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Abstract—This study proposes to use a hybrid ensemble 

learning approach to improve the prediction efficiency of 

crude oil prices. It combines the Long Short-Term Memory 

(LSTM) with factors that influence the price of crude oil. 

The information from fundamental and technical indicators 

is considered along with statistical model predictions like 

autoregressive integrated moving average (ARIMA)to make 

one-step-ahead crude oil price predictions. A Principal 

Component Analysis (PCA) approach is employed to 

transform the explanatory variables. This study combines 

the LSTM with PCA, jointly known as the LP model 

wherein PCA transforms of the fundamental and technical 

indicators are used as inputs to improve LSTM predictions. 

Further, it attempts to improve these predictions by 

introducing the LSTM+PCA+ARIMA (LPA) model, which 

uses an ensemble learning approach to utilize the forecast 

from the ARIMA model, as an additional input. Among LP 

and LPA models, the LSTM model is used as a benchmark 

to evaluate the performance of the hybrid models. Based on 

the result, a significant improvement is seen in the LP model 

over the chosen window sizes and error metrics. On the 

other hand, the LPA model performs better across all 

dimensions with an average improvement of 41% over the 

LSTM model in terms of forecasting accuracy. Moreover, 

the equivalence of forecasting accuracy is tested using the 

Diebold-Mariano and Wilcoxon signed-rank tests.    

 

Keywords—Long Short-Term Memory (LSTM), Principal 

Component Analysis (PCA), ensemble learning, crude oil, 
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I. INTRODUCTION 

Crude oil is an indispensable non-renewable 

commodity, responsible for meeting nearly a third of the 

global energy demand [1]. It has far-reaching industrial 

uses and is one of the most actively traded commodities 

that exhibit significant volatility in its prices [2]. West 

Texas Intermediate (WTI), which is traded on the New 

York Stock Exchange, is widely regarded as the global 
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benchmark of oil trading due to the strength of the USA 

crude oil buyers, along with the global influence of the 

New York Exchange [3].  

Oil price changes have significant implications for 

macroeconomic conditions. A substantial rise in oil prices 

indicates inflation and subsequent recession for countries 

that import oil, while falling prices may be detrimental to 

the economic growth of oil-exporting nations. A study by 

Katircioglu et al. showed that oil-price fluctuations 

negatively impact the GDP, CPI, and unemployment in 

Organisation for Economic Co-operation and 

Development (OECD) countries in the long term [4]. 

Reboredo and Ugolini found a significant impact of the 

oil market on the stock market for three developed and 

five BRICS countries [5]. Price fluctuations have been 

increasing with economic globalization and liberalization, 

which has added to the overall revenue risk [6]. A 

combination of supply, demand, inventory, and non-

fundamental parameters such as the exchange rate and 

interest rate make the price prediction of crude oil 

complex [7, 8].  

This study aims to develop a deep learning framework 

that incorporates fundamental and technical indicators 

along with predictions from statistical models to forecast 

one day ahead crude oil prices. The fundamental 

variables include energy indices, stock prices of major oil 

companies, interest and exchange rates, price of 

substitute energy products, and other assets sharing 

strong relationships with crude oil. Different technical 

indicators such as the Simple Moving Average Crossover 

(SMA), Relative Strength Index (RSI), Rate of change 

(ROC), Moving Average Convergence Divergence 

(MACD), and Bollinger Band Squeeze are also included 

in the model.  

A PCA transformation is used to remove the impact of 

multicollinearity and reduce the input dimension of the 

LSTM network. We introduce the LSTM+PCA (LP) 

model, which includes the principal components of the 

transformed fundamental and technical indicators 

mentioned above as inputs. We also develop the 
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LSTM+PCA+ARIMA (LPA) model by extending the LP 

model in combination with the ARIMA model’s 

forecasting abilities to enhance the accuracy of model 

predictions. The ARIMA forecasts are calculated using a 

252-day rolling window over the selected period and are 

combined with the LP model as an additional explanatory 

variable. An ensemble learning approach that involves 

combining multiple learning algorithms to obtain their 

collective performance generates the LPA framework. 

There are only limited studies that forecast crude oil 

prices based on information from fundamental, technical, 

and statistical variables using a deep learning model.  

