
A Novel Distributed Machine Learning Model to

Detect Attacks on Edge Computing Network

Trong-Minh Hoang1, Trang-Linh Le Thi2, and Nguyen Minh Quy3,*

1 Posts and Telecommunications Institute of Technology, Hanoi, Vietnam
2 Electric Power University, Hanoi, Vietnam

3 Hung Yen University of Technology and Education, Hungyen, Vietnam

*Correspondence: minhquy@utehy.edu.vn

Abstract—To meet the growing number and variety of IoT

devices in 5G and 6G network environments, the

development of edge computing technology is a powerful

strategy for offloading processes in data servers by processing

at the network and nearby the user. Besides its benefits,

several challenges related to decentralized operations for

improving performance or security tasks have been identified.

A new research direction for distributed operating solutions

has emerged from these issues, leading to applying

Distributed Machine Learning (DML) techniques for edge

computing. It takes advantage of the capacity of edge devices

to handle increased data volumes, reduce connection

bottlenecks, and enhance data privacy. The designs of DML

architectures have to use optimized algorithms (e.g., high

accuracy and rapid convergence) and effectively use

hardware resources to overcome large-scale problems.

However, the trade-off between accuracy and data set volume

is always the biggest challenge for practical scenarios. Hence,

this paper proposes a novel attack detection model based on

the DML technique to detect attacks at network edge devices.

A modified voting algorithm is applied to core logic operation

between sever and workers in a partition learning fashion.

The results of numerical simulations on the UNSW-NB15

dataset have proved that our proposed model is suitable for

edge computing and gives better attack detection results than

other state of the art solutions.

Keywords—edge computing, intrusion detection system,

distributed machine learning, voting algorithm, attacks

I. INTRODUCTION

The Internet of Things is anticipated to be a significant

Internet innovation. The cooperation between IoT systems

and intelligent computing has brought a series of exciting

conveniences to our lives. On the other hand, IoT systems

are vulnerable to several security threats, including

malware, exploits, DoS (Denial-of-Service), and a

backdoor. These attacks can cause problems on the

Internet of Things, smart environment services, and

devices. To protect a communication system, an Intrusion

Detection System (IDS) is responsible for detecting

imminent and potential threats or attacks. Therefore,

developing intelligent IDS systems to cope with attacks on

IoT is an essential task for both researchers and

implementers [1]. Resource-constrained IoT devices, such

as sensors, actuators, and IoT gateways, have gained

popularity. IoT applications create vast amounts of data in

real time, which is a desirable objective for AI systems [2].

However, it is nearly impossible to implement machine

learning models on IoT end devices. A traditional

approach includes directly processing data on a cloud

server, which worsens latency, increases connection costs,

and poses privacy issues. Hence, the edge computing

solution has been introduced, where shared computing

devices are placed close to the IoT devices where data is

generated and at the network’s edge. By allowing

computations to be executed closer to the data sources,

latency and security problems can be eliminated.

Deploying machine learning systems on edge computing

devices mitigates the mentioned problems [3]. However,

this approach has also generated new requirements,

including implementing favorite machine learning models

[4, 5]. A Machine Learning (ML) system is one of the most

effective solutions for extracting information and making

decisions from data. IDSs based on machine learning have

come to the forefront of intrusion detection research. ML

enables systems to learn and improve by utilizing

historical data. Unfortunately, the computational

constraints of resource-constrained IoT devices restrict the

deployment of ML algorithms on these devices when

large-scale data sets in ML systems invoke computational

challenges [6]. Conversely, it is frequently impossible for

all edge devices to transmit their data to a parameter server

for a centralized machine. Hence, it is desirable to

introduce distributed learning algorithms that enable

devices to build a unified learning model with local

training cooperatively. This strategy reduces the amount of

training data on the edge device, reduces the amount of

data communication across connections, and enhances

privacy. Besides the advantages, a lot of challenges have

remained to face, including DML frameworks, parallel and

distributed ML algorithms, privacy protection, and

architecture [7]. Among these DML models, the partition

learning model differs from the traditional reinforcement

learning model in that it performs model partitioning and

does not require edge devices to refresh the entire model.

Hence, paralleling the CPU, disk, and network bandwidth

can increase the system’s efficiency. Otherwise, in the
Manuscript received October 17, 2022; revised November 17, 2022;

accepted December 21, 2022; published February 28, 2023.

