
Spelling Check: A New Cognition-Inspired

Sequence Learning Memory

Thasayu Soisoonthorn 1,*, Herwig Unger 2, and Maleerat Maliyaem 1

1 Faculty of Information Technology and Digital Innovation, King Mongkut’s University of Technology North

Bangkok, Bangkok, Thailand; Email: maleerat.m@itd.kmutnb.ac.th (M.M.)
2 University of Hagen, Hagen, Germany; Email: herwig.unger@gmail.com (H.U.)

*Correspondence: thasayu@gmail.com (T.S.)

Abstract—This study aimed to use a cognition-inspired

method following Hawkins’s approach to optimize learning

sequences for efficiency. The model for this learning

approach is a new, flexible associative form of memory that

can handle keys of different lengths to address all fitting

sequences. Furthermore, it cannot only identify existing

sequences but also learn new ones and ensure fault-tolerant

operations. After introducing such memory hardware, its

practicability is approved as a new kind of spelling checker.

The evaluation uses the TREC-5 Confusion Track standard

dataset to automatically correct incorrect words by

comparing them with Levenshtein Distance, pyspellchecker,

Long Short-Term Memory (LSTM), and Semantically

Conditioned LSTM plus Elmo Transformer (Elmosclstm). In

a small data set and at the word level, the processing time is

only 0.001s, which is lower than other methods. At the

sentence level, the cognition-inspired method can achieve

99.31% accuracy, better than Elmosclstm at 81.97% for

training data. In a big data set and at the word level, the

highest accuracy is 87.38% and 87.03%, beyond Elmosclstm

at 77.44% and 74.41% for training data and testing data. At

the sentence level, the cognition-inspired method can achieve

96.73% and 91.42%, better than Elmosclstm at 81.50% and

72.18% for training and testing data, respectively.

Keywords—Artificial Intelligence (AI), Hierarchical

Temporal Memory (HTM), spelling check

I. INTRODUCTION

Research concerning techniques for error detection and

correcting spelling errors is a topic in Natural Language

Processing (NLP) that has a long and robust history. A

spelling error makes text harder to read and process. The

spelling check is used to correct errors and gain

information values. Many applications in NLP must

correct inputs before processing; otherwise, it can impact

the result.

At present, applications for spelling checks are utilized

in various areas and daily life. For example, interactive

spelling correction systems that highlight incorrect words

and suggest corrections as well as provide the following

words improve the productivity of work with text and

provide convenience, especially on mobile devices. They

 Manuscript received September 8, 2022; revised November 5, 2022;

accepted December 14, 2022; published May 5, 2023.

are also used in search engines [1] that provide corrected

words if an error is detected in the search query or

grammar checking in an office program by identifying

errors and providing suggestions so a user can correct them.

In some cases, interactive correction requests a person

to interact, which takes time to process. Hence, an

automatic spelling correction system is introduced. For

medical records used in the diagnosis and treatment

process, for example, any error can significantly impact

patients, medical research, and organization processes.

Furthermore, document digitalization to reduce the use of

paper and keep information in a database uses optical

character recognition (OCR) to transform images into text.

One crucial aspect of the post-processing process is spell-

checking because OCR alone cannot provide perfect

results.

One difference between automatic spelling correction

systems and interactive spelling correction systems is that

the second system prompts the system to respond promptly,

with no delay for a human to interact.

The rest of the paper is organized as follows. Section II

defines related works, some of which are used to evaluate

the newly proposed method. Section III provides

background and inspiration for the research. Section IV

explains the concept of the proposed approach, while

Section V describes the implementation in a hardware

simulation to serve as a proof of concept by using

commodity hardware and evaluation spelling check

performance on a standard dataset, TREC-5 Confusion

Track [2]. Finally, Section VI and VII summarizes the

contributions and the findings.

II. RELATED WORKS

The first type in spelling check, called non-word error,

is a word in incorrect form and not in the dictionary. This

type of error can be handled by searching from the

dictionary that checks similarity among words such as

Levenshtein Distance (LD) [3] or Damerau-Levenshtein

Distance (DLD) [4]. LD uses edit, substitution, deletion,

and insertion operations, but DLD is the same as LD,

except it includes transposition. However, this approach

requests computation for every input word to compare

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

399doi: 10.12720/jait.14.3.399-410

mailto:maleerat.m@itd.kmutnb.ac.th
mailto:herwig.unger@gmail.com
mailto:thasayu@gmail.com

with all words in the dictionary, and processing time

increases with the number of words in the dictionary. For

example, the Oxford dictionary contains 273,000 words

and increases yearly. There are many techniques to

improve the search for words, such as a search tree [5] or

hash table [6] based on a technique called Approximate

string matching [7]. The technique is similar to this

research as it finds strings that match a pattern

approximately rather than exactly. The difference is that it

creates the proximity of a matching word as edit distance

provides. Another approach was invented by Peter

Norvig [8], which takes a word and brute force for all

possible edit distances. This method is mainly used as a

standard library or pyspellchecker [9] in Python. With

default edit distance 2, the word “are” can be revised to

create 182 possible words, such as ‘rae’, ‘aer’, ‘rre’, ‘ware’,

etc. The limitation of this approach is that it is a brute force

method; it takes time to create all possible words to match

a word in the dictionary, and the misspelled word can also

be more than two edit distances. Nevertheless, it is similar

to this research, using correct words and a dictionary to

create a word list. Another approach that can learn from

data and error is deep learning, a machine-learning model

that commonly uses Long Short-Term Memory

(LSTM) [10, 11]. Its approach provides a good result but

requests training data for correct and incorrect words. Also,

the processing time is high if no GPU is supported.

More than one word is often required. For example, the

misspelled word “site” can also be “size” or “side,"

depending on the sentence. Thus, another real-world error

type has been introduced. The word is misspelled, but it is

still in the dictionary. A common approach to cope with

this problem is to use its surrounding context. A common

approach uses edit distance as an error model and n-gram

for the context model. Deep learning is also used to cope

with this problem by using the Sequence to Sequence

Learning Model and integrating it with a transformer to

improve the model [12]. This research also uses a deep

learning model, Neuspell [13], with SC-LSTM plus

ELMO (input), or Elmosclstm for comparison.

III. INSPIRATION

A. The Brain

The concept for this research starts with the brain and

its components [14]. The brain is comprised of many

distinct functional areas that evolved gradually from

invertebrates to mammals. Exactly how the brain works

remains a mystery. Even though we have only a partial

understanding of how the brain works, we can roughly

estimate its functions from research and experiments,

including examining problems caused by brain injuries.

