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Abstract—To meet the growing number and variety of IoT 

devices in 5G and 6G network environments, the 

development of edge computing technology is a powerful 

strategy for offloading processes in data servers by processing 

at the network and nearby the user. Besides its benefits, 

several challenges related to decentralized operations for 

improving performance or security tasks have been identified. 

A new research direction for distributed operating solutions 

has emerged from these issues, leading to applying 

Distributed Machine Learning (DML) techniques for edge 

computing. It takes advantage of the capacity of edge devices 

to handle increased data volumes, reduce connection 

bottlenecks, and enhance data privacy. The designs of DML 

architectures have to use optimized algorithms (e.g., high 

accuracy and rapid convergence) and effectively use 

hardware resources to overcome large-scale problems. 

However, the trade-off between accuracy and data set volume 

is always the biggest challenge for practical scenarios. Hence, 

this paper proposes a novel attack detection model based on 

the DML technique to detect attacks at network edge devices. 

A modified voting algorithm is applied to core logic operation 

between sever and workers in a partition learning fashion. 

The results of numerical simulations on the UNSW-NB15 

dataset have proved that our proposed model is suitable for 

edge computing and gives better attack detection results than 

other state of the art solutions. 

Keywords—edge computing, intrusion detection system, 

distributed machine learning, voting algorithm, attacks 

I. INTRODUCTION

The Internet of Things is anticipated to be a significant 

Internet innovation. The cooperation between IoT systems 

and intelligent computing has brought a series of exciting 

conveniences to our lives. On the other hand, IoT systems 

are vulnerable to several security threats, including 

malware, exploits, DoS (Denial-of-Service), and a 

backdoor. These attacks can cause problems on the 

Internet of Things, smart environment services, and 

devices. To protect a communication system, an Intrusion 

Detection System (IDS) is responsible for detecting 

imminent and potential threats or attacks. Therefore, 

developing intelligent IDS systems to cope with attacks on 

IoT is an essential task for both researchers and 

implementers [1]. Resource-constrained IoT devices, such 

as sensors, actuators, and IoT gateways, have gained 

popularity. IoT applications create vast amounts of data in 

real time, which is a desirable objective for AI systems [2]. 

However, it is nearly impossible to implement machine 

learning models on IoT end devices. A traditional 

approach includes directly processing data on a cloud 

server, which worsens latency, increases connection costs, 

and poses privacy issues. Hence, the edge computing 

solution has been introduced, where shared computing 

devices are placed close to the IoT devices where data is 

generated and at the network’s edge. By allowing 

computations to be executed closer to the data sources, 

latency and security problems can be eliminated. 

Deploying machine learning systems on edge computing 

devices mitigates the mentioned problems [3]. However, 

this approach has also generated new requirements, 

including implementing favorite machine learning models 

[4, 5]. A Machine Learning (ML) system is one of the most 

effective solutions for extracting information and making 

decisions from data. IDSs based on machine learning have 

come to the forefront of intrusion detection research. ML 

enables systems to learn and improve by utilizing 

historical data. Unfortunately, the computational 

constraints of resource-constrained IoT devices restrict the 

deployment of ML algorithms on these devices when 

large-scale data sets in ML systems invoke computational 

challenges [6]. Conversely, it is frequently impossible for 

all edge devices to transmit their data to a parameter server 

for a centralized machine. Hence, it is desirable to 

introduce distributed learning algorithms that enable 

devices to build a unified learning model with local 

training cooperatively. This strategy reduces the amount of 

training data on the edge device, reduces the amount of 

data communication across connections, and enhances 

privacy. Besides the advantages, a lot of challenges have 

remained to face, including DML frameworks, parallel and 

distributed ML algorithms, privacy protection, and 

architecture [7]. Among these DML models, the partition 

learning model differs from the traditional reinforcement 

learning model in that it performs model partitioning and 

does not require edge devices to refresh the entire model. 

Hence, paralleling the CPU, disk, and network bandwidth 

can increase the system’s efficiency. Otherwise, in the 
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security area, concerning trade-offs between the 

limitations of the distributed model and the accuracy of 

attack detection are open issues [8]. To tackle the above-

mentioned problems, an intelligent IDS architecture 

suitable for edge computing meets both the limited 

resources of edge devices and the attack detection rate as 

an urgent task. Therefore, this paper proposes a novel 

distributed machine learning model based on a modified 

voting algorithm to detect anomalies in Edge networks as 

IoT gateway devices. In our proposed model, a partition 

learning model is applied to IDS on edge devices, each 

edge device makes its own decision (worker), and the final 

decision in a server is achieved by a modified voting 

algorithm to enhance the precise attack detection decisions. 

The following are the main contributions of this study: 

• Construct a DLM solution suitable for resource-

constrained edge computing devices in the 

partition learning model approach. 

• Deploy various ML algorithms on worker nodes to 

detect anomalies, then build a voting-base decision 

algorithm to make a final decision. 

• Test with Reconnaissance attack on dataset 

UNSW-NB15 to demonstrate the efficiency of the 

proposed model. 

The rest of the paper is organized as follows. Section II 

presents related works. The proposed model is detailed in 

Section III. Section IV presents our validation of the 

proposed model on a practical dataset. Section V presents 

the decision-making process over voting the conclusions 

and our future works are presented in Section VI. 

II. RELATED WORKS 

IDSs are an essential technology for network system 

security. Since machine learning techniques can capture 

the complexities of cyber attacks, ML-based IDS provides 

various practical benefits. Unfortunately, edge devices 

frequently have constrained resources such as limited 

energy sources, computational power, and memory. Hence, 

some proposed ML-based IDS models focus on data  

pre-processing to achieve efficient data reduction of a 

dataset to tailor it for resource-constrained devices. 

The authors of [9] proposed a lightweight ML-based 

IDS model called IMPACT (IMPersonation Attack 

deteCTion) is proposed, that working on the AWID dataset 

[10] (Aegean WiFi Intrusion Dataset). The authors reduce 

the number of features through feature extraction and 

selection using a Stacked Autoencoder (SAE), Mutual 

Information (MI), and C4.8 wrapper. To reduce the impact 

of an unbalanced number of samples of different attack 

kinds in model training samples on model performance, 

the DL-IDS has proposed to improve robustness by 

employing a category weight optimization method [11] 

and then testing on the CICIDS2017 dataset [12].  

Also this direction, accordingly, the authors of [13] 

proposed a novel IDS model based on DNN (Deep Neural 

Network) to select the feasible features before processing 

networking data. This study used the KDD99 dataset [14] 

for testing. The simulation results have shown that it 

enhances the detection accuracy rate by up to 99.4% 

compared to existing solutions. 

The authors of [15] proposed the Random Forest (RF) 

method − the Multilayer Perceptron (MLP) neural network 

feature selection method and built on the Cerebellar Model 

Articulation Controller (CMAC) neuron network to detect 

DDOS on the UNSW-NB15 dataset. Although these 

results significantly improve, since edge computing 

operates in a distributed manner, lots of noisy data and data 

growth have created new challenges to be solved [16]. 

Distributed Machine Learning (DML) techniques, such 

as federated learning, partitioned learning, and distributed 

reinforcement learning, are mainly solutions for edge 

computing. Federated Learning (FL) is a famous 

architecture of DML for the decentralized generation of 

generic ML models, its related technologies and protocols, 

and several application scenarios, including cyberattack 

detection [8, 17]. The critical difference between 

partitioned learning and FL is that FL does not perform 

model partitioning and demands edge devices to renew the 

entire model jointly. While single-agent RL is typically 

described as a Markov decision process, Multi-agent 

Reinforcement Learning (MARL) and Multi-agent Deep 

Reinforcement Learning (MADRL) are typically framed 

as stochastic games with state transitions that account for 

the collaborative action of all agents [18]. Adapting the 

constrained resource of edge devices in the IoT 

environment, partition learning is the essential approach to 

provide an efficient DML algorithm while reducing the 

workload at distributed agent devices. A well-known 

framework of partitioned decentralized learning is the 

Parameter Server framework [19, 20]. The parameter 

server framework breaks a large-scale model optimization 

problem into distinct target functions, such as linear 

regression [21] and Support Vector Machine (SVM) [22]. 

However, the optimal efficiency of global and local 

updates in regards to time, number of active nodes, and 

sensitivity of fixed control parameters under different data 

distributions and node numbers.  

Numerous works utilizing historical datasets, such as 

the KDD CUP 99, NSL-KDD, DARPA, and the ADFA 

dataset, have developed the best anomaly-based IDS. 

Recently, the UNSW-NB15 dataset [23] was made 

available to the research community. This data collection 

covers nine distinct types of current attacks and a large 

variety of everyday actions. The configuration of the 

simulation testbed relied on the generation of network 

traffic that evolved through time to replicate the actual 

network traffic of the present day. This data collection 

contains 49 features with class labels that pertain to 

network traffic characteristics depending on the flow 

between hosts and the packet header [24]. The authors of 

[25] proposed a novel distributed ensemble design based 

on IDS employing fog computing that includes k-nearest 

neighbors, XGBoost, and Gaussian naive Bayes as 

individual learners at the first level. Random Forest uses 

the prediction results from the first level to determine the 

final classification at the second level. The experimental 

results revealed that the proposed distributed IDS with 

UNSWNB15 can achieve a higher detection rate, up to 

68.98% for analysis, 92.25% for reconnaissance, and 

85.42% for DoS attacks. To adapt edge devices, the 

Journal of Advances in Information Technology, Vol. 14, No. 1, February 2023

154



authors of [26] proposed an ML-based IDS employing the 

limited feature space: Support Vector Machine (SVM), k-

Nearest Neighbor (kNN), Logistic Regression (LR), 

Artificial Neural Network (ANN), and Decision Tree (DT). 

The results revealed on the UNSW-NB15 dataset that the 

XGBoost-based feature selection method permits methods 

such as the DT to increase their test accuracy for the binary 

classification scheme from around 88% to 90%.  

Through the above-surveyed studies, the distributed 

machine learning model is a possible implementation 

direction on edge devices in the edge computing domain. 

However, the trade-off between the quantity of training 

data and accuracy has always been a major challenge for 

researchers. In this work, a DML-based IDS system is 

proposed with a partitioning dataset method to tailor the 

limited resources on edge devices, and the overall accuracy 

of the proposed model will be improved through the 

modified voting algorithm for final decisions. Indeed, we 

implement a complete machine learning algorithms model 

(workers) at each edge node to solve the challenges above 

in parameter communication between edge nodes and 

parameter servers. The decision to identify the attack is 

transmitted to the server by the edge nodes then the server 

uses a modified voting algorithm to make the final decision 

and update its workers. The detailed techniques are 

presented in the next sections. 

III. PROPOSED MODEL 

A. The Outline of the System Model 

The IDS system is deployed on the edge device using 

the DML mechanism depicted in Fig. 1. Inwhere, resource-

limited gateways play a role in edge computing devices. 

Then, the data from obtained sensors is passed through 

these gateways. A gateway device contains an ML-based 

IDS with a database part that is a portion of the system’s 

common database. Here, we apply three distinct that have 

detailed analysis in Section II, including MultiLayer 

Perceptron (MLP) [15], Support Vector Machine (SVM) 

[22], and Random Forest (RF) [25] algorithms for training 

models among three and five different worker types. In 

more detail, each worker is defined by a tuple [ML type, 

training model, feature]. 

 

Figure 1. A typical IDS at edge computing structure. 

The algorithms mentioned above define the attacks in 

the partitioned database. The binary decision (0, 1) 

corresponds to the state of either being attacked or 

unattacked. Hence, this partition learning system is also 

referred to as a binary decision system. The decision 

outputs of the system are sent to the server at edge 

computing for optimal decision problem computation. The 

algorithm for multi-decision optimization is presented as 

follows. 

B. Optimizing the Binary Multiple Decisions System 

Assume all workers are independent. A binary decision 

system of a worker consists of two assumed input states (0, 

1) and two output decisions (0, 1). So, the output accuracy 

of the decision is a conditional probability function as 

Pi(decision/assumed input). Denote H0 and H1 as the 

event corresponded to input values as 0 and 1. It is divided 

into 4 cases, as follows: 

 

Case 1: decision=0, input = 0 → 𝑝𝑖(0/0) 

Case 2: decision=0, input = 1 → 𝑝𝑖(0/1) 

Case 3: decision=0, input = 1 → 𝑝𝑖(0/1) = 1 − 𝑝𝑖(1/1) 

Case 4: decision=1, input = 0 → 𝑝𝑖(1/0) = 1 − 𝑝𝑖(0/0) 

 