Journal of Advances in Information Technology, Vol. 14, No. 1, February 2023

153doi: 10.12720/jait.14.1.153-159

security area, concerning trade-offs between the

limitations of the distributed model and the accuracy of

attack detection are open issues [8]. To tackle the above-

mentioned problems, an intelligent IDS architecture

suitable for edge computing meets both the limited

resources of edge devices and the attack detection rate as

an urgent task. Therefore, this paper proposes a novel

distributed machine learning model based on a modified

voting algorithm to detect anomalies in Edge networks as

IoT gateway devices. In our proposed model, a partition

learning model is applied to IDS on edge devices, each

edge device makes its own decision (worker), and the final

decision in a server is achieved by a modified voting

algorithm to enhance the precise attack detection decisions.

The following are the main contributions of this study:

• Construct a DLM solution suitable for resource-

constrained edge computing devices in the

partition learning model approach.

• Deploy various ML algorithms on worker nodes to

detect anomalies, then build a voting-base decision

algorithm to make a final decision.

• Test with Reconnaissance attack on dataset

UNSW-NB15 to demonstrate the efficiency of the

proposed model.

The rest of the paper is organized as follows. Section II

presents related works. The proposed model is detailed in

Section III. Section IV presents our validation of the

proposed model on a practical dataset. Section V presents

the decision-making process over voting the conclusions

and our future works are presented in Section VI.

II. RELATED WORKS

IDSs are an essential technology for network system

security. Since machine learning techniques can capture

the complexities of cyber attacks, ML-based IDS provides

various practical benefits. Unfortunately, edge devices

frequently have constrained resources such as limited

energy sources, computational power, and memory. Hence,

some proposed ML-based IDS models focus on data

pre-processing to achieve efficient data reduction of a

dataset to tailor it for resource-constrained devices.

The authors of [9] proposed a lightweight ML-based

IDS model called IMPACT (IMPersonation Attack

deteCTion) is proposed, that working on the AWID dataset

[10] (Aegean WiFi Intrusion Dataset). The authors reduce

the number of features through feature extraction and

selection using a Stacked Autoencoder (SAE), Mutual

Information (MI), and C4.8 wrapper. To reduce the impact

of an unbalanced number of samples of different attack

kinds in model training samples on model performance,

the DL-IDS has proposed to improve robustness by

employing a category weight optimization method [11]

and then testing on the CICIDS2017 dataset [12].

Also this direction, accordingly, the authors of [13]

proposed a novel IDS model based on DNN (Deep Neural

Network) to select the feasible features before processing

networking data. This study used the KDD99 dataset [14]

for testing. The simulation results have shown that it

enhances the detection accuracy rate by up to 99.4%

compared to existing solutions.

The authors of [15] proposed the Random Forest (RF)

method − the Multilayer Perceptron (MLP) neural network

feature selection method and built on the Cerebellar Model

Articulation Controller (CMAC) neuron network to detect

DDOS on the UNSW-NB15 dataset. Although these

results significantly improve, since edge computing

operates in a distributed manner, lots of noisy data and data

growth have created new challenges to be solved [16].

Distributed Machine Learning (DML) techniques, such

as federated learning, partitioned learning, and distributed

reinforcement learning, are mainly solutions for edge

computing. Federated Learning (FL) is a famous

architecture of DML for the decentralized generation of

generic ML models, its related technologies and protocols,

and several application scenarios, including cyberattack

detection [8, 17]. The critical difference between

partitioned learning and FL is that FL does not perform

model partitioning and demands edge devices to renew the

entire model jointly. While single-agent RL is typically

described as a Markov decision process, Multi-agent

Reinforcement Learning (MARL) and Multi-agent Deep

Reinforcement Learning (MADRL) are typically framed

as stochastic games with state transitions that account for

the collaborative action of all agents [18]. Adapting the

constrained resource of edge devices in the IoT

environment, partition learning is the essential approach to

provide an efficient DML algorithm while reducing the

workload at distributed agent devices. A well-known

framework of partitioned decentralized learning is the

Parameter Server framework [19, 20]. The parameter

server framework breaks a large-scale model optimization

problem into distinct target functions, such as linear

regression [21] and Support Vector Machine (SVM) [22].

However, the optimal efficiency of global and local

updates in regards to time, number of active nodes, and

sensitivity of fixed control parameters under different data

distributions and node numbers.

Numerous works utilizing historical datasets, such as

the KDD CUP 99, NSL-KDD, DARPA, and the ADFA

dataset, have developed the best anomaly-based IDS.