The following parts are crucial for a particular cognitive

function and are the subject of considerable current

research. Also, they are the essential parts of the brains

used for this research as follows.

1) Hippocampus is a crucial part of the brain that

works with memories. The hippocampus receives inputs

from the entire neocortex and projects back to the same

areas. The memory in the hippocampus is only temporary.

It can play back a sequence of events in context and

activate the neocortex area that was activated by the event

itself. Typically, this playback occurs during REM sleep;

the memories stored for a short term activate back to long-

term storage in the neocortex areas that were activated

during the original episode. The hippocampus allows

vertebrates that are older than mammals, such as lizards

and birds, to learn from experience, even without the

neocortex.

2) Thalamus is the gateway to the neocortex, which is

very near the center of the brain by passing information to

and from various areas of the neocortex. All senses except

the olfactory system have almost the same process,

involving some peripheral processing, followed by a

projection to a specific area of the thalamus, which then

projects to a primary area of the neocortex for that sense.

The olfactory system is the only sensory system in which

there is a direct projection from the olfactory bulb to the

neocortex. However, the neocortex relays it to the

thalamus and projects it back to the neocortex. Because the

thalamus receives inputs from all the senses and from the

motor control system and the reticular formation, which is

responsible for alertness and attention, it is like the hub of

a wheel that acts as the concentrator and distributor of all

forces.

3) Sensory multiple signals are sent from sensory

neurons to the brain, allowing us to experience smell, taste,

sight, hearing, and touch. There are five perception

systems in humans composed of visual, auditory, skin

sense, taste, and smell. The brain processes these five

sensory inputs to understand the environment and decide

the appropriate action in the motor system (movement).

These perception systems rely on certain receptors,

specialized neural cells that respond to a specified

environment and send signals or action potentials to the

brain. Even though these receptors receive different types

of sensors, the senses are encoded with the same type of

information before being sent to the neocortex.

4) The Neocortex is the largest part of the brain, which

is what we see when we look at a brain from above or the

side. The neocortex is around a 1.5 square-foot sheet of

cells wadded up a bit to fit inside the head, accounting for

80 percent of its weight. Intelligent and adaptive behavior

in mammals is associated with the neocortex. Five

attributes of the neocortex include uniform, Invariant

Representation, Hierarchy, and Auto-associated.

B. Hierarchical Temporal Memory (HTM)

HTM [15, 16] is a theory that was described initially in

the book “On Intelligence” by Jeff Hawkins in 2004. HTM

was built on an understanding of the neocortex from a

neuroscience perspective. HTM is similar to the neocortex

structure and is a uniform hierarchy that works with

invariant representation. Each representation can be

separated into a cortical column. A column contains

multiple neural cells inside. HTM connects its sensory and

other cells by using dendrites and synapses. Proximal is

used to receive input and feedforward. Distal is used for

prediction. Each cell can learn and connect to others by

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

400

learning, called Hebbian Learning, wherein the

connections will be strengthened if active together;

otherwise, they decay. HTM constantly predicts its inputs

and provides its outputs by using distal connections.

HTM provides a framework and fundamental

mechanism for how the neocortex works by inspiring and

simplifying this research and its efforts to create a

cognition model inspired by the brain. However, this

research proposes overall frameworks from the brain and

additional improvement of fault tolerance, while HTM

provides a theoretical framework.

C. Sparse Distributed Representations (SDRs)

SDRs [17] are information storage and transfer

components in HTM. Information in SDR is kept in bits

with “0” or “1” only. An SDR is a large vector of bits with

only a tiny percentage active, which is the way the brain

works with only a small amount of activity to reduce

energy and inference. HTM can recognize both temporal

and spatial. They use the Spatial Pooler mechanism and

Temporal Pooling accordingly. This research uses the

SDRs concept as the structure memory in HTM.

1) Definition: SDR is an n-dimensional vector of

binary elements. SDR vector: x = [b0, b1, …, bn-1], wx is the

number of elements in x that are bit “1”. Overlap is the

determination of the similarity between two vectors that is

the number of bits that are 1 in the same location. For

example:

X = [0000010101000000000000101010000000000000]

Y = [0001000101000001000000101000000000000000]

X and Y vectors have n = 40 and w = 6, overlap = 4 and

sparsity is 15%, 𝑠 =
𝑤

𝑛
 (6/40).

2) Matching: the possibility of the number of unique

SDRs:

(𝑛
𝑤
) =

𝑛!

𝑤!(𝑛−𝑤)!
 (1)

If n = 2048 and sparsity = 10% or w = 204, then the SDR

space is 6.99×10286. Thus, the probability of two random

vectors being identical is as follows.

𝑝(𝑥 = 𝑦) = 1/(𝑛
𝑤
) (2)

With n = 2048 and w = 204, the probability that two

random vectors are identical is very close to zero.

3) Union: SDR can store a set of patterns in a single

SDR using OR of all vectors. However, it increases the

probability of false positives. With the number of union

vector set, M, it becomes saturated with “1” bits, and

almost random vectors will return a false positive match.

The probability of a false positive can be written as:

𝑝𝑓𝑝 = (1 − (1 −
𝑤

𝑛
)
𝑀

)
𝑤

 (3)

If n = 2048 and w = 204, storing M = 20 vectors, the

chance of a false positive is 1 in 3.0×1011.

IV. CONCEPTUAL

A. Overview of the New Cognition-Inspired Sequence

Learning Memory

The brain processes input patterns that continue

changing over time, called temporal patterns. A significant

amount of data in real life also works with this kind of data

using unique ordering and characteristics. These patterns

are encoded into a sequence of invariant representations

and proceed sequentially.

How do we learn sequentially? The brain processes a

series of inputs one by one. At first, no sequence exists in

the brain, and it comprises short-term memory, long-term

memory, and working memory, which is the area of

memory in our active focus. Once the first representation

A comes in, the brain will create that representation in the

working memory. The representation is kept in a neural

unit. Once we remember step A, this representation will be

activated. Afterwards, the second representation, B,

arrives; it will also be created in the working memory as

another representation or neural unit. However, the first

and second representations will be connected

automatically, called auto-associate, as shown in Fig. 1 (a).

Once we try to remember something from one

representation, such as step A, it will automatically

remember the next step B. Thus, we can learn step A and

can go to step B. The process is repeated for the next steps

until the task is finished. We will also see that, at first, it is

hard to remember step A, which the brain tries to find, but

the brain will remember step B easily once we remember

it.

Figure 1. The concept of the learning sequence in the brain.

