot and Tungro class respectively. The 

calculated measures were used for the Hosmer and 

Lemeshow test of goodness, RMSE, and MAPE.  

 

 

Figure 6. Actual vs prediction quantity accuracy.  

C. Measurements of the Goodness Metrics 

The Hosmer-Lemeshow test determines the model's 

goodness of fit from the observed and predicted values 

using the chi-square goodness of fit test [42]. The null 

hypothesis of the chi-square test was actual and observed 

or predicted classes are the same. The test statistics (p-

value) measured in chi-square for the acceptance or 

rejection of the null hypothesis is given in Table V. The 

0.0 (1) chi-square test statistics (p-value) were achieved for 

training samples and 0.1298 (0.9880) chi-square test 

statistics (p-value) were achieved for validation samples. 

By accepting the null hypothesis, we conclude that 

proposed model performance is outstanding. 

TABLE V. GOODNESS OF FIT MODEL 

 
Chi-Square 

Test-Statistics 
p-value RMSE MAPE 

Training 

Samples 
0.0 1 0.0 0.0 

Validation 

Samples 
0.1298 0.9880 3.53 0.007 

 

The significant results of Hosmer-Lemeshow test show 

that model is well-fitted. The 0.0 and 3.53 values of RMSE 

were obtained from training and validation samples 

respectively. Similarly, 0.0 and 0.007 values of MAPE 

were obtained from training and validation samples, 

respectively. The lower value of RMSE and MAPE was 

found for the proposed model. It could be seen that 

(CNN+LSTM+SA) proposed model is the most successful 

model for rice leaves disease identification. All criteria 

conclude that the overall performance of the proposed 

model was outstanding. The model is free from the 

problem of overfitting and underfitting and can be utilized 

for prediction. 

D. ROC Curve Analysis 

The ROC curve analysis was also performed to evaluate 

the model's diagnosis accuracy of all four rice leaf diseases. 

It exhibited a high specificity and sensitivity rate. The 

ROC curve values within 0.70–0.80 are accepted, higher 

than 0.80 are excellent, and higher than 0.90 are rarely 

observed. The ROC curve with AUC based on the 

proposed model of the leaf’s disease is presented in Fig. 7. 

The four blue, red, green, and black solid lines present the 
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ROC with AUC of rice leaf disease for training and 

validation samples. The Bacterial Blight, Blast, and 

Tungro rice leave disease acquired 1 AUC value from 

ROC for training and Validation samples. Similarly, 

Brown Spot rice leave disease 1 and 0.99 AUC value from 

ROC for training and validation samples. Overall, the 

AUC of the ROC curve based on the proposed model is 

very close and high, indicating that the proposed model's 

performance is wonderful. 

 

 
(a) Specificity on train dataset 

 
(b) Specificity on test dataset 

Figure 7. The ROC curves with AUC representing sensitivity analysis 
of the proposed model on train and test datasets. 

E. Model Testing 

The 10% (178) images were used as testing samples or 

holdout samples group to measure the trained-validated 

model performance. The holdout samples were separate 

from the part of trained samples or not include in training 

process. The proposed model was tested on testing samples 

and obtained a 100% accuracy rate with 100% precision, 

recall, F1-score given in Fig. 8. Out of 178 images, all were 

correctly classified by the proposed model. Overall, the 

performance of the proposed model is outstanding.  

 

 

Figure 8. The Confusion matrix with accuracy and classification report 
of testing samples with proposed model. 

F. Discussion 

The researchers need an easy and reliable method to 

identify the rice’s leave disease confidently. To obtain high 

confidence, this study was designed and achieved the 

desired results. However, it is observed that from the 

previously proposed model’s high accuracy was not 

obtained. This study used four types of rice leave diseases 

for the discrimination process. The python language tool 

was used for all analysis processes. First raw images are 

imported in python, then through OpenCV, we normalized 

the resize the images, smooth the images, and reshape the 

images of rice leave disease for classification purposes. 