The proposed model efficiency was evaluated over 

four different window sizes (3, 5, 7, and 11 days). The 

root Mean Squared Error (RMSE), Mean Absolute Error 

(MAE), and Mean Absolute Percentage Error (MAPE) 

metrics are used to evaluate the forecasting performance 

of the models for one-step-ahead crude oil prices. The 

results of the study strongly confirm our hypotheses. The 

LP model improves performance compared to the 

baseline LSTM framework over all chosen window sizes 

and error metrics. The LPA is the best performing model 

across all dimensions by a significant margin. We also 

conduct the Diebold-Mariano (DM) and Wilcoxon 

signed-rank (WS) tests to compare the predictive 

accuracy of the two forecasting models. 

The remaining section of the paper is organized as 

follows: Section II discusses the existing literature, while 

Section III outlines the data used in the study. Section IV 

discusses the methodology used, and Section V presents 

the experimental setup. The analysis of the results is done 

in Section VI, while Section VII concludes the study. 

II. RELATED WORK 

Predictive frameworks for asset prices in financial 

studies are generally modelled based on fundamental or 

technical variables. Dees et al. consider supply and 

demand factors such as OPEC production, production 

capacity, oil inventories, and demand while modelling the 

price of crude oil [9]. Similarly, Baumeister and Kilian 

utilize fundamental economic variables to develop six 

models to forecast commodity prices accurately [10]. 

Miao et al. tests the significance of six different 

categories of variables for oil price forecasting using a 

LASSO model with various supply, demand, financial, 

and commodity market variables [7].  

Technical analysis estimates the direction of asset 

prices from trading activity, such as price movement and 

volume [11, 12]. Yin and Yang use principal component 

predictive regressions to systematically uncover the 

components of technical indicators with oil price 

forecasting power [13]. Liu and Wang et al. used moving 

average rules and macroeconomic indicators to generate 

density forecasts [14]. They find that the technical 

indicators generate a more accurate density forecast when 

compared to the macro variables.  

Statistical models are well-known tools for forecasting 

asset prices. Numerous classes of statistical models, such 

as random walk [15], generalized autoregressive 

conditional heteroskedasticity (GARCH) [16], and 

ARIMA [17] have been used to forecast oil prices. 

ARIMA is a linear model used for univariate time series 

analysis and forecasting. Yusof and Rashid et al. applied 

this model to forecast crude oil production in Malaysia 

for three leading months [18]. Concurrently, Mohammadi 

and Su used a hybrid ARIMA-GARCH model to model 

crude oil volatility and compare the accuracy of their 

framework with four other volatility models [19].  

An approach to forecasting has been widely explored 

in the recent times is the use of machine learning 

algorithms. Kusonkhum et al. used k-Nearest Neighbours 

(KNN) to predict over-budget construction projects 

achieving an overall accuracy of 0.86 [20]. Several other 

machine learning algorithms such as decision trees [21], 

support vector machines [22], Logistic Regression and 

Random Forest [23] have been used for prediction and 

forecasting purposes. Artificial neural networks (ANN) 

are nonlinear functions that simultaneously capture 

hidden patterns between input and output variables 

without any underlying assumptions. Several studies have 

shown that models based on neural networks have 

outperformed conventional forecasting and prediction 

models. ANN is the most commonly used nonlinear AI 

model. Bakshi et al. used convolutional neural network 

(CNN) model, an extension of ANN, for predicting 

pregnant shoppers based on their transaction history and 

purchasing trends [24]. Other extensions, such as the 

recurrent neural networks (RNN), use loops to iterate 

over the series while maintaining an internal state that 

stores information about the steps it has seen so far. 

These models are efficient in modelling time series data 

but are often prone to the exploding gradient problem. 

The LSTM model proposed by Hochreiter and 

Schmidhuber is a class of RNN models that are not 

vulnerable to the vanishing gradient problem [25]. The 

LSTM model has thus been widely adopted for time 

series modelling as it excels at extracting patterns in an 

input feature space, where the data spans long sequences. 

Kubra, Sekeroglu et al. used LSTM to perform lung 

cancer incidence prediction for ten European  

countries [26]. However, neural networks have their own 

limitations compared to machine learning algorithms. 

Premsmith and Ketmaneechairat utilized the logistic 

regression and Neural Network model for heart disease 

detection and found that the logistic regression model 

outperforms the neural network [27].   