Even though we can remember it, we are still not sure

about this sequence. We need a filter to see if this

information is important enough to remember. Hence, we

move it (A->B) to the short-term memory. Then, we can

perform trial and error to see whether this sequence can

achieve its goal or if we can see it often enough.

Afterwards, we can be sure that this sequence is an

important matter and promote it (A->B) to the long-term

memory, as in Fig. 1(b). Hence, we can say we learn the

sequence.

Therefore, each neural unit which is a representation in

the brain can be activated one by one, sequential and in-

reversible, representing what we focus on and think at that

time. Once the first step is received and information is

retained in the neural unit, it will automatically count to

the next connected neural unit to receive the subsequent

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

401

input. Once the task is finished, these neural unit sequences

will be moved to the long-short-term memory.

Accordingly, we keep sequence data that can contain

many representations in a sequence table. We can define a

set of representations, R = {r1, r2, r3, ..., rm}, A

representation set X is a set of representations such that X

⊆ R. |X| is the number of representations in a representation

set X. Count represents how many times a sequence occurs,

similar to the frequency in [18]. Each representation in a

sequence is auto-associated automatically from left to right.

The sequence in Table I represents sequences we keep in

the brain that contain each sequence and its count. It is

important to note that the input is received from sensory is

encoded to invariant representations in a SDR vector form,

found in Section IV-C.

Interaction with the world requires rapid processing.

Further, we cannot learn every time or at each step that it

takes us to think, process information, and make a decision.

Because we already learned sequences for how to proceed,

however, it remains in the long-term memory. Thus, the

brain uses that information in long-term memory and

immediately predicts the next step. Consciousness or

attention arises only when the prediction fails. This

mechanism is called the predictive mind or autopilot mode.

Once a new task occurs, the brain perceives the first

representation. Then, it will automatically determine what

to do next from the long-term memory or what was learned

previously. It is how we learn and use what we learn.

How is the situation handled if the prediction fails?

Consciousness will arise to think and switch to learning

mode. We can learn that this is a new thing called online

learning. Sometimes, the input representation can contain

a noise that makes the input sequence looks similar to a

sequence in the long-term memory. How do we decide

which sequence contains noise or is a new thing that

should be learned? Hence, the difference between long-

term and working memory sequences will be measured

and determined. If the new input representation is not a

prediction, we will switch to learning mode and wait to

decide until the task is complete. If we decide it is noise,

then we will correct it or just rehearse. However, it will be

moved to the long-short-term memory if it is a new

sequence.
Therefore, we need a mechanism to compare the

sequence in the working memory and sequences in the

long-term memory, which is a method proposed in this

research. Each neural unit in the working memory is

compared to each neural unit in a sequence in the long-

term memory from start to end. If the number of different

representations is low, it is noise—otherwise, it is a new

sequence.

The next question is how we find related sequences and

provide the next step when we perceive and perform a new

task. For example, step A in the first input representation

will be used as key “A” to find the long-term memory.

Then, it will predict step B to be the next step from the

long-term memory. Once step B is received, it will

discover the next step from a new key, “A->B”. In other

words, the shortest key is used initially to find sequences

from the long-term memory. Then, a set of possible

sequences is returned as candidates. The key will continue

growing in finding information from the long-term

memory. The candidates will also continue to be removed

from the previous candidates. This process will continue

until the task is finished. Besides, a representation in the

key can also be repeated, such as “A->B->A->B”.

Therefore, we must remember to pass steps A and B twice

and keep them in our memory twice.

The concept is shown in Fig. 2. Each input is received

and created as a key in the working memory to find the

patterns inside the neocortex. The mechanism to describe

how information is validated and found in the brain is

introduced in the next Sections IV-B and IV-C.

B. Structure Memory

The structure of memory works hierarchically. One

representation can contain and connect many

representations in its lower layer. This concept is

summarized in Fig. 2, which uses NLP as an example. In

Layer 1, each presentation is a neural cell column

representing one character, but a connection between

representations is also a representation we remember as a

sequence. In the more abstract levels shown in layer two

or at the sentence level, representations and connections

work the same as in Layer 1. This memory structure is

based on the brain and inspired by Hawkins’s approach,

which uses SDR to provide a large vector of bits with only

a small percentage.

Layer 1

Layer 2

I E A T R I C

EA AT

EATI

RI IC

CE

RIC

RICE

ICE

RICE

EAT

I EAT EAT RICE

I EAT RICE

Figure 2. Forming connections for each representation and sequence
pattern.

C. Fault Tolerance and Similarity

A crucial part of this approach is determining whether it

is noise, what we know, or what we should learn by

checking similarity. Instead of using weights to connect

cells, we use bits or logical operations to process each

representation.

This reduces complexity as well as processing time as it

is easy to process, which is a problem for AI at present.

Besides, it also supports using the modern memory

structure that keeps information in bits. For example, not

only are characters converted into bits but connections are

also formed among them by using a hash function, as seen

in Fig. 3, layer 1. Each representation or word can be

compared by using logical operations. Furthermore,

sentence comparison in Layer 2 or at the sentence level can

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

402

concatenate by using each representation of words and

sentences from the lower layer.

Hash(E)
Hash(EA)

Hash(AT)

Hash(T) Hash(EAT)

Hash(A)

Hash(E)
Hash(R)

Hash(RI)

Hash(RICE)

Hash(I)

Hash(IC)

Hash(C) Hash(CE)

Hash(RIC)

Hash(ICE)

Layer 1

I E A T R I C

EA AT RI IC

CE

RICICE

RICE

EAT

EAT

RICE

Hash(I)

I

Figure 3. Converting representations into bits by using a hash
function.

The authors do not specify the number of bits or

representations. If too little, it cannot separate for each

representation due to overlapping with other

representations. If too much, on the other hand, existing

memory could be used more efficiently. From the

experiment, it can be around 1024–4096 bits for words in

a dictionary.

For example, the size of SDR is 10 bits. It contains a

zero vector [0 0 0 0 0 0 0 0 0 0]. The representation of “I”

is hashing “I”, hash (“I”) %10=3, the output is [0 0 0 1 0 0

0 0 0 0]. The representation of “EAT” is hashing “E”, “A”,

“T”, “EA”, “AT” and “EAT"; the output is [0 0 1 1 0 1 0 0

0 1]. Thus, if the misspelled word “EET” is received and

its hashing vector is [0 0 1 0 0 1 0 1 0 1], similarity can be

checked by AND or XOR operations to compare the

similarity value, called the diff. For example, the diff is 3

(AND). However, comparing the similarity of “EET” is

performed not only for the word “EAT”, but all word

vectors in the dictionary to find the highest number of diff

(AND) or the lowest number (XOR). The operation is very

fast as it operates at a bit level.