Recently, the UNSW-NB15 dataset [23] was made

available to the research community. This data collection

covers nine distinct types of current attacks and a large

variety of everyday actions. The configuration of the

simulation testbed relied on the generation of network

traffic that evolved through time to replicate the actual

network traffic of the present day. This data collection

contains 49 features with class labels that pertain to

network traffic characteristics depending on the flow

between hosts and the packet header [24]. The authors of

[25] proposed a novel distributed ensemble design based

on IDS employing fog computing that includes k-nearest

neighbors, XGBoost, and Gaussian naive Bayes as

individual learners at the first level. Random Forest uses

the prediction results from the first level to determine the

final classification at the second level. The experimental

results revealed that the proposed distributed IDS with

UNSWNB15 can achieve a higher detection rate, up to

68.98% for analysis, 92.25% for reconnaissance, and

85.42% for DoS attacks. To adapt edge devices, the

Journal of Advances in Information Technology, Vol. 14, No. 1, February 2023

154

authors of [26] proposed an ML-based IDS employing the

limited feature space: Support Vector Machine (SVM), k-

Nearest Neighbor (kNN), Logistic Regression (LR),

Artificial Neural Network (ANN), and Decision Tree (DT).

The results revealed on the UNSW-NB15 dataset that the

XGBoost-based feature selection method permits methods

such as the DT to increase their test accuracy for the binary

classification scheme from around 88% to 90%.

Through the above-surveyed studies, the distributed

machine learning model is a possible implementation

direction on edge devices in the edge computing domain.

However, the trade-off between the quantity of training

data and accuracy has always been a major challenge for

researchers. In this work, a DML-based IDS system is

proposed with a partitioning dataset method to tailor the

limited resources on edge devices, and the overall accuracy

of the proposed model will be improved through the

modified voting algorithm for final decisions. Indeed, we

implement a complete machine learning algorithms model

(workers) at each edge node to solve the challenges above

in parameter communication between edge nodes and

parameter servers. The decision to identify the attack is

transmitted to the server by the edge nodes then the server

uses a modified voting algorithm to make the final decision

and update its workers. The detailed techniques are

presented in the next sections.

III. PROPOSED MODEL

A. The Outline of the System Model

The IDS system is deployed on the edge device using

the DML mechanism depicted in Fig. 1. Inwhere, resource-

limited gateways play a role in edge computing devices.

Then, the data from obtained sensors is passed through

these gateways. A gateway device contains an ML-based

IDS with a database part that is a portion of the system’s

common database. Here, we apply three distinct that have

detailed analysis in Section II, including MultiLayer

Perceptron (MLP) [15], Support Vector Machine (SVM)

[22], and Random Forest (RF) [25] algorithms for training

models among three and five different worker types. In

more detail, each worker is defined by a tuple [ML type,

training model, feature].

Figure 1. A typical IDS at edge computing structure.

The algorithms mentioned above define the attacks in

the partitioned database. The binary decision (0, 1)

corresponds to the state of either being attacked or

unattacked. Hence, this partition learning system is also

referred to as a binary decision system. The decision

outputs of the system are sent to the server at edge

computing for optimal decision problem computation. The

algorithm for multi-decision optimization is presented as

follows.

B. Optimizing the Binary Multiple Decisions System

Assume all workers are independent. A binary decision

system of a worker consists of two assumed input states (0,

1) and two output decisions (0, 1). So, the output accuracy

of the decision is a conditional probability function as

Pi(decision/assumed input). Denote H0 and H1 as the

event corresponded to input values as 0 and 1. It is divided

into 4 cases, as follows:

Case 1: decision=0, input = 0 → 𝑝𝑖(0/0)

Case 2: decision=0, input = 1 → 𝑝𝑖(0/1)

Case 3: decision=0, input = 1 → 𝑝𝑖(0/1) = 1 − 𝑝𝑖(1/1)

Case 4: decision=1, input = 0 → 𝑝𝑖(1/0) = 1 − 𝑝𝑖(0/0)

Cases 3 and 4 are called false alarm probabilities. The

optimization criterion for the binary multiple decisions

system is a linear combination of the probability of each

worker, expressed by Eq. (1):

J(𝛼)=𝛼𝑝𝑠𝑦𝑠(0|0) + (1 − 𝛼)𝑝𝑠𝑦𝑠
(𝑁−𝑛+1)(1|1), 0 < 𝛼 < 1

 (1)

𝛼 is the weighting factor that characterizes the system’s

preference for accepting the correct assumptions. The

binary multiple decisions system comprises 𝑁 workers,

with 𝐻0 events voted on by more than (𝑛 − 1) workers

and 𝐻1 events voted on by (𝑁 − 𝑛) workers. The

conditional probability of a binary multiple-decision

system is calculated according to Eq. (2) [2].

𝑝𝑠𝑦𝑠
(𝑛)(0|0) = ∑ 𝐶𝑁

𝑛𝑁−𝑛
𝑘=0 𝑝𝑁−𝑘(0|0)𝑞𝑘(1|0) (2)

𝑝𝑠𝑦𝑠
(𝑁−𝑛+1)(1|1) = ∑ 𝐶𝑁

𝑛𝑁−𝑛
𝑘=0 𝑝𝑁−𝑘(0|0)𝑞𝑘(1|0), (3)

𝑛 = 1, 𝑁

The binary multiple decisions system optimizations as

presented in Eq. (4).

𝑛𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝛼𝑝𝑠𝑦𝑠
(𝑛)(0|0) + (1 − 𝛼)𝑝𝑠𝑦𝑠

(𝑁−𝑛+1)(1|1),

0 < 𝛼 < 1, 𝑛 = 1, 𝑁 (4)

Type 1. The worker’s decision is independent, and the

conditional probability is equal.

We can see that the optimization process of the binary

multiple decision systems is simulated over the below

example, presented in Tables I−III. Table I and Table III

illustrate that the system has 5 and 7 workers, respectively,

while Table II presents the conditional probabilities of a

worker.

Journal of Advances in Information Technology, Vol. 14, No. 1, February 2023

155

TABLE I. AN ILLUSTRATION OF THE SYSTEM HAS 7 WORKERS

n 𝑝𝑠𝑦𝑠
(𝑛)(0|0) 𝑝𝑠𝑦𝑠

(𝑁−𝑛+1)(1|1) J(α=0.5) J(α=0.9) J(α=0.1)

n=1 1.00000 0.02799 0.51400 0.90280 0.00000

n=2 1.00000 0.15863 0.57932 0.91586 0.24277

n=3 1.00000 0.41990 0.70995 0.94199 0.47791

n=4 0.99999 0.71021 0.8551 0.97101 0.73919

n=5 0.99974 0.90374 0.95174 0.99104 0.91334

n=6 0.99214 0.98116 0.98665 0.99104 0.98226

n=7 0.86813 0.99836 0.93324 0.88115 0.98534

TABLE II. THE CONDITIONAL PROBABILITIES OF A WORKER

i i=1 i=2 i=3 i=4 i=5 i=6 i=7

𝑝𝑖(0|0) 0.99 0.98 0.97 0.96 0.95 0.94 0.93

𝑝𝑖(1|1) 0.69 0.68 0.67 0.66 0.65 0.64 0.63

Workers whose probabilities correspond to the H0, H1

events as follows: 𝑝𝑖(0/0) = 0.98, 𝑝𝑖(1/1) = 0.6, 𝑖 = 1, 7.

Type 2. The worker’s decision is independent, and the

conditional probability is unequal. We have,

𝑝𝑠𝑦𝑠
(𝑛)(0|0) = ∏ 𝑝𝑖(0|0)

𝑁

𝑖=1

+ ∑ 𝑝𝑖1

𝐶𝑁
1

(0|0)𝑝𝑖2
(0|0) …

 … 𝑝𝑖𝑁−1
(0|0)𝑞𝑖𝑁

(1|0) + ⋯ + ∑ 𝑝𝑖1

𝐶𝑁
𝑁−𝑛

(0|0)𝑝𝑖2
(0|0) …

… 𝑝𝑖𝑁−𝑛
(0|0)𝑞𝑖𝑁−𝑛+1

(1|0)𝑞𝑖𝑁−𝑛+2
 (1|0) … 𝑝𝑖𝑁

(1|0) (5)

𝑝𝑠𝑦𝑠
(𝑁−𝑛+1)(1|1) = ∏ 𝑝𝑖(1|1)

𝑁

𝑖=1

+ ∑ 𝑝𝑖1

𝐶𝑁
1

(1|1)𝑝𝑖2
(1|1) …

 … 𝑝𝑖𝑁−1
(1|1)𝑞𝑖𝑁

(0|1) + ⋯ + ∑ 𝑝𝑖1

𝐶𝑁
𝑁−𝑛

(1|1)𝑝𝑖2
(1|1) …

… 𝑝𝑖𝑁−𝑛
(1|1)𝑞𝑖𝑁−𝑛+1

(1|0)𝑞𝑖𝑁−𝑛+2
 (0|1) … 𝑝𝑖𝑁

(0|1) (6)

Type 3. The worker’s decision is dependent, and the

conditional probability is unequal.

The approach to solving the above problem according

to the statistical test method is made as follows: a random

sequence is an input to the workers of the binary multiple

decision (𝑠𝑦𝑠𝑡, 𝑋(𝑚)), where 𝑚 is the number of random

sequences, and the input value takes only one of the values

0 or 1. The output value of each expert will be the input of

the probability calculation block of the binary multiple

decisions system (𝑝̂𝑖
 (0|0), 𝑝̂𝑖

 (1|1), 𝑖 = 1, 𝑁). In this case,

the optimal formula for the probability of the binary

multiple decisions system is presented in Eq. (7).