Recently, several studies have experimented with 

combining the capabilities of neural networks with the 

information generated through fundamental, technical, 

and statistical methods to forecast asset prices. The study 

indicated that RNN performed better than the two ANN 

models. Dropsy employed neural networks as a nonlinear 

forecasting tool for forecasting international equity risk 

premia in the markets of Germany, Japan, the United 

Kingdom, and the United States from 1970 to 1990 [28]. 

Chiroma et al. showed that evolutionary neural networks 

developed using genetic algorithms can show significant 

performance improvements in predicting crude oil prices 

compared to known statistical models [29]. The study 

compiles a comprehensive list of applications of hybrid 

Journal of Advances in Information Technology, Vol. 14, No. 2, 2023

303



 

 

neural networks to forecast crude oil prices. Wu et al. 

forecasted crude oil prices using a hybrid model utilizing 

ensemble empirical mode decomposition, comprising 

sparse Bayesian learning and ARIMA forecasts [30]. 

Suhermi et al. used a hybrid methodology to integrate the 

ARIMA model and an ANN model and observe an 

improvement in forecast accuracy compared to the non-

hybrid models [31].  

The approach that differentiates our work from other 

existing methods is the use of an ensemble learning 

method where we train multiple LSTM layers on inputs 

of crude oil prices along with explanatory variables and 

statistical forecasts. The novelty is in using an additional 

ANN that learns from the forecasts of the LSTM 

networks to yield significantly improved predictions of 

crude oil prices. The fluctuations in oil prices can be 

attributed to many factors. Thus, there is a need to 

incorporate relevant macroeconomic and technical 

variables to predict crude oil prices accurately. The 

following section details the explanatory variables used 

in this study and highlights their relevance in explaining 

oil prices. 

III. DATA 

We collect crude oil prices from the US Energy 

Information Administration database, the principal 

agency responsible for managing energy information. 

The model is developed for WTI spot price, which is the 

global standard for crude oil prices. The data is collected 

for the period starting from 28-07-2000 to 13-05-2019. 

The macroeconomic indicators and financial time series 

are collected from the FRED Database, US Energy 

Information Administration, and Nasdaq Database. Table 

I presents an overview of the financial time series and 

their sources. A few of the time series measuring supply 

and demand levels of crude oil are available only on a 

weekly scale. In such cases, a linear interpolation is used 

for filling up the missing value while considering the 

weekly values on the last Friday of the month. Tables I 

and II describe the explanatory variables used in this 

study. 

TABLE I.  LIST OF EXPLANATORY VARIABLES  

Macroeconomic Variable Frequency Source 

ExxonMobil Closing Price Daily 

Nasdaq Database 

Royal Dutch Shell Closing Price Daily 

Chevron Closing Price Daily 

PetroChina Closing Price Daily 

Total Energies Closing prices Daily 

S&P GSCI Energy Index Daily 

U.S. Days of Supply of Crude Oil Weekly 

Energy Information 

Administration 

database 

U.S. Ending Stocks of Crude Oil Weekly 

U.S. Exports of Crude Oil Weekly 

U.S. Field Production of Crude Oil Weekly 

U.S. Imports of Crude Oil Weekly 

US Refiner Net Input of Crude Oil Weekly 

Cushing, OK WTI Spot Price Daily 

Europe Brent Spot Price Daily 

Cushing Crude Oil Future Contract Daily 

Henry Hub Natural Gas Spot Price Daily 

3 Month Treasury Daily 

FRED Database 
US Dollar Index Daily 

Effective Federal Funds Rate Daily 

Gold Price Daily 

TABLE II.  LIST OF TECHNICAL VARIABLES  

Technical Indicator Name Lag length (in days) 

Simple moving average (SMA) crossover 1, 3, 6, 9, 12 

Moving average convergence divergence 

(MACD) 
(12, 26) 

Price Rate of Change (ROC) 3, 6, 9, 12 

Relative Strength Index (RSI) 14 

Bollinger Bands (Upper, Lower, Squeeze) 20 

 

A. Fundamental Variables 

Gold is a global commodity generally used to hedge 

against inflation and has shared a direct relationship with 

crude oil over time. Wang and Chueh showed that both 

gold and crude oil prices positively influence each other 

in the short term [32]. The prices of natural gas, heating 

oil, and gasoline are used in the study as they serve as 

significant fuels in the energy mix. Villar and Joutz [33] 

and Batten et al. [34] found a robust leading relationship 

from natural gas to crude oil arising out of demand and 

supply factors. Additional variables relating to the import, 

export, refinery net input, field production, ending stocks, 

and remaining days of supply of crude oil are also 

included. These demand and supply factors related to 

crude oil production are considered to account for the 

short-term changes associated with production, which are 

easily affected by several geopolitical and natural factors. 