At the sentence level, it works in the same way but

words are concatenated, such as “I EAT RICE”. Three

vectors are concatenated, and their size is 30, not 10.

TABLE I. SEQUENTIAL LEARNING TABLE

Sequence ID Sequence Count

1 { B, U, T} 3

2 {B, A, L, L} 4

3 {E, A, T} 5

4 {B, A, T} 1

D. NLP Pattern Matching

According to Sections IV-B and IV-C, they provide

understandings of how structure SDR vector is used and

matched. This section is explained to summarize the

concept and provide an NLP example as shown in Fig. 4.

Working Memory (Hippocampus)

Neocortex

Short-term Memory

Long-term Memory

a)

B U T 3

B A L 4L

E A T 5

B A T 1

b)

Working Memory (Hippocampus)

Neocortex

Short-term Memory

Long-term Memory

B U T 3

B A L 4L

E A T 5

B A T 1

B

c)

Working Memory (Hippocampus)

Neocortex

Short-term Memory

Long-term Memory

B U T 3

B A L 4L

E A T 5

B A T 1

B A

d)

Working Memory (Hippocampus)

Neocortex

Short-term Memory

Long-term Memory

B U T 3

B A L 4L

E A T 5

B A T 1

B A L L

Figure 4. Sequential learning in a new cognition-inspired sequence
learning memory.

At first, no data existed in the working memory.

However, the neocortex comprised sequences that had

their experiences as Table I. Each word sequence is

encoded into a SDR vector. For example, the first word,

“BUT” is kept in the memory by hashing, “B”, “U”, “T”,

“BU”, “UT” and “BUT” to [0101010101010].

Once we perceive the first step, the brain will search any

representations in the neocortex by using the first read

element of hashing(“B”) as a key. Therefore, we can see

that only the two first sequences in the long-term memory

are SDR matched, except for the last sequence, which is

removed since it does not match the representations,

including the short-term memory that has not been

remembered yet. Hence, the predicted steps are “U” and

“A”. “U” and “A” represent associative memory as it

connects to “B” as well as two output lines, “U” and “A”,

which must be activated as they are predicted to be the next

elements, meaning all output lines for a possible

continuation of the sequence in the i+1th step will be

activated. However, two cases are possible in case no

continuation is found, as follows:

a) The representations have yet to be discovered and

goes into learning mode.

b) An error element is read and then goes on reading

the subsequent elements in an attempt to find out

if possible solutions can be identified (fault

tolerance).

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

403

We continue to perceive the second step, “A”; the brain

will use both the first step, hashing(“B”), and then the

second step, hashing(“A”) and hashing(“BA”), to search

for a key. Thus, only the hashing pattern of “BALL” is

matched with this key. It continues until the task is

complete in the fourth step, “L”. Once it is completed, the

working memory will be released.

E. Moving from the Short-Term to Long-Term Memory

The threshold of moving from the short-term memory

to the long-term memory depends on the applications. In

case of spelling check in offline learning, it can be set to 1

as training data should be correct words. However, in the

hardware experiment in Section V is set to three (3) due to

intuitive selection; if a human sees something three times,

it should be able to be remembered. However, in case of

online learning OCR spelling check, the question arises

whether the system can learn from the OCR text. The

assumption is the words from OCR can contain both

correct and incorrect words and the OCR system should

produce correct words more than incorrect words. For

example, a word “eat” contains the correct word “eat”

occurs five times and another word “ett” occurs two times.

Thus, receiving the word “eat”, three times is enough. If

the threshold set to three then it can use “eat” to learn

correctly. Fig. 5 shows the number of occurring correct

words and the average percentage of correct learning. As

the result, setting n is 1000 can achieve the percent of the

correct words at 74.45% because in some words the OCR

system produces incorrect words more than correct words

or never gives correct words. From the TREC-5 degrade5

data set, it is around 20% that the incorrect words are more

than the correct words. Hence, the OCR application should

learn from correct words or sentences that the threshold

can be set to 1.

Figure 5. The number of occurring words and the average percentage
of correct learning from TREC-5 Degrade 5%.

Nevertheless, in some application such as correction of

search queries, the assumption is a user types the number

of correct words more than incorrect words. Hence, it can

learn from input of search queries. For example,

qSpell [19], a data set from randomly sampled 11,134

queries from the publicly available AOL and 2009 Million

Query Track. Fig. 6 shows the number of occurring correct

words and the average percentage of correct prediction of

search queries and found that if setting the threshold is 10,

the correction learning can be 98.09% and never gives

correct words are 109 words. However, this data set is low

volume, by search engine characteristic with big data set

correct words should be more than incorrect words and

improve correction learning rate.

Figure 6. The number of occurring words and the average percentage
of correct learning from qSpell search queries.

F. Big Data Set

Even though performing in bit operations is fast, it is

also slower as its growth is linear. As an experiment, 7

million vectors can slow to 1 second. This research

proposes two options to cope with and use in the

evaluation. The first one uses parallel processing, as the

current processor contains multiple cores and threads. The

second option uses merge or union vectors. These options

can work both offline and online.

Figure 7. Plotting histogram of all distance vectors to find a suitable
percentile.

Merging is finding the closet vector and aligning with it.

The closest vector can be found by checking the similarity

or distance as in Section III-C previously, after which two

vectors will be merged into one to prevent a vector from

containing too many presentations and not being unique.

Two parameters are checked. The first parameter is a

sparsity — how many percent one bit contains in a vector.

The second parameter is how close a vector is to another

vector. The second parameter is a distance threshold that

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

404

is measured by plotting a histogram of the distance of all

vectors, as shown in Fig. 7, and selecting a percentile. For

instance, for the Percentile at 90, the distance threshold is

1.975. After merging, sample words for a vector can be

found, as in Table II.

TABLE II. MERGING VECTOR EXAMPLE

Vector Merged words

1 (ACF), (ACF), (A-F), (ACK)

2 ‘bug’, ‘bug’, ‘bag’, ‘beg’

3 ‘baud’, ‘bad’, ‘bad’ ‘baud’

4 ‘scab’, ‘scab’, ‘‘cows’, ‘scow’, ‘scans’

V. EVALUATION

A. Hardware Simulation

Implementation is built on MATLAB Simulink

software and takes advantage of the HDL module. The

HDL module can design AI hardware for FPGA and

ASICs suitable for this algorithm as it rapidly requests

real-time interaction with the environment. The software

is run on an ASUS TUF A15 laptop with an AMD Ryzen

75800H, 8 CPU cores, 16 threads, 32GB of RAM, and

GPU RTX3060 6GB. Fig. 8 can be separated into five

components as follows.