The rice types from individual CNN model of training 

samples were 99.27% correctly classified and rice types of 

validation samples were 95.61% correctly classified. The 

difference of the accuracy of training and validation 

samples lead the over fitting problem. The LSTM and SA 

layers were added to make sure the model has no problem 

of over fitting. The CNN+LSTM+SA proposed model was 

designed to identify the four rice leave diseases. 70% 

(4152) images were used as training samples and 20% 

(1602) images were used as validation samples and 10% 

(178) were used as testing samples or holdout samples 

group to test model’s prediction error. The proposed model 

achieved 100% precision, recall and F1-score for Bacterial 

blight, Blast, Brown spot, and Tungro respectively for 

training samples. The accuracy rate for training samples 

obtained from the proposed model was 100%. The 97% 

precision, recall, and F1-score attained for the Bacterial 

Blight and Blast class, 98% precision, recall, F1-score for 

Brown Spot class and 97% precision, 99% recall, 98% F1-

score obtained for Tungro class from validation samples 

are presented in Table III. A 98% accuracy was obtained 

for the validation samples with the proposed model and 

100% accuracy for training samples. The 5-fold CV 

approach has been applied to measure the performance of 

the proposed model. By adopting the CV approach 100%, 

100%, 100%, 100%, and 100% accuracies were achieved 

from 5-folds with training samples with the proposed 

model in Table III. The 0.001, 0.003, 0.003, 0.001, and 

0.002 losses were obtained from 5-folds for training 

samples. Correspondingly, 97.40%, 97.62%, 97.58%, 

97.52%, and 97.47% accuracies were achieved from 5-

folds with validation samples. The 0.102, 0.098, 0.121, 

0.132, and 0.101 losses were obtained from 5-folds for 

validation samples. The average accuracy of the 5-fold CV 

method for training samples was 100% with a 0.001 loss 

rate. Comparably, the proposed model got average 

accuracy 97.51% by 5-fold CV method for validation 

samples with a 0.110 loss rate. The insignificant results of 

the Hosmer-Lemeshow test indicate that the model is well-

fitted. The 0.0 and 3.53 values of RMSE were obtained 

from training and validation samples. Likewise, 0.0 and 

0.007 values of MAPE were obtained from training and 

validation samples. The lower value of RMSE and MAPE 

was found for the proposed model. The proposed model 

was tested on testing samples and obtained a 100% 

accuracy rate with 100% precision, recall, F1-score. Out of 

178 images were correctly classified by the proposed 

model. Overall, the performance of the proposed model is 

outstanding. Therefore, the proposed model is the most 

successful for rice leaves disease identification. It is also 

free from overfitting/ underfitting issues and can be used 

for disease diagnosis.  
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V. CONCLUSION 

This paper has presented an automated diagnosis of rice 

leaves diseases using a hybrid deep learning model. This 

study applied the training-validation approach to diagnose 

four rice leaf disease types and measure the proposed 

model performance. After getting the best results of the 

proposed model, we applied different criteria to verify the 

model's goodness of fit. The 5-fold cross-validation 

method, Hosmer Lemeshow test, RMSE, MAPE, ROC 

with AUC. From the 5-fold CV method proposed model 

attained 100% with a 0.001 average accuracy and loss for 

training samples. 

Similarly, it got 97.51% with a 0.110 average accuracy 

and loss for validation samples. The proposed model also 

exhibited higher ROC with AUC rate, precision, recall, 

and F1-score. While the model obtained minimum values 

of RMSE and MAPE. The proposed model obtained a 100% 

accuracy rate with 100% precision, recall, F1-score for 

testing samples. The proposed model shows better rice 

leaves disease diagnosis after evaluation thru standard 

criteria. The proposed model could identify rice leaves 

disease with a 97.5%-100% confidence interval. Finally, 

our findings will be helpful for rice plant disease diagnosis 

and plant recognition in agriculture. 
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