Consequently, there is an impact on the reserves and 

demand for crude oil. The economic policy uncertainty 

(EPU) index measures the uncertainty in policies related 

to economic decisions. Crude oil is an asset that is 

sensitive to policy changes, and the uncertainty index can 

be used to capture the political environment. 

B. Technical Variables 

While numerous studies conclude the importance of 

macroeconomic factors in impacting crude oil price 

movements, a significant strand of literature also 

considers the importance of technical indicators in 

explaining price movements. It has been well established 

that technical indicator can explicitly aid in 

understanding asset price movements since investors are 

known to carry out trading decisions based on the 

technical analysis of historical prices [35, 36]. There are, 

however, only a few studies that consider both technical 

and macroeconomic indicators as significant explanatory 

variables in the context of crude oil [12–14]. This study 

extends the literature by including relevant trading 

signals into the forecasting model in addition to the 

fundamental variables already defined above. The 

technical indicators chosen are the SMA, RSI, ROC, 

MACD, and Bollinger Band Squeeze.  
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The SMA is a momentum-based indicator that 

generates a buy (sell) signal when a shorter-term (𝑚 

periods) SMA crosses above (below) the longer-term (𝑛 

periods) SMA. Ten crossover signals are obtained for 

crude which are generated using 𝑚, 𝑛 = 1, 3, 6, 9, 12. The 

RSI is a momentum oscillator that measures the speed 

and change of asset price movements and is used to 

identify overbought and oversold conditions. The MACD 

is a trend following indicator calculated by subtracting 

the exponential moving average (EMA) over nine periods 

by the 26 periods EMA. Price ROC is another 

momentum-based technical indicator that compares the 

current asset price with the price from a certain number 

of previous periods. We compute the ROC for 3, 6, 9, and 

12 days. Unlike MA and ROC, Bollinger Bands are chart 

indicators of technical analysis. We use the upper and 

lower band and the band squeeze in our analysis. These 

indicators, which depend only on the closing price of the 

financial asset, are chosen in line with previous studies 

such as [11, 14, 36, 37]. Crude oil is one of the most 

actively traded commodities on the exchange, and these 

indicators could provide some predictive power in 

determining the price trends for the model.   

TABLE III.  DESCRIPTIVE STATISTICS OF THE CRUDE OIL PRICES 

 Crude Oil Price (in $) 

Min 17.5 

Max 145.31 

Mean 63.1076 

Std 26.4272 

Skew 0.3322 

Kurtosis -0.7658 

Count 4575 

 

Table III describes the summary statistics of the WTI 

crude oil spot prices. There is a total of 4575 data points. 

The series has a mean of 63.107 $. Furthermore, a skew 

of 0.332264 and a kurtosis of −0.765801 exist within the 

series. Fig. 1 depicts a plot of the crude oil prices, with a 

vertical line drawn to mark the split between train and 

test data points, as used by the LSTM networks. 

 

 

Figure 1.  Actual WTI crude oil price from 28-07-2000 to 13-05-2019. 

IV. METHODOLOGY 

A. Principal Component Analysis (PCA) 

We transform the fundamental and technical variables 

𝑋𝑖, (𝑖 = 1, 2, ...) using PCA [38] to reduce the 

dimensionality of the data and remove multicollinearity. 

A defined number of principal components is obtained 𝑍𝑛, 

(𝑛 = 1, ..., 𝑁 ≤ 𝐼), which are independent of one another. 

The PCA technique works by extracting diffusion 

indexes as a linear combination of the predictors. 

Working directly with the raw data without standardizing 

would lead to improper transformations since more 

weight would be assigned to those variables with 

relatively higher variances, mainly when the variables are 

measured in different units. Thus, all variables are 

standardized before applying the PCA transform for 

dimensionality reduction. 