Figure 8. Overall hardware architecture of the cognition-inspired

sequence learning memory on MATLAB Simulink.

1) Sensory or input connects to a comport and waits to

receive input characters. Once the input is received, it will

pass to the thalamus to proceed.

2) Motor system or output connects to a comport to

provide output from the algorithm via the thalamus.

3) Hippocampus, or working memory, is used to keep

information for a task until it is finished. Each input is

processed via the thalamus or controller before being

shifted to the working memory. The information is kept in

a sequence.

4) Neocortex or long/short-term memory is where

some information in the working memory will be moved

to learn once the task is finished. If the sequence already

exists, the word counter will be added by one. Otherwise,

it will be added to the neocortex as a new sequence and the

word counter is set to one. If the word count is higher than

the threshold (3), it will be in the long-term memory.

Otherwise, it will be in the short-term memory. The

sequence can be forgotten as the information can be lost

over time when not rehearsed. The neocortex

implementation architecture is shown in Fig. 8. In this

research, the threshold for moving information from short-

term to long-term memory is set to three (3).

5) Thalamus or controller encodes and sends for both

the encoded input and the input to the working memory

each time an input is received to compare the

representations of the working memory with all the

sequences of the long-term memory. If the representations

in the working memory is matched, it will use the next

sequence in the long-term memory to predict and send it to

the output. If not matched, however, it will send out “*”,

which represents “unknown” to the output. Once the task

is completed, the controller will correct it automatically if

the information is incorrect but close to a long-term

memory pattern. This measurement is from checking the

similarity of patterns and output as a score, called the diff.

If the diff is not higher than the threshold, it is treated as

an incorrect word, and the algorithm corrects it and has no

learning. If the diff is higher than the threshold, however,

the algorithm switches to learning mode and decides it is a

new word, then moves to the neocortex to learn. The

thalamus also is used to move and forget information from

the working memory to the neocortex. A comparison

among representations that checks similarity to find the

score can be found in Fig. 9. The threshold diff can be

calculated depending on the application or training data.

For example, the threshold diff can be calculated from data

set experiment such as degrade5 and used the average

difference between ground words and input words of all

training data set. The average is 45 but it can be adjusted

according to an application.

Figure 9. The concept for the architecture of the new cognition-
inspired learning model hardware.

Figure 10. Working memory in the new cognition-inspired sequence
learning memory.

This research sets each input to 2048 bits integer data

type, which is more efficient than floating-point and

reduces the bit-width to save energy and area, including

increased throughput. Each input of data is fed into the

algorithm one by one. Once one piece of data is received,

the input data will be kept in a shift register or an address

in the working memory. A counter in the controller will be

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

405

added by one for moving to the following address in the

working memory. Each input data is kept in sequence until

the task is finished or full. Addressing shall be increased at

every step of the sequence reading. This mechanism can

be found in Fig. 10.

One important note is that the input data is kept in

sequence and auto-associated from left to right, which

works like the brain that keeps patterns in sequences and

reverse. Connecting for each input data or a shift register

is controlled by the thalamus or controller. Once it needs

to process information in a sequence, it will activate that

information only. Besides, each sequence has a counter to

support counting, called a data count, which represents the

importance of information and remembers it via rehearsal.

If the data count is more than three, the sequence will be

promoted to the long-term memory. Otherwise, it remains

in the short-term memory. If the memory is full, the short-

term memory with a lower data count will be removed first.

Otherwise, the long-term memory with a lower data count

will be deleted next.

Each received data input will be auto-associated with

the previous input in the working memory to become

sequence data. The algorithm will always predict the next

step, which is the following pattern. If an unexpected

prediction occurs, the brain will pay attention and decide

to switch to learning mode or correct it when the task is

completed. This representations in the working memory is

compared with all sequence data in the long-term memory.

For example, suppose all representations for the sequence

in the working memory is matched with representations in

the long-term memory. The found words will be used and

predicted for the next pattern. If it is unpredictable,

information will be kept in the working memory until the

task is finished. Once complete, a correct decision as the

following will be used.

Once the task is finished, the representations in the

working memory will be compared with all the

representations in the long-term memory (Neocortex). If

they are exactly matched, the data count in the match

sequence will be added by one. If the amount of different

representations is not higher than the threshold, the data in

the working memory will be corrected by a sequence of

data in the long-term memory that has the lowest

difference as we decide on a noise included. If the amount

of different representations in the long-term memory is

higher than the threshold, however, it will switch to the

learning mode. The sequence in the working memory will

be kept in the short-term memory as a new sequence and

set the data count to one. However, if the sequence existed

in the short-term memory, then the data count would be

added by one.

For the experiment shown in Fig. 11, the Simulink

MATLAB simulation is run on a laptop and connects the

algorithm via a virtual comport to the experiment. There is

no information in the algorithm, both the neocortex and the

working memory at first. The first input is “c”. The

algorithm shifts the input to the working memory and

compares its representations with others in the long-term

memory, after which the algorithm sends “*” or unknown

to the output as no information existed. The next inputs are

“a” and “t”, which are also unknown. We press <space bar>

to end the task. The algorithm switches to the learning

mode and learns the word “cat.” The sequence “cat” in the

working memory is then moved to the short-term memory

in the neocortex, and the word count is set to one. We

repeat typing “cat” twice. This will promote the sequence

“cat” in the neocortex to the long-term memory as the

word count is changed to three (3). We type "c” again, and

then the algorithm finds a match between the working and

long-term memory to predict the next character, “a.” Then,

typing “a” gives a prediction of “t.” We do the same with

the word “abandon.” However, this time, we made a typo

on the last word of the word abandon from “n” to “m”

(abandom). The algorithm automatically corrects the

pattern, and the correct output is "abandon,” as the score is

less than the threshold.

Figure 11. Experiment to connect to the algorithm via comport for both

input and output.

B. Performance Evaluation

Two evaluation metrics are used to verify effectiveness

and efficiency by using accuracy and average processing

time. All measurements are performed on an ASUS TUF

A15 laptop with an AMD Ryzen 7 5800H, 8 CPU cores,

16 threads, and 32GB of RAM, including GPU RTX3060

6GB. TREC-5 Confusion Track [2], the standard set, is

used for evaluating an OCR spelling correction system.

TREC-5 Confusion Track contains two corrupted versions

of 55,600 documents that are created by applying OCR to

page images. The first version is the scanned image page,

estimated at approximately 5% of the error rate (degrade5).

The second version is a down-sample of the page images,

resulting in an estimated 20% (degrade20). After cleaning,

it comprises 3,532,743 lines and 33,255,482 words,

including 701,217 unique words.