𝑛𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝛼𝑝̂𝑠𝑦𝑠
(𝑛)(0|0) + (1 − 𝛼)𝑝̂𝑠𝑦𝑠

(𝑁−𝑛+1)(1|1),

0 < 𝛼 < 1), 𝑛 = 1, 𝑁

 (7)

Symbol 𝑀0(𝑚) , 𝑀1(𝑚) represent 0 and 1 values of

input chain 𝑚 , respectively. Eq. (8) determines the

conditional probability of each worker.

𝑝̂𝑖
 (0|0) = (𝑀0𝑖(𝑚)|𝑀0(𝑚)),

𝑝̂𝑖
 (1|1) = (𝑀1𝑖(𝑚)|𝑀1(𝑚)), 𝑛 = 1, 𝑁 (8)

TABLE III. THE CONDITIONAL PROBABILITY VALUE OF THE SYSTEM

n 𝑝𝑠𝑦𝑠
(𝑛)(0|0) 𝑝𝑠𝑦𝑠

(𝑁−𝑛+1)(1|1) J(α=0.5) J(α=0.9) J(α=0.1)

n=1 1.00000 0.05438 0.52719 0.90544 0.14894

n=2 1.00000 0.25099 0.62550 0.92510 0.32589

n=3 1.00000 0.55527 0.77764 0.95553 0.59974

n=4 0.99994 0.81653 0.98160 0.98160 0.83487

n=5 0.99824 0.95095 0.99351 0.99351 0.95568

n=6 0.97152 0.99239 0.97361 0.97361 0.99030

n=7 0.75031 0.99948 0.77523 0.77523 0.97456

Figure 2. Data prepossessing on the UNSW-NB15 dataset.

Journal of Advances in Information Technology, Vol. 14, No. 1, February 2023

156

The conditional probability of a binary multiple

decisions system is calculated by.

IF 𝑋(𝑚 + 1) = 0 THEN the number of workers has

correct decision = 𝐿0 , and 𝑀0𝑠𝑦𝑠
(𝑛) (𝑚) = 𝑀0𝑠𝑦𝑠

(𝑛) (𝑚) +

1, 𝑛 = 1, 𝐿0

IF 𝑋(𝑚 + 1) = 1 THEN the number of workers has

correct decision = 𝐿1 , and 𝑀1𝑠𝑦𝑠
(𝑛) (𝑚) = 𝑀1𝑠𝑦𝑠

(𝑛) (𝑚) +

1, 𝑛 = 1, 𝐿1

We have,

𝑝̂𝑠𝑦𝑠
(𝑛)(0|0) = (𝑀0𝑠𝑦𝑠

(𝑛) (𝑚)|𝑀0(𝑚)),

𝑝̂𝑠𝑦𝑠
(𝑛)(1|1) = (𝑀1𝑠𝑦𝑠

(𝑛) (𝑚)|𝑀1(𝑚)), 𝑛 = 1, 𝑁 (9)

Eq. (9) is the basis for optimizing the binary multiple

decisions system next section describes the probability

simulation experiment of this case’s binary multiple

decisions system

IV. EXPERIMENTAL RESULTS

A. Data Prepossessing

To evaluate the efficacy of the proposed method, we

utilize the UNSW-NB15 database, one of many IoT attack

datasets created in 2015. This dataset is comprised of

2.540.044 records saved in four CSV files. After deleting

duplicate records, the number of remaining records is

2.059.419, and all records are divided into four files

containing only data regarding common information and

attack kinds. The UNSW-NB 15 [20−21, 23] dataset’s

attacks are classified into nine categories: normal, fuzzers,

analysis, backdoors, denial of service, exploits, generic,

reconnaissance, shellcode, and worm. Each record

consists of 44 properties concerning network traffic of five

value types: identifier, integer, real number, time, and

binary, with the latter two containing information about

the attack type for each property. Fig. 2 depicts the data

pre-processing for the UNSWNB15 dataset. In these

experimental simulations, we use attack classification and

detection for the reconnaissance attack type as an example.

B. The Binary Multiple Decisions System Architecture

The binary multiple-decision system is made up of

workers. We tested the cases of 3 workers and 5 workers.

Each specialist has a different training and characterization

system. This binary multiple-decision system’s learning

and testing process occurs as follows: from the UNSW-NB

15 dataset, after pre-processing, it is divided at 80% to

serve the training process and 20% to practice and test. The

dataset used for retraining is divided into 3 or 5 equal parts

to serve the learning process of each expert. The testing

process of all workers uses 20% of the test data extracted

from the original data set. The composition of the files for

training and testing is shown in Table IX.

The training and testing of the workers of the binary

multiple decisions system are performed according to the

data presented in Table IV and Table V. We use the

MATLAB environment containing the application

program packages as Neural Network Toolbox.