 

𝑍1 =  𝑤1,1𝑋1 + 𝑤1,2𝑋2 + ... + 𝑤1,𝑡𝑋𝑡 

𝑍2 =  𝑤2,1𝑋1 + 𝑤2,2𝑋2 + ... + 𝑤2,𝑡𝑋𝑡 

                                                                        (1) 

     

   𝑍𝑁 =  𝑤𝑁,1𝑋1 + 𝑤𝑁,2𝑋2 + ... + 𝑤𝑁,𝑡𝑋𝑡 

 

where 𝑤𝑖, denotes the 𝑗𝑡ℎ Eigen value of the 𝑖th principal 

component. The first 𝑘, (𝑘<𝑁) principal components that 

represent a majority of the total information in terms of 

the variance ratio [8] are selected as inputs to the models. 

B. ARIMA Model 

The ARIMA model introduced by Box and Jenkins is a 

statistical technique used for analysing time series 

forecasting [39]. The ARIMA model uses a linear 

relationship between the predicted value as a function of 

a certain number of lagged observations and the lagged 

values of the residual errors. In general, the ARIMA 

model is expressed as 

 (1 − 𝐵)𝑑𝑌𝑡 = 𝜇 +
𝜃𝑞(𝐵)

∅𝜑(𝐵)
𝑍𝑡  (2) 

where, 

 ∅𝜑(𝐵) = 1 − ∅1(𝐵) − ∅2(𝐵2) − ⋯ . . ∅𝜑(𝐵𝑚) (3) 

 𝜃𝑞(𝐵) = 1 − 𝜃1(𝐵) − 𝜃2(𝐵2) − ⋯ − 𝜃𝑞(𝐵𝑛) (4) 

 𝐵𝑌𝑡 = 𝑌𝑡−1 (5) 

𝑌𝑡 denotes the observations, 𝐵 denotes the backshift 

operator, and 𝑧𝑡 denotes the white noise sequence, 𝑎𝑡𝑊~ 

𝑁 (0, 𝜎2). 𝜙𝑖 (𝑖 = 1, 2, ...), 𝜃𝑗 (𝑗 = 1, 2, ...,), and 𝜇 are 

model parameters. 𝑑 denotes the order of differencing. 

C. LSTM Model 

Traditional feed-forward networks have been extended 

to develop RNN, which can forecast long data sequences 

by utilizing internal loops derived from input sequences. 

RNNs maintain an internal cell state that updates every 

step of the series, thus remembering and producing 

results based on past observations. However, RNNs face 

certain drawbacks due to their inability to factor in errors 

... 

... 
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from older observations while training, making them 

inefficient to model long-run dependencies. The 

vanishing (or exploding gradients) problem where 

weights allocated while training are too small (or large) is 

one of the major concerns regarding the usability of 

RNNs. A class of RNN that avoids the issues mentioned 

above is the LSTM model [25]. It operates with the help 

of memory cells or states that remember information in 

the long run and forget past data that is unnecessary. 

 𝑔𝑡 = 𝜎(𝑈𝑔𝑥𝑡 + 𝑊𝑔ℎ𝑡−1 + 𝑏𝑓) (6) 

 𝑖𝑡 = 𝜎(𝑈𝑖𝑥𝑡 + 𝑊𝑖ℎ𝑡−1 + 𝑏𝑖) (7) 

 𝑜𝑡 = 𝜎(𝑈𝑜𝑥𝑡 + 𝑊𝑜ℎ𝑡−1 + 𝑏𝑜)  (8) 

 𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑈𝑐𝑥𝑡 + 𝑊𝑐ℎ𝑡−1 + 𝑏𝑐)  (9) 

 𝑐𝑡 = 𝑔𝑡   𝑐𝑡−1 + 𝑖𝑡 𝑐̃𝑡  (10) 

 ℎ𝑡 = 𝑜𝑡  tanh (𝑐𝑡) (11) 

 

 

Figure 2.  Diagram of LSTM model.  