Table III shows each method used to compare with the

new method that contains the state-of-the-art, Neuspell

(SC-LSTM plus ELMO at the input; Elmosclstm) and

LSTM as well as standard methods, pyspellchecker, and

Levenshtein Distance. Each method provides different

types, as shown in the table. Only pyspellchecker is similar

to this new method as it learns from dictionaries. In this

experiment, pyspellchecker does not use the built-in

dictionary, but rather the new vocabulary from the TREC-

5 data set. In comparison, LSTM and SC-LSTM plus

ELMO need to learn the error model for both correct and

incorrect words. Therefore, a comparison between the

error models and the methods learned from the correct

words (the correct word methods) might not be appropriate

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

406

as the correct word methods will never know the correct

words it never sees. Hence, the results from training data

will be shown as well. Elmosclstm and LSTM use a GPU

for training and running. LD, pyspellchecker, and the new

cognition-inspired method use a CPU for training and

running.

TABLE III. DIFFERENT TYPES FOR EACH METHOD

Method Training

Correct words

Training

Incorrect Words
Learning

Levenshtein
Distance

Yes No Offline

pyspellchecker Yes No Offline

LSTM Yes Yes Offline

SC-LSTM plus

ELMO (at input)
Yes Yes Offline

The new
cognition-inspired

Yes No
Offline/
Online

In measurement, accuracy can be separated into three

types. Accuracy means selecting the best score of words

with only one, while AccuracyMax means selecting

multiple words with the highest score if they have the same

score. It can then sort the words with Levenshtein Distance.

Finally, AccuracyRange means selecting some words

(configured to 30 words) with n top scores, which can also

be rechecked with Levenshtein Distance. For example,

Input word = “W0rd”, candidate words with a score

composed of “Word” (4), “Ward” (4), “W0ad” (3), and

“Wo9a” (1). “Word” (4) and “Ward” (4) have the same

score. Accuracy selects only one, “Word”, but

AccuracyMax selects both “Word” and “Ward".

AccuracyRange selects “Word”, “Ward”, and “W0ad” if

the configuration is three words.

The evaluation is separated into small and big data sets

using the degrade5 data set. The small data set that trains

and tests sizes is 100,000 words and 12,961 unique words.

The big data set uses training at 80% and testing at 20% of

the entire degrade5 data set. The reason for evaluating both

the small and big data sets is that some applications request

only words in a dictionary that contains only a small

amount of vocabulary, such as correcting search queries.

Thus, there is no requirement for big data. In some cases,

however, OCR words might contain not only a word in a

dictionary but also an item number, page number, and

specific patterns. Hence, the number of words can be too

large.

1) Small data set

Table IV shows the performance of word level for each

method. The new cognition-inspired method shows faster

response over LD, pyspellchecker and LSTM by

approximately 300 times, and Elmosclstm by 14 times

because operations in bits are faster than other methods by

creating 12,961 SDR vectors and use 2048-bit sizes. The

accuracy of the cognition-inspired method shows an

excellent result with the training data at 91.62%, meaning

that the new method will get a good result if it learned the

correct words. Otherwise, it will only get 75.02%, similar

to methods. On the other hand, the accuracy of pretrained

Elmosclstm is only 54.18% as it pretrained from random

noise that does not contain this OCR data set characteristic.

However, it got a better result after training of 82.18%.

TABLE IV. WORD-LEVEL PERFORMANCE ON A SMALL DATA SET

Method Data Accuracy Accuracy

max

Accuracy

range

Time

(s)/word

Levenshtein
Distance (LD)

Test 71.06% 75.11% 79.49% 0.390

pyspellchecker Train 70.75% 0.33

LSTM trained Test 73.77% 0.328

LSTM trained Test 71.94% 0.326

Elmosclstm
pretrained

Test 54.18% 0.014

Elmosclstm

trained
Train 82.18% 0.014

Elmosclstm

trained
Test 75.29% 0.014

cognition-

inspired 2048
Train 84.92% 91.06% 91.62% 0.001

cognition-

inspired 2048
Test 71.07% 74.67% 75.02% 0.001

TABLE V. SENTENCE-LEVEL PERFORMANCE ON A SMALL DATA SET

Method Data Accuracy Accuracy

max

Accuracy

range

Time

(s)/word

Elmosclstm

trained
Train 81.97% 0.023

Elmosclstm

trained
Test 77.65% 0.025

cognition-
inspired 2-

gram

Train 93.33% 96.98% 99.31% 0.021

cognition-

inspired 2-

gram

Test 56.55% 64.03% 64.03% 0.022

cognition-

inspired 3-
gram

Train 97.24% 98.64% 99.08% 0.024

cognition-

inspired 3-
gram

Test 46.83% 49.42% 55.93% 0.024

While word level can fix non-word error types, it cannot

fix real-word error types as it uses sentence level to handle

them. This research compares Elmosclstm and the

cognition-inspired method only for the sentence level as

LD and pyspellchecker commonly work at the word level,

and Elmosclstm is a similar approach to LSTM but newer

and better for both accuracy and time. Table V shows the

performance of sentence level for Elmosclstm and the

cognition-inspired method. The cognition-inspired 2-gram

is a concatenation between two words for every 2048 bits.

Hence, the length of 2-gram is 4096 bits. Each word is

concatenated as training sentences, and the number of

vectors is 46,295 vectors. 3-gram is 2048 bits for each

vector and it contains 64,432 vectors. As a result,

cognition-inspired works well if it knows the correct words.

The best accuracy is 99.31%. However, the accuracy of

test data is only 64.03% for 2-gram and 55.93% for 3-gram

because some words in testing data have yet to be learned.

However, Elmosclstm provides a good result for testing

data as it is already trained from pretraining. In summary,

sentence level can give a better result than word level as it

can correct the word from its surroundings.

2) Big data set

The big data set is separated into 80% for training data

and 20% for testing data, as shown in Table VI.

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

407

TABLE VI. BIG DATA SET

 Line All Words Unique Words

Training 80% 2,780,211 26,604,373 701,217

Testing 20% 752,532 6651109 349,524

The big data set with word level in Table VII, LD is very

slow at 13.14 s per word as it contains 701,217 unique

words to search. Pyspellchecker provides the same result

and works with the same concept as the small data set.

LSTM is not tested for large data sets as it consumes both

computing resources and time, while Elmosclstm can be

represented better for both results and time. Elmosclstm

pretrained does provide a poor result as it has yet to learn

the OCR pattern. After training, the accuracy performance

is better at 74.41% for testing data and 77.44% for training.