Cases 3 and 4 are called false alarm probabilities. The 

optimization criterion for the binary multiple decisions 

system is a linear combination of the probability of each 

worker, expressed by Eq. (1): 

J(𝛼)=𝛼𝑝𝑠𝑦𝑠(0|0) + (1 − 𝛼)𝑝𝑠𝑦𝑠
(𝑁−𝑛+1)(1|1), 0 < 𝛼 < 1

 (1) 

𝛼 is the weighting factor that characterizes the system’s 

preference for accepting the correct assumptions. The 

binary multiple decisions system comprises 𝑁  workers, 

with 𝐻0 events voted on by more than (𝑛 − 1) workers 

and 𝐻1  events voted on by (𝑁 − 𝑛)  workers. The 

conditional probability of a binary multiple-decision 

system is calculated according to Eq. (2) [2]. 
 

𝑝𝑠𝑦𝑠
(𝑛)(0|0) = ∑ 𝐶𝑁

𝑛𝑁−𝑛
𝑘=0 𝑝𝑁−𝑘(0|0)𝑞𝑘(1|0)       (2) 

 

𝑝𝑠𝑦𝑠
(𝑁−𝑛+1)(1|1) = ∑ 𝐶𝑁

𝑛𝑁−𝑛
𝑘=0 𝑝𝑁−𝑘(0|0)𝑞𝑘(1|0),      (3) 

𝑛 = 1, 𝑁 
 

The binary multiple decisions system optimizations as 

presented in Eq. (4). 

 

𝑛𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝛼𝑝𝑠𝑦𝑠
(𝑛)(0|0) + (1 − 𝛼)𝑝𝑠𝑦𝑠

(𝑁−𝑛+1)(1|1), 

0 < 𝛼 < 1, 𝑛 = 1, 𝑁    (4) 

 

Type 1. The worker’s decision is independent, and the 

conditional probability is equal. 

We can see that the optimization process of the binary 

multiple decision systems is simulated over the below 

example, presented in Tables I−III. Table I and Table III 

illustrate that the system has 5 and 7 workers, respectively, 

while Table II presents the conditional probabilities of a 

worker. 
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TABLE I. AN ILLUSTRATION OF THE SYSTEM HAS 7 WORKERS 

n 𝑝𝑠𝑦𝑠
(𝑛)(0|0) 𝑝𝑠𝑦𝑠

(𝑁−𝑛+1)(1|1) J(α=0.5) J(α=0.9) J(α=0.1) 

n=1 1.00000 0.02799 0.51400 0.90280 0.00000 

n=2 1.00000 0.15863 0.57932 0.91586 0.24277 

n=3 1.00000 0.41990 0.70995 0.94199 0.47791 

n=4 0.99999 0.71021 0.8551 0.97101 0.73919 

n=5 0.99974 0.90374 0.95174 0.99104 0.91334 

n=6 0.99214 0.98116 0.98665 0.99104 0.98226 

n=7 0.86813 0.99836 0.93324 0.88115 0.98534 

TABLE II. THE CONDITIONAL PROBABILITIES OF A WORKER 

i i=1 i=2 i=3 i=4 i=5 i=6 i=7 

𝑝𝑖(0|0) 0.99 0.98 0.97 0.96 0.95 0.94 0.93 

𝑝𝑖(1|1) 0.69 0.68 0.67 0.66 0.65 0.64 0.63 

 

Workers whose probabilities correspond to the H0, H1 

events as follows: 𝑝𝑖(0/0) = 0.98, 𝑝𝑖(1/1) = 0.6, 𝑖 = 1, 7. 

Type 2. The worker’s decision is independent, and the 

conditional probability is unequal. We have, 

𝑝𝑠𝑦𝑠
(𝑛)(0|0) = ∏ 𝑝𝑖(0|0)

𝑁

𝑖=1

+ ∑ 𝑝𝑖1

𝐶𝑁
1

 

(0|0)𝑝𝑖2
(0|0) … 

 … 𝑝𝑖𝑁−1
(0|0)𝑞𝑖𝑁

(1|0) + ⋯ + ∑ 𝑝𝑖1

𝐶𝑁
𝑁−𝑛

 

(0|0)𝑝𝑖2
(0|0) … 

… 𝑝𝑖𝑁−𝑛
(0|0)𝑞𝑖𝑁−𝑛+1

(1|0)𝑞𝑖𝑁−𝑛+2
 (1|0) … 𝑝𝑖𝑁

(1|0)  (5) 

𝑝𝑠𝑦𝑠
(𝑁−𝑛+1)(1|1) = ∏ 𝑝𝑖(1|1)

𝑁

𝑖=1

+ ∑ 𝑝𝑖1

𝐶𝑁
1

 

(1|1)𝑝𝑖2
(1|1) … 

 … 𝑝𝑖𝑁−1
(1|1)𝑞𝑖𝑁

(0|1) + ⋯ + ∑ 𝑝𝑖1

𝐶𝑁
𝑁−𝑛

 

(1|1)𝑝𝑖2
(1|1) … 

… 𝑝𝑖𝑁−𝑛
(1|1)𝑞𝑖𝑁−𝑛+1

(1|0)𝑞𝑖𝑁−𝑛+2
 (0|1) … 𝑝𝑖𝑁

(0|1) (6) 

 

Type 3. The worker’s decision is dependent, and the 

conditional probability is unequal.  

The approach to solving the above problem according 

to the statistical test method is made as follows: a random 

sequence is an input to the workers of the binary multiple 

decision (𝑠𝑦𝑠𝑡, 𝑋(𝑚)), where 𝑚 is the number of random 

sequences, and the input value takes only one of the values 

0 or 1. The output value of each expert will be the input of 

the probability calculation block of the binary multiple 

decisions system (𝑝̂𝑖
 (0|0), 𝑝̂𝑖

 (1|1), 𝑖 = 1, 𝑁). In this case, 

the optimal formula for the probability of the binary 

multiple decisions system is presented in Eq. (7). 

𝑛𝑜𝑝𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝛼𝑝̂𝑠𝑦𝑠
(𝑛)(0|0) + (1 − 𝛼)𝑝̂𝑠𝑦𝑠

(𝑁−𝑛+1)(1|1), 

0 < 𝛼 < 1), 𝑛 = 1, 𝑁 

                (7) 

Symbol 𝑀0(𝑚) , 𝑀1(𝑚)  represent 0  and 1  values of 

input chain 𝑚 , respectively. Eq. (8) determines the 

conditional probability of each worker. 

𝑝̂𝑖
 (0|0) = (𝑀0𝑖(𝑚)|𝑀0(𝑚)), 

𝑝̂𝑖
 (1|1) = (𝑀1𝑖(𝑚)|𝑀1(𝑚)), 𝑛 =  1, 𝑁                 (8) 

TABLE III. THE CONDITIONAL PROBABILITY VALUE OF THE SYSTEM 

n 𝑝𝑠𝑦𝑠
(𝑛)(0|0) 𝑝𝑠𝑦𝑠

(𝑁−𝑛+1)(1|1) J(α=0.5) J(α=0.9) J(α=0.1) 

n=1 1.00000 0.05438 0.52719 0.90544 0.14894 

n=2 1.00000 0.25099 0.62550 0.92510 0.32589 

n=3 1.00000 0.55527 0.77764 0.95553 0.59974 

n=4 0.99994 0.81653 0.98160 0.98160 0.83487 

n=5 0.99824 0.95095 0.99351 0.99351 0.95568 

n=6 0.97152 0.99239 0.97361 0.97361 0.99030 

n=7 0.75031 0.99948 0.77523 0.77523 0.97456 

 

 

Figure 2. Data prepossessing on the UNSW-NB15 dataset. 
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The conditional probability of a binary multiple 

decisions system is calculated by. 

IF 𝑋(𝑚 +  1) = 0  THEN the number of workers has 

correct decision = 𝐿0 , and 𝑀0𝑠𝑦𝑠
(𝑛) (𝑚) = 𝑀0𝑠𝑦𝑠

(𝑛) (𝑚) +

1, 𝑛 =  1, 𝐿0 

IF 𝑋(𝑚 +  1) = 1  THEN the number of workers has 

correct decision = 𝐿1 , and 𝑀1𝑠𝑦𝑠
(𝑛) (𝑚) = 𝑀1𝑠𝑦𝑠

(𝑛) (𝑚) +

1, 𝑛 = 1, 𝐿1 

We have, 

𝑝̂𝑠𝑦𝑠
(𝑛)(0|0) = (𝑀0𝑠𝑦𝑠

(𝑛) (𝑚)|𝑀0(𝑚)), 

𝑝̂𝑠𝑦𝑠
(𝑛)(1|1) = (𝑀1𝑠𝑦𝑠

(𝑛) (𝑚)|𝑀1(𝑚)), 𝑛 =  1, 𝑁  (9) 
 