Fig. 2 illustrates the components of the LSTM 

comprising of a memory cell (𝑐𝑡) along with three gates: 

an input gate (𝑖𝑡), a forget gate (𝑔𝑡), and an output gate 

(𝑜𝑡). The computations associated with the cell state (𝑐𝑡), 

the hidden state (ℎ𝑡), and the three gates are described in 

Eqs. (6)–(11). 𝑐0 = 0 and ℎ0 = 0 are initialized prior to 

calculations. The input is represented by ℎ𝑡 and the 

hidden state by 𝑐𝑡̃, at a given time t. The value 𝑐𝑡 (input 

modulate gate) determines the amount of new 

information received by the cell for every time step. 𝑈0 

and 𝑊0 are weight matrices in these equations, 𝑏 are a 

bias term, 𝜎 is a sigmoid function, tan ℎ is the hyperbolic 

tangent function, and the symbol  denotes element-wise 

multiplication. 

D. Test for Comparing Equivalence of Forecast 

Accuracy 

Diebold-Mariano (DM) test and Wilcoxon signed-rank 

(WS) test are utilized to compare the models’ predictive 

forecasting accuracy. It provides a framework to 

determine whether the difference in the predictive 

accuracy of the models is significant for forecasting 

purposes or is just a result of the choice of data. 

• Diebold-Mariano (DM) test 

The DM test evaluates each forecast’s quality by a 

predefined loss function g of the forecast error [40]. The 

null hypothesis of equal predictive accuracy is defined as 

(𝑧𝑡) =0, where 𝑍𝑡 ≡ ℎ(𝑢1,𝑡
) − ℎ(𝑢2,𝑡). The DM statistics 

are obtained as shown in Eq. (12), 

𝐷𝑀 =
𝑍̅

√2𝜋𝑔̂𝑧(0)/𝑇
 

where, 𝑍̅ =
1

𝑇
∑ (ℎ(𝑢1,𝑡) − ℎ(𝑢2,𝑡))𝑇

𝑡=1  and 𝑔̂𝑧(0)  is 

aconsistent estimate of𝑔𝑧(0). 

• Wilcoxon-Signed (WS) Rank Test 

The WS Rank test examines whether the difference of 

forecasting accuracy based on zero-median loss 

differential is statistically significant. The null hypothesis 

is given by median (𝑧𝑡) = 0. If the out-of-sample loss 

distribution is symmetric, both the tests should give 

consistent results. WS statistic is given in Eq. (13),  

 𝑊𝑆 = ∑ 𝑊+(𝑧𝑡)𝑟𝑎𝑛𝑘(|𝑧𝑡|)𝑇
𝑡=1   (13) 

 

where 𝑊+(𝑧𝑡) =  {
1                               𝑧𝑡 > 0

  0           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒              
. 

E. Measures of Prediction Errors 

The RMSE, MAE), and MAPE are the three-error 

metrics that have been utilized to evaluate the out-sample 

forecast of the various prediction’s models. Several past 

works have used these metrics to measure the out-sample 

efficiency of the training models [41, 42]. In terms of the 

real and forecasted prices of crude oil, the error metrics 

are shown in Eqs. (14)–(16),  

 𝑅𝑀𝑆𝐸 = √1

𝑁
∑ (𝑃𝑟𝑒𝑎𝑙,𝑡 − 𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑡)2𝑁

𝑖=1
  (14) 

 𝑀𝐴𝐸 =
1

𝑁
∑ |𝑃𝑟𝑒𝑎𝑙,𝑡 − 𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑡|𝑁

𝑖=1   (15) 

 𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |1 −

𝑃𝑟𝑒𝑎𝑙,𝑡
𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑡

⁄ |𝑁
𝑖=1   (16) 

where 𝑃𝑟𝑒𝑎𝑙, 𝑡 is the crude oil price, 𝑃𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡, 𝑡 is the 

predicted value for the particular time 𝑡, and 𝑁 is the 

number of observations. 

V. EXPERIMENTAL SETUP 

The fundamental and technical time-series panel is 

transformed using PCA, and the first three principal 

components represents that 80% of the original data are 

used in this study. The study establishes an LSTM model 

with a single layer of 64 nodes trained on a single crude 

oil price input to provide a forecasting capability 

benchmark. This study investigates how combining the 

information from fundamental and technical indicators 

along with ARIMA forecasts into hybrid LSTM models 

can improve forecasting accuracy. Therefore, the simple 

LSTM model trained on the historical crude oil prices is 

used as the baseline for evaluating all proposed hybrid 

models for the remainder of the analysis. The 
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performance of the models is compared by calculating the 

RMSE, MAE, and MAPE error measures.  