However, the time performance of Elmosclstm still

produces a good result as its architecture and parameters

are the same. This result is close to its original paper,

which works at around 79.8%.

TABLE VII. WORD-LEVEL PERFORMANCE ON A BIG DATA SET

Method Data Accuracy Accuracy

max

Accuracy

Range

Time

(s)/word

Levenshtein
Distance (LD)

Train 80.83% 88.83% 94.83% 13.14

pyspellchecker Train 76.02% 0.30

Elmosclstm

pretrained
Test 58.88% 0.017

Elmosclstm

trained
Train 77.44% 0.019

Elmosclstm

trained
Test 74.41% 0.020

cognition-

inspired 2048
Train 81.10% 87.38% 87.38% 0.05

cognition-
inspired 2048

Test 79.35% 87.03% 87.03% 0.05

TABLE VIII. WORD-LEVEL PERFORMANCE ON A BIG DATA SET WITH

MERGING

Bit

size

Data Merge

Vector

Size

Accuracy Accuracy

max

Accuracy

Range

Time

(s)/word

4096 Train 39,811 80.27% 87.48% 87.86% 0.01

4096 Test 39,811 76.45% 83.85% 84.31% 0.01

2048 Train 78,074 78.57% 81.83% 82.02% 0.02

2048 Test 78,074 79.02% 82.22% 82.49% 0.02

The cognition-inspired with 2048 bits and using

701,217 SDR vectors gives a better result than Elmosclstm

with an accuracy of around 5%, the accuracy max, and a

range of around 10%. However, the performance time is

approximately twice as slow. The result is different from

the small data set because the cognition-inspired already

learned enough correct words.

Improvement by multiprocessing can contain overhead

that also limits processing time. Thus, merging SDR is

used first. The experiment set sparsity threads at 20% and

distance threshold at 0.2 as plotting the histogram and set

percentile at 90. The SDR vector size is also adjusted for

merging with 2048 and 4096 bits. After merging, the

vector sizes are reduced from 701,217 to 39,811 for 2048

bits and 78,074 for 4096 bits. In Table VIII, the accuracy

for 4096-bit sizes produces similar results before merging,

but the time is reduced significantly as the number of

vectors is reduced by 20 times. However, 2048 bits give

lower accuracy because extending the size of the vectors

helps to reduce false positives.

TABLE IX. SENTENCE-LEVEL PERFORMANCE ON A BIG DATA SET

Method Data Accuracy Accuracy

max

Accuracy

Range

Time

(s)/word

Elmosclstm

trained
Train 81.50% 0.015

Elmosclstm

trained
Test 72.18% 0.017

cognition-
inspired

4096

Train 84.97% 92.00% 96.73% 1.26

cognition-
inspired

4096

Test 90.75% 90.83% 91.42% 1.95

Table IX shows the result of the sentence level in the

big data set; Elmosclstm gives a better result as it uses

sentence level to predict. Besides, its performance time is

the same, which is a very good result. The cognition-

inspired uses the word vectors from the previous

experiment (701,217 SDR vectors) to construct the

sentence vector and concatenate 2 words (2-ngram). After

concatenation, the number of 2-ngram vectors is 3,972,879,

converting a 4096-bit word vector to a 2048-bit word

vector. Thus, 2-ngram that uses two-word vector

concatenation still uses only 4096 bits. As a result, the

accuracy is better than Elmosclstm for both training and

testing data sets. Particularly, the accuracy range can

provide 96.73% for training data and 91.42% for testing

data.

Another experiment proves that cognition-inspired

learning can provide high noise-tolerant attributes with no

requirement for retraining the error model. Although the

experiment uses a degrade20 data set, the cognition-

inspired still uses the same training from degrade5 as it can

learn from correct words only. Elmosclstm with retraining

from degrade5 is used for evaluation. Elmosclstm shows

low accuracy as it never retrains incorrect words from

degrade20 to adjust the error model. However, the

cognition-inspired still shows a good result of 90% and

94.50% for the accuracy ranges of both training and testing

data, respectively, as shown in Table X.

TABLE X. SENTENCE-LEVEL PERFORMANCE ON A BIG DATA SET

WITH A DEGRADE20 DATA SET

Method Data Accuracy Accuracy

max

Accuracy

Range

Time

(s)/word

Elmosclstm
trained

Train 55.31% 0.016

Elmosclstm

trained
Test 52.39% 0.017

cognition-
inspired

4096

Train 69.17% 79.33% 90.00% 1.13

cognition-
inspired

4096

Test 76.57% 81.67% 94.50% 1.25

The cognition-inspired shows a slow processing time of

1.26s for training data and 1.95 for testing data, however,

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

408

which is unacceptable for applications. To improve this,

parallel processing is provided with threading that the

method can apply easily. After submitting input to each

thread, the result will be returned and combined in the

main thread for sorting the score again. The parallel

processing result can be found in Table XI. Currently, the

number of threads is set to 10.

TABLE XI. SENTENCE-LEVEL PERFORMANCE ON A BIG DATA SET

WITH PARALLEL PROCESSING

Method Data Accuracy Accuracy

max

Accuracy

Range

Time

(s)/word

cognition-

inspired

4096

Train 85.10% 91.77% 93.24% 0.10

cognition-
inspired

4096

Test 82.00% 83.12% 84.69% 0.13

In Table XI, the data is separated into ten parts after

parallel processing. Thus, the processing time is reduced

to about 0.1s. In some cases, however, the result might

differ from one process because the method first calculates

the scores from all SDR vectors and then ranges with LD.

In other words, it finds word patterns similar to the input

and then sorts them with edit distance. However,

candidates will be selected from a part of all word patterns

by separating information patterns into each thread. Hence,

lower scores for checking SDR similarity can be in a

candidate list and ultimately selected as it provides the

lowest LD distance (but a different pattern). Nevertheless,

the result is still better than Elmosclstm.

TABLE XII. SENTENCE-LEVEL PERFORMANCE ON A BIG DATA SET

WITH MERGING

Method Data Accuracy Accuracy

max

Accuracy

Range

Time

(s)/word

cognition-
inspired

4096

Train 75.80% 85.95% 89.62% 0.36

cognition-

inspired

4096

Test 73.73% 77.39% 82.03% 0.357

Another approach is merging vectors as SDR attributes;

two parameters are set, including sparsity and distance

threshold. The vectors will not be merged by setting a low

sparsity or high distance threshold. Setting high sparsity

and distance threshold is low, vectors cannot be separated,

and accuracy will be low. Merging from word vectors to

SDR sentence vectors uses merged SDR vectors from the

results in Table IX and concatenates them at the sentence

level. This experiment set sparsity = 0.15 or 15%, and the

distance threshold is 1.5. The number of vectors can be

reduced from 3,972,879 to 908,410 or around 4.37 times.

The result can be found in Table XII. The accuracy,

accuracy max, and accuracy range give a good result over

Elmosclstm, and even SDR vectors are merged and

reduced. However, the time is still over Elmosclstm, but

the cognition-inspired is still acceptable for most

applications.

VI. CONTRIBUTIONS

This research provides a new cognition-inspired

learning model inspired by the brain that provides benefits

as follows:

1) The cognition-inspired model can work in offline

and online learning modes, which is different from other

methods that work in offline modes such as LSTM,

Neuspell, LM, and LD or dictionary that cannot learn.

2) There is no requirement to learn from error words.

Training error words can be an issue. Even if it can be

generated randomly, each application has particular

hidden patterns. Sometimes, it is almost impossible to

produce correct and incorrect words to train. Learning only

from correct words and sentences can be provided easily.

3) It can work in interactive spelling correction

systems as it provides feedback and prediction.

4) It provides a new method for both small and big data

sets. It works well for small data sets in terms of speed and

accuracy if the correct words and sentences are trained. On

the other hand, big data provides better accuracy with

acceptable time.

5) The method can be implemented on commodity

hardware.

6) The new approach provides high noise tolerance.

VII. CONCLUSION

This paper provides a new approach that was inspired

by the brain and Hawkins. The approach proposes an

overall framework that controls information (Thalamus)

from working memory (hippocampus) to long-short term

memory (Neocortex) that includes mechanisms, attention,

and filtering. The information is kept in sequential and

invariant representation structure as well as hierarchy level,

similar to the neocortex in the brain. The paper also

introduces a new method for determining the similarity

between inputs and information in the brain that can

tolerate noise by hashing it into bits and performing logical

operations.

In a small data set and at the word level, the new method

offers a faster response compared to other methods and

still gets comparable accuracy. However, it performs with

very low accuracy at the sentence level as it does not learn

enough data. However, it provides excellent accuracy in

training data. In big data sets, the accuracy is better

compared with other methods, but the processing time is

very slow. However, it can cope by using parallel

processing or merging. The time is reduced significantly

and it still provides a better result.

This research is open-source and available at

https://github.com/thasayus/cognition-inspired.

CONFLICT OF INTEREST

The authors declare no conflicts of interest.

AUTHOR CONTRIBUTIONS

Thasayu Soisoonthorn conducted the research, created,

tested the algorithm, and drafted papers. Herwig Unger

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

409

https://github.com/thasayus/cognition-inspired

and Maleerat Maliyaem reviewed the manuscript and

supervised the research. All authors had approved the final

version.

REFERENCES

[1] M. Bruno and S. Mário, “Spelling correction for search engine
queries,” Lecture Notes in Artificial Intelligence (Subseries of

Lecture Notes in Computer Science), vol. 3230, pp. 372–383, 2004.

[2] P. B. Kantor and E. M. Voorhees, “The TREC-5 confusion track:
Comparing retrieval methods for scanned text,” Information

Retrieval, vol. 2, no. 2/3, pp. 165–176, 2000.

[3] V. I. Levenshtein, “Binary codes capable of correcting deletions,
insertions, and reversals,” Soviet Physics — Doklady, vol. 10, no. 8,

pp. 707–711, 1965.

[4] F. J. Damerau, “A technique for computer detection and correction

of spelling errors,” Commun. ACM, vol. 7, pp. 171–176, 1964.

[5] H. Shang and T. H. Merrettal, “Tries for approximate string

matching,” IEEE Transactions on Knowledge and Data
Engineering, vol. 8, no. 4, pp. 540–547, Aug. 1996.

[6] T. M. Miangah, “FarsiSpell: A spell-checking system for Persian

using a large monolingual corpus,” Literary and Linguistic
Computing, vol. 29, no. 1, pp. 56–73, 2014.

[7] E. Ukkonen, “Algorithms for approximate string matching,” Inf.

Control., vol. 64, no. 1–3, pp. 100–118, 1985.
[8] P. Norvig. How to Write a Spelling Corrector. [Online]. Available:

https://norvig.com/spell-correct.html

[9] T. Barrus. (2018). Pyspellchecker-Pure python spell checker based
on work by Peter Norvig. [Online]. Available:

https://pypi.org/project/pyspellchecker

[10] A. C. Kinaci, “Spelling correction using recurrent neural networks
and character level N-gram,” in Proc. 2018 International

Conference on Artificial Intelligence and Data Processing (IDAP),

Malatya, Turkey, pp. 1–4, 2018.

[11] S. Sooraj, K. Manjusha, M. Kumar, and K. Soman, “Deep learning

based spell checker for Malayalam language,” Journal of Intelligent

and Fuzzy Systems, vol. 34, pp. 1427–1434, 2018.
[12] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence

learning with neural networks,” Advances in Neural Information

Processing Systems, vol. 4, 2014.
[13] S. M. Jayanthi, D. Pruthi, and G, Neubig, “NeuSpell: A neural

spelling correction toolkit,” in Proc. the 2020 Conference on

Empirical Methods in Natural Language Processing: System
Demonstrations, pp. 158–164, 2020.

[14] F. Amthor, Neuroscience for Dummies, John Wiley Sons Inc, 2016.

[15] X. Chen, W. Wang, and W. Li, “An overview of Hierarchical
Temporal Memory: A new neocortex algorithm,” in Proc. 2012

International Conference on Modelling, Identification and Control,

Wuhan, China, pp. 1004–1010, 2012.
[16] H. Jeff and B. Sandra, On Intelligence: How a New Understanding

of the Brain will Lead to the Creation of Truly Intelligent Machines,

Macmillan, 2004.
[17] A. Subutai and H. Jeff, “Properties of sparse distributed

representations and their application to hierarchical temporal

memory,” arXiv preprint, arXiv:1503.07469, 2015.
[18] M. J. Zaki, “SPADE: An efficient algorithm for mining frequent

sequences,” Machine Learning, vol. 42, pp. 31–60, 2001.

[19] Y. Ganjisaffar, A. Zilio, S. Javanmardi, et al. (2011). qSpell:
Spelling Correction of Web Search Queries Using Ranking Models

and Iterative Correction. [Online]. Available:

https://www.ics.uci.edu/~chenli/pub/2011-Speller.pdf

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any
medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Journal of Advances in Information Technology, Vol. 14, No. 3, 2023

410

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

	JAIT-V14N3-399