TABLE IV. COMPOSITION OF THE DATASET FOR 3 WORKERS

 Attacks No attacks

Worker 1 (MLP1) 2725 40897

Worker 2 (MLP2) 2725 40900

Worker 3 (MLP3) 2723 40874

Testing data 2043 30727

TABLE V. COMPOSITION OF THE DATASET FOR 5 WORKERS

 Attacks No attacks

Worker 1 (MLP1) 1634 24544

Worker 2 (MLP2) 1634 24545

Worker 3 (MLP3) 1634 24539

Worker 4 (SVM) 1634 24540

Worker 5 (RF) 1637 24555

Testing data 2043 30727

In our experiment, Binary Multiple Decisions System

(BMDS) made up of workers based on MLP multiplayer

neural network, the training process uses three layers (15-

10-1, 30-20-1, 50-30-1, 100-50-1, 100-100-1, 150-100-1,

200-100-1, 200-150-1) and four layers (30-20-10-1).

Where the first number in the symbols is presented by the

number of neurons in the first layer, the second number in

the symbols is presented by the number of neurons in the

second layer, and so on. The number of input attributes for

all networks is 42. The threshold for classification will run

from 0.1 to 0.9 in 0.01 -step increments. The detection

rates of the workers are presented in Table VI and Table

VII.

TABLE VI. PARAMETERS FOR THE SYSTEM HAVE 3 WORKERS

No
Parameters

Type Method Threshold A No.A

Worker 1 MLP1 Trainlm 0.74 73.86 96.41

Worker 2 MLP2 Trainlm 0.74 85.12 94.32

Worker 3 MLP3 Trainlm 0.74 90.70 93.91

TABLE VII. PARAMETERS FOR THE SYSTEM HAVE 5 WORKERS

No
Parameters

Type Method Threshold A No.A

Worker 1 MLP1 Trainlm 0.6 84.68 92.39

Worker 2 MLP2 Trainlm 0.6 80.52 94.08

Worker 3 MLP3 Trainlm 0.74 90.70 93.91

Worker 4 SVM RBF - 88.06 90.86

Worker 5 All - 87.66 93.37

V. DECISION-MAKING PROCESS OVER VOTING

According to the traditional method, the majority voting

algorithm is applied to the results of the workers. If 2 out

of 3 workers decide whether to attack or not, the system

will decide by a majority. According to this voting rule, the

detection rate of Reconnaissance attacks is 85.71 %, and

non-Reconnaissance attacks are 95.06 %. In our proposed

algorithm, any decision to identify an attack from a worker

will lead to the overall decision of the whole system that

an attack occurs. According to this voting rule, the

detection rate of reconnaissance attacks is 96.23%, and

non-reconnaissance attacks is 91.07%. In addition to this

Journal of Advances in Information Technology, Vol. 14, No. 1, February 2023

157

voting rule, Table VIII gives the results of other voting

rules.

TABLE IX. THE DECISION RULE FOR 3 WORKERS SYSTEM

Vote No.A No.NA FP No.D RA RNA

Case 1 2043 30727 2744 1966 96.23 91.07

Case 2 2043 30727 1519 1751 85.71 95.06

Case 3 2043 30727 459 1384 67.74 98.51

where,

No.NA is the number of non-reconnaissance (R) attacks

in the data set test.

FP is false positives.

No.D is a detected attack number.

RA is rate detected attack.

RNA is rate detected no attack.

Case 1: 3 workers voted no attack;

Case 2: 2 or 3 workers voted no attack;

Case 3: 1 or 2 or 3 workers voted no attack;

Figure 3. Optimizing according to different rules of 3 workers.

The decision of the binary multiple decisions system

can choose one of the three options in Table VIII according

to the criteria appropriate to the system. If the binary

multiple decisions system decides according to the first

row of Table VIII, that means that the binary multiple

decisions system prioritizes detecting Reconnaissance

attacks. If the binary multiple decisions system makes the

3𝑟𝑑 row decision in Table VIII, the priority is to detect

attacks that are not Reconnaissance attacks. The result of

line 2 is the application of the majority voting decision-

making algorithm. Fig. 3 shows the detection results of the

binary multiple decisions system when the decision is

based on the majority vote and the modified voting

algorithm based on a rule selection in Table VIII.

TABLE IX. THE DECISION RULE FOR 5 WORKERS SYSTEM

Vote No.A No.NA FP No.D RA RNA

Case 1 2043 30727 3868 2018 98.8 87.4

Case 2 2043 30727 2699 1983 97.1 91.2

Case 3 2043 30727 2195 1871 91.6 92.9

Case 4 2043 30727 1497 1629 79.7 95.1

Case 5 2043 30727 490 1301 63.7 98.4

where,

Case 1: 5 workers voted no attack;

Case 2: 4 or 5 workers voted no attack;

Case 3: 3 or 4 or 5 workers voted no attack;

Case 4: 2 or 3 or 4 or 5 workers voted no attack;

Case 5: 1 or 2 or 3 or 4 or 5 workers voted no attack;

The results obtained after optimizing binary multiple-

decision systems in this study are higher than the results in

the references [26, 27]. The authors of [26] achieved a rate

of around 69.9%, and in [27], around 75.6%. Our proposed

model brings up the accuracy of 97.06%, as presented in

Fig. 4.