This study proposes two hybrid frameworks to 

improve the LSTM predictive accuracy. The first model 

is a multi-input LSTM network (LP) model to evaluate 

whether information from the chosen explanatory 

variables can improve prediction accuracy. It involves 

training the LSTM on the time series of crude oil prices 

and the PCA transformed series. Three principal 

components are chosen to cumulatively represent 

approximately 80% of the variance in the original dataset. 

The second model builds on the existing model by using 

information from the predictions of the ARIMA models 

as an additional input to investigate the advantage of 

adding statistical forecasts. The ARIMA forecasts are 

generated using a moving rolling window of 252 days. 

This model is fit every 252 days to obtain one-step-ahead 

estimates for the oil prices. Fig. 3 contains a flowchart 

illustrating the construction of the hybrid model. The 

ensemble learning-based LPA model has two LSTM 

models which are trained independently as shown in the 

figure. The upper LSTM model is identical to the LP 

model, trained on the PCA and crude oil price inputs 

while lower LSTM model is trained purely on ARIMA 

forecasts. Further, ANN with two layers with 256 and 

128 nodes, respectively, is used to learn how to best 

combine the input predictions to make the best output 

prediction.  

 

 

Figure 3.  Flowchart of proposed final model. 

The proposed models are run with each LSTM and 

hybrid model repeatedly, trained using inputs taken in 

four separate rolling windows of sizes 3, 5, 7, and 11 

days. Our choice of window sizes is motivated by the 

periods they represent, where three days represent an 

intra-weekly period, and 5 and 7 days describe weekly 

periods. The 11 days’ window represents a biweekly time 

horizon. Each hybrid model was trained twenty-five 

times independently, and the average of the forecast over 

all the iterations was used to compute the accuracy. We 

aim to produce a more reliable and consistent prediction 

accuracy by averaging all the iterations.  

VI. RESULTS AND DISCUSSIONS 

This study evaluates the model predictions’ errors for 

the one-day ahead crude oil price forecasts over the out-

of-sample period. The following section details the 

comparisons between the performances of the models. 

The LSTM model is the baseline for all other proposed 

hybrid models. 

Table IV shows the results for the LSTM, LP, and 

LPA models. The LP and LPA hybrids outperform the 

plain LSTM in all the loss functions across all four 

window sizes. Table V shows the percentage 

improvement in loss function values for LP and LPA 

over plain LSTM. An improvement of around 30% is 

observed when information from the explanatory 

variables, captured by the PCA transformation, is used as 

an input into the LSTM to improve the forecast accuracy 

of crude oil. Notably, the model using a window size of 

11-days outperforms other variations, with improvements 

of 35.19%, 37.72%, and 42.10%, for the RMSE, MAE, 

and MAPE metrics. Hence, from the results, it is evident 

that including explanatory variables that account for 

crude oil’s fundamental and technical nature substantially 

improves the performance of the predictive neural 

network. It is observed that the improvements for the 

final hybrid, LPA model are more significant than the LP 

counterparts across all window sizes and error metrics. 

For LPA, a window size of 11 days is optimal, 

showcasing performance improvements of 48.85%, 

53.20%, and 50.65% for the RMSE, MAE, and MAPE 

metrics. The results support the hypothesis that the 

ARIMA predictions contain additional explanatory 

information about crude oil price movement, allowing the 

ensemble learning-based LPA hybrid models to produce 

better forecasts than the plain LSTM and LP models.  

TABLE IV.  ERROR METRICS FOR EACH PROPOSED MODEL 

Model WIN_SZ RMSE MAE MAPE 

L.5TM 

3 1.1943 0.94149 0.01673 

5 1.19075 0.94127 0.01676 

7 1.28716 1.02294 0.01807 

11 1.31064 1.04087 0.01836 

LP 

3 0.90373 0.74632 0.01223 

5 0.90982 0.7515 0.01226 

7 0.78477 0.61272 0.0101 

11 0.77403 0.58636 0.00969 

LPA 

3 0.70213 0.51716 0.00945 

5 0.74154 0.55388 0.01002 

7 0.61423 0.44175 0.00822 

11 0.61088 0.44062 0.00826 
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TABLE V.  PERCENTAGE IMPROVEMENT IN LOSS FUNCTION VALUES 

FOR LP AND LPA OVER PLAIN LSTM 

Model WIN_SZ RMSE MAE MAPE 

LP 

3 24.333 20.733 26.923 

5 23.823 20.183 26.743 

7 34.293 34.923 39.613 

11 35.193 37.723 42. 103 

LPA 

3 41.213 45.073 43.543 

5 37.913 41.173 40.093 

7 48.573 53.083 50.843 

11 48.853 53.203 50.653 

 

 

Figure 4.  Comparison of prediction errors of LPA to the baseline plain 

LSTM. 

 

Figure 5.  Comparison of prediction errors of LP for baseline plain 

LSTM. 

Figs. 4 and 5 show the improvement in one-step-ahead 

forecast performance considering the 3-day window size 

as the benchmark model. Numerous studies have 

concluded that crude oil prices are unpredictable using 

traditional econometric methods. The best estimate of 

future oil prices is the current price itself [43, 44]. 

However, the relationships between various 

macroeconomic, geopolitical, supply, demand, and 

technical factors play a crucial role in explaining oil price 

behavior [9, 45]. In line with the findings of  

Miao et al.’s [7] and Baumeister and Kilian’s [10] 

research, this study shows a significant confirmation of 

our hypothesis that the information from traditional 

forecasting methods further improves price predictions. 

Table VI shows the results of the DM and WS tests for 

equal forecast accuracy. The null hypothesis of these tests 

suggests that the forecasting models have comparable 

accuracy, and hence comparisons made between them are 

not significant. The p values obtained from the tests, 

which involve comparing all model forecasts, are 

reported in the table. Results associated with the DM tests 

are reported above the diagonal of each table, while those 

of the WS tests are reported below the diagonal. At the 

95% significance level, all the p values suggest that the 

null hypothesis is rejected, indicating that the out-of-

sample forecast accuracy obtained from each model is 

significantly different from the other. 

TABLE VI.  DIEBOLD-MARIANO & WILCOXON SIGNED-RANK TEST 

RESULTS  

Model WIN_SZ L.5TM LP LPA 

3 

L.5TM  0.00 0.00 

LP 0.00  0.00 

LPA 0.00 0.00  

5 

L.5TM  0.00 0.00 

LP 0.00  0.00 

LPA 0.00 0.00  

7 

L.5TM  0.00 0.00 

LP 0.00  0.00 

LPA 0.00 0.00  

11 

L.5TM  0.00 0.00 

LP 0.00  0.00 

LPA 0.00 0.00  

 

VII. CONCLUSION 

Based on experimental results, both the hybrid models 

are found to outperform the simple LSTM model. The 

experimental result showed 20% improvement in the 

forecasting accuracy for all loss functions for the LP 

model. The proposed model shown 35.19%, 37.72%, and 

42.10% improvement for the RMSE, MAE, and MAPE, 

respectively by using a window size of 11. Thus, it is 

evident that adding explanatory fundamental and 

technical variables helps to improve the forecasting 

ability of the neural network. The LPA model performs 

well, and provides 40% improvement for all the error 

metrics. Models trained on 11 days’ window size are 

again found to be the better performing model. Thus, 

ARIMA model forecasts add explanatory power to the 

framework, improving the forecasting accuracy. Hence, 

this study verified that adding information from 

fundamental, technical, and statistical methods associated 

with distinct economic characteristics of crude oil prices 

as inputs to the proposed LSTM base model significantly 

improves the one-step-ahead forecasting accuracy of 

crude oil prices. 

Multiple days ahead forecasts of crude oil price 

movements can be a further extension to this study. This 

would be pertinent to those with longer investment time 

horizons. Fluctuations in crude oil prices affect oil 

producers, governments, oil-dependent industries, and 

traders. Crude oil also plays a crucial role in the hedging 

strategies of manufacturers and investors. Crude prices 

being a commodity of international significance are one 

of the most important fuel sources and are subject to 

periods of extreme volatility. The findings of this study 
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may be of relevance to risk management professionals 

who want to understand the behaviour associated with the 

crude oil market to avoid potential losses. The results 

would also aid policymakers concerned with maintaining 

commodity market stability. 
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