Eq. (9) is the basis for optimizing the binary multiple 

decisions system next section describes the probability 

simulation experiment of this case’s binary multiple 

decisions system 

IV. EXPERIMENTAL RESULTS 

A. Data Prepossessing 

To evaluate the efficacy of the proposed method, we 

utilize the UNSW-NB15 database, one of many IoT attack 

datasets created in 2015. This dataset is comprised of 

2.540.044 records saved in four CSV files. After deleting 

duplicate records, the number of remaining records is 

2.059.419, and all records are divided into four files 

containing only data regarding common information and 

attack kinds. The UNSW-NB 15 [20−21, 23] dataset’s 

attacks are classified into nine categories: normal, fuzzers, 

analysis, backdoors, denial of service, exploits, generic, 

reconnaissance, shellcode, and worm. Each record 

consists of 44 properties concerning network traffic of five 

value types: identifier, integer, real number, time, and 

binary, with the latter two containing information about 

the attack type for each property. Fig. 2 depicts the data 

pre-processing for the UNSWNB15 dataset. In these 

experimental simulations, we use attack classification and 

detection for the reconnaissance attack type as an example. 

B. The Binary Multiple Decisions System Architecture 

The binary multiple-decision system is made up of 

workers. We tested the cases of 3 workers and 5 workers. 

Each specialist has a different training and characterization 

system. This binary multiple-decision system’s learning 

and testing process occurs as follows: from the UNSW-NB 

15 dataset, after pre-processing, it is divided at 80% to 

serve the training process and 20% to practice and test. The 

dataset used for retraining is divided into 3 or 5 equal parts 

to serve the learning process of each expert. The testing 

process of all workers uses 20% of the test data extracted 

from the original data set. The composition of the files for 

training and testing is shown in Table IX. 

The training and testing of the workers of the binary 

multiple decisions system are performed according to the 

data presented in Table IV and Table V. We use the 

MATLAB environment containing the application 

program packages as Neural Network Toolbox. 

TABLE IV. COMPOSITION OF THE DATASET FOR 3 WORKERS 

 Attacks No attacks 

Worker 1 (MLP1) 2725 40897 

Worker 2 (MLP2) 2725 40900 

Worker 3 (MLP3) 2723 40874 

Testing data 2043 30727 

TABLE V. COMPOSITION OF THE DATASET FOR 5 WORKERS 

 Attacks No attacks 

Worker 1 (MLP1) 1634 24544 

Worker 2 (MLP2) 1634 24545 

Worker 3 (MLP3) 1634 24539 

Worker 4 (SVM) 1634 24540 

Worker 5 (RF) 1637 24555 

Testing data 2043 30727 

 

In our experiment, Binary Multiple Decisions System 

(BMDS) made up of workers based on MLP multiplayer 

neural network, the training process uses three layers (15-

10-1, 30-20-1, 50-30-1, 100-50-1, 100-100-1, 150-100-1, 

200-100-1, 200-150-1) and four layers (30-20-10-1). 

Where the first number in the symbols is presented by the 

number of neurons in the first layer, the second number in 

the symbols is presented by the number of neurons in the 

second layer, and so on. The number of input attributes for 

all networks is 42. The threshold for classification will run 

from 0.1  to 0.9  in 0.01 -step increments. The detection 

rates of the workers are presented in Table VI and Table 

VII. 

TABLE VI. PARAMETERS FOR THE SYSTEM HAVE 3 WORKERS 

No 
Parameters 

Type Method Threshold A No.A 

Worker 1 MLP1 Trainlm 0.74 73.86 96.41 

Worker 2 MLP2 Trainlm 0.74 85.12 94.32 

Worker 3 MLP3 Trainlm 0.74 90.70 93.91 

TABLE VII. PARAMETERS FOR THE SYSTEM HAVE 5 WORKERS 

No 
Parameters 

Type Method Threshold A No.A 

Worker 1 MLP1 Trainlm 0.6 84.68 92.39 

Worker 2 MLP2 Trainlm 0.6 80.52 94.08 

Worker 3 MLP3 Trainlm 0.74 90.70 93.91 

Worker 4 SVM RBF - 88.06 90.86 

Worker 5  All - 87.66 93.37 

V. DECISION-MAKING PROCESS OVER VOTING 

According to the traditional method, the majority voting 

algorithm is applied to the results of the workers. If 2 out 

of 3 workers decide whether to attack or not, the system 

will decide by a majority. According to this voting rule, the 

detection rate of Reconnaissance attacks is 85.71 %, and 

non-Reconnaissance attacks are 95.06 %. In our proposed 

algorithm, any decision to identify an attack from a worker 

will lead to the overall decision of the whole system that 

an attack occurs. According to this voting rule, the 

detection rate of reconnaissance attacks is 96.23%, and 

non-reconnaissance attacks is 91.07%. In addition to this 
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voting rule, Table VIII gives the results of other voting 

rules. 

TABLE IX. THE DECISION RULE FOR 3 WORKERS SYSTEM 

Vote No.A No.NA FP No.D RA RNA 

Case 1 2043 30727 2744 1966 96.23 91.07 

Case 2 2043 30727 1519 1751 85.71 95.06 

Case 3 2043 30727 459 1384 67.74 98.51 

 

where, 

No.NA is the number of non-reconnaissance (R) attacks 

in the data set test. 

FP is false positives. 

No.D is a detected attack number. 

RA is rate detected attack. 

RNA is rate detected no attack. 

Case 1: 3 workers voted no attack; 

Case 2: 2 or 3 workers voted no attack; 

Case 3: 1 or 2 or 3 workers voted no attack; 
 

 

Figure 3. Optimizing according to different rules of 3 workers. 

The decision of the binary multiple decisions system 

can choose one of the three options in Table VIII according 

to the criteria appropriate to the system. If the binary 

multiple decisions system decides according to the first 

row of Table VIII, that means that the binary multiple 

decisions system prioritizes detecting Reconnaissance 

attacks. If the binary multiple decisions system makes the 

3𝑟𝑑  row decision in Table VIII, the priority is to detect 

attacks that are not Reconnaissance attacks. The result of 

line 2 is the application of the majority voting decision-

making algorithm. Fig. 3 shows the detection results of the 

binary multiple decisions system when the decision is 

based on the majority vote and the modified voting 

algorithm based on a rule selection in Table VIII. 

TABLE IX. THE DECISION RULE FOR 5 WORKERS SYSTEM 

Vote  No.A  No.NA  FP  No.D  RA  RNA 

Case 1  2043 30727 3868 2018 98.8 87.4 

Case 2  2043 30727 2699 1983 97.1 91.2 

Case 3  2043 30727 2195 1871 91.6 92.9 

Case 4  2043 30727 1497 1629 79.7 95.1 

Case 5  2043 30727 490 1301 63.7 98.4 

where, 

Case 1: 5 workers voted no attack; 

Case 2: 4 or 5 workers voted no attack; 

Case 3: 3 or 4 or 5 workers voted no attack; 

Case 4: 2 or 3 or 4 or 5 workers voted no attack; 

Case 5: 1 or 2 or 3 or 4 or 5 workers voted no attack; 

 

The results obtained after optimizing binary multiple-

decision systems in this study are higher than the results in 

the references [26, 27]. The authors of [26] achieved a rate 

of around 69.9%, and in [27], around 75.6%. Our proposed 

model brings up the accuracy of 97.06%, as presented in 

Fig. 4. 

 

Figure 4. Comparison between systems of 3 and 5 workers. 

VI. CONCLUSION 

In recent years, edge computing has emerged as a useful 

strategy for many internet of things applications that 

require low latency and privacy. In contrast, IoT 

application attacks’ rising sophistication and intensity 

have forced new requirements on attack detection systems. 

IDS solutions based on machine learning have been 

developed to overcome these challenges. However, 

distributed machine learning techniques must be 

implemented to overcome the IoT edge devices’ resource 

limitations. This paper proposes a new approach to DML 

architecture based on a partition learning approach to 

increase attack detection accuracy with partition datasets 

and various ML methods. Using the UNSW-NB15 dataset 

and the worker system’s decision rules, our experimental 

results are better than those of other approaches. In future 

studies, we will combine our proposed method into edge-

based smart healthcare systems to enhance privacy and 

security for patient’s data. 
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