Figure 4. Comparison between systems of 3 and 5 workers.

VI. CONCLUSION

In recent years, edge computing has emerged as a useful

strategy for many internet of things applications that

require low latency and privacy. In contrast, IoT

application attacks’ rising sophistication and intensity

have forced new requirements on attack detection systems.

IDS solutions based on machine learning have been

developed to overcome these challenges. However,

distributed machine learning techniques must be

implemented to overcome the IoT edge devices’ resource

limitations. This paper proposes a new approach to DML

architecture based on a partition learning approach to

increase attack detection accuracy with partition datasets

and various ML methods. Using the UNSW-NB15 dataset

and the worker system’s decision rules, our experimental

results are better than those of other approaches. In future

studies, we will combine our proposed method into edge-

based smart healthcare systems to enhance privacy and

security for patient’s data.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

The authors conducted the research together; Trong-

Minh Hoang and Trang-Linh Le Thi proposed models and

performed simulations, Trong-Minh Hoang and Nguyen

Minh Quy analyzed the data; The authors wrote the paper

Journal of Advances in Information Technology, Vol. 14, No. 1, February 2023

158

together; Nguyen Minh Quy proofread this paper. All

authors had approved the final version.

REFERENCES

[1] E. M. Faisal, A. I. Awad, and H. F. Hamed, “Intrusion detection

systems for IoT-based smart environments: A survey,” Journal of
Cloud Computing, no. 1, pp. 1–20, 2018.

[2] Z. Chang, S. Liu, X. Xiong, et al., “A survey of recent advances in

edge-computing-powered artificial intelligence of things,” IEEE
Internet of Things Journal, vol. 8, no. 18, pp. 13849–13875, 2021.

[3] X. Wang, Y. Han, C. Wang, et al., “In-edge AI: Intelligentizing

mobile edge computing, caching and communication by federated
learning,” IEEE Network, vol. 33, no. 5, pp. 156–165, 2019.

[4] Z. Zhou, X. Chen, E. Li, et al., “Edge intelligence: Paving the last

mile of artificial intelligence with edge computing,” Proceedings of

the IEEE, vol. 107, no. 8, pp. 1738–1762, Aug. 2019.

[5] G. Carvalho, B. Cabral, V. Pereira, et al., “Edge computing: Current
trends, research challenges and future directions,” Computing, vol.

103, pp. 993–1023, 2021.

[6] H. Kim, H. Nam, W. Jung, et al., “Performance analysis of CNN
frameworks for GPUs,” in Proc. IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS), 2017, pp.

55–64.
[7] S. Hu, X. Chen, W. Ni, et al., “Distributed machine learning for

wireless communication networks: Techniques, architectures, and

applications,” IEEE Communications Surveys & Tutorials, vol. 23,
no. 3, pp. 1458–1493, 2021.

[8] W. Y. B. Lim, N. C. Luong, D. T. Hoang, et al., “Federated learning

in mobile edge networks: A comprehensive survey,” IEEE Comm.
Surveys & Tutorials, vol. 22, no. 3, pp. 2031–2063, 2020.

[9] S. J. Lee, P. D. Yoo, A. T. Asyhari, et al., “IMPACT: Impersonation

attack detection via edge computing using deep autoencoder and
feature abstraction,” IEEE Access, vol. 8, pp. 65520–65529, 2020.

[10] C. Kolias, G. Kambourakis, A. Stavrou, et al., “Intrusion detection

in 802.11 networks: Empirical evaluation of threats and a public
dataset,” IEEE Communications Surveys & Tutorials, vol. 18, no. 1,

pp. 184–208, 2016.

[11] P. Sun, P. Liu, Q. Li, et al., “DL-IDS: Extracting features using
CNN-LSTM hybrid network for the intrusion detection system,”

Security and Communication Networks, 2020.

[12] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion traffic

characterization,” in Proc. 4th International Conference on

Information Systems Security and Privacy (ICISSP), Purtogal, 2018.
[13] L. H. Li, R. Ahmad, W. C. Tsai, et al., “A feature selection based

DNN for intrusion detection system,” in Proc. 15th International

Conference on Ubiquitous Information Management and
Communication (IMCOM), 2021, pp. 1–8.

[14] S. P. RM, P. K. R. Maddikunta, M. Parimala, et al., “An effective

feature engineering for DNN using hybrid PCA-GWO for intrusion
detection in IoMT architecture,” Computer Communications, vol.

160, pp. 139–149, July 2020.

[15] L. L. T. Trang, V. T. Nguyen, Q. H. Dinh, et al., “Comparison of
data dimension reduction methods in the problem of detecting

attacks,” in Proc. International Conference on Advanced

Technologies for Communications (ATC), 2021, pp. 324–327.
[16] A. S. Almogren, “Intrusion detection in edge-of-things computing,”

Journal of Parallel and Distributed Computing, vol. 137, pp. 259–

265, 2020.
[17] H. B. McMahan, E. Moore, D. Ramage, et al. (2016). Federated

learning of deep networks using model averaging. [Online].

Available: http://arxiv.org/pdf/1602.05629v1
[18] A. Feriani and E. Hossain, “Single and multi-agent deep

reinforcement learning for AI-enabled wireless networks: A
tutorial,” IEEE Communications Surveys & Tutorials, vol. 23, no.

2, pp. 1226–1252, 2021.

[19] M. Li, L. Zhou, Z. Yang, et al., “Parameter server for distributed
machine learning,” in Proc. NIPS Workshop on Big Learning, Lake

Tahoe, USA, Dec. 2013.

[20] M. Li, D. G. Andersen, J. W. Park, et al., “Scaling distributed
machine learning with the parameter server,” in Proc. USENIX

Symposium on Operating Systems Design and Implementation

(OSDI), Broomfeld, USA, 2014.

[21] J. Geng, B. Zhang, L. M. Huie, et al., “Online change-point
detection of linear regression models,” IEEE Transactions on

Signal Processing, vol. 67, no. 12, pp. 3316–3329, 2019.

[22] Y. Song, J. Liang, and F. Wang, “An accelerator for support vector
machines based on the local geometrical information and data

partition,” Int. J. Mach. Learn. Cyber., vol. 10, no. 9, pp. 2389–

2400, 2019.
[23] The UNSW-NB15 Dataset. (May 7, 2022). [Online]. Available:

https://research.unsw.edu.au/projects/unsw-nb15-dataset

[24] N. Moustafa and J. Slay, “UNSW-NB15: A comprehensive data set
for network intrusion detection systems (UNSW-NB15 network

data set),” in Proc. Military Communications and Information

Systems Conference (MilCIS), 2015, pp. 1–6.
[25] K. Prabhat, G. P. Gupta, and R. Tripathi, “A distributed ensemble

design based intrusion detection system using fog computing to

protect the internet of things networks,” Journal of Ambient
Intelligence and Humanized Computing, vol. 12, no. 10, pp. 9555–

9572, 2021.

[26] N. Moustafa and J. Slay, “The significant features of the UNSW-
NB15 and the KDD99 data sets for network intrusion detection

systems,” in Proc. 4th International Workshop on Building Analysis

Datasets and Gathering Experience Returns for Security
(BADGERS), 2015, pp. 25–31.

[27] A. Mahmoud, A. Shahraki, and A. Taherkordi, “Deep learning for

Network Traffic Monitoring and Analysis (NTMA): A survey,”
Computer Communications, vol. 170, pp. 19–41, 2021.

Copyright © 2023 by the authors. This is an open access article
distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Trong-Minh Hoang received a bachelor’s

degree in physic engineering (1994) and
electronic and telecoms engineering (1999)

from HUST, a master’s degree in electronic and

telecommunication engineering (2003), and a
Ph.D degree in telecommunication engineering

(2014) from PTIT. His research interests include

routing, security, and network performance in
mobile edge computing, wireless mobile

networks, and 5G and beyond.

Trang-Linh Le Thi is currently a lecturer in the

Faculty of Information Technology at Electric

Power University, Viet Nam. She received an

Engineer’s degree in information system (2009)

from MUCTR (Mendeleev University of

Chemical Technology of Russia) and Ph.D. in
System analysis, control and information

processing in Moscow in 2019 from MIPT

(Moscow Institute of Physics and Technology).
Her research focuses on AI, Neural Networks,

and Information Security.

Nguyen Minh Quy is the Council President of

the Hung Yen University of Technology and

Education. He received his B.S. in Information
Technology from the Hanoi University of

Science and Technology and his Master’s

degree in Software engineering from VNU
University of Engineering and Technology,

Vietnam. He obtained a Ph.D. degree in

Software Engineering from the Hanoi
University of Science and Technology, in 2015.

His general research interests are High-Performance Computing, Mobile

Communication Networks, and Software Engineering (Email:
minhquy@utehy.edu.vn).

Journal of Advances in Information Technology, Vol. 14, No. 1, February 2023

159

http://arxiv.org/pdf/1602.05629v1
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

