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Abstract—In a Wireless Sensor Network (WSN), Numerous 

cost-effective and energy-constrained sensor nodes are 

typically used. In a typical Wireless Sensor Network, a single 

Base Station (BS) gathers information from the whole 

network, which contributes to concerns including latency, 

network failure, and congestion. The overwhelming 

proportion of energy consumption, as well as the energy hole 

limitation, significantly degrades the overall system 

performance and network lifetime, which is owing to the 

sensor nodes that are near the BS consuming more energy. 

To tackle this problem, it’s essential to determine the perfect 

spot for mobile sink nodes, which minimizes the power 

consumed and so increases the network's lifespan. In this 

work, an effective strategy is designed and developed to 

detect the location of a mobile sink considering factors such 

as distance, estimated energy, and fairness, using Deep 

learning-based energy prediction with an adjacency cell score 

model. In addition, the predicted energy is determined by 

employing the Deep Maxout Network (DMN). However, a 

Minimum distance of 137.364, maximal residual energy of 

30.903, maximum standardized fairness of 64.426, maximum 

network duration of 60, and maximum standardized 

throughput of 60.613 was obtained using the proposed 

adjacency-based cell score + Deep Maxout Network. 

Keywords—Wireless Sensor Network (WSN), mobile sink 

nodes, deep Maxout network, Base Station (BS) and energy 

prediction 

I. INTRODUCTION

WSN has rapid development and tremendous growth in 

recent years [1, 2] because of its large-scale applications in 

various domains, like home automation, military, 

healthcare, and manufacturing industries, and provides 

some specific characteristics, like detecting certain 

features in the environment. WSN is comprised numerous 

of nodes and also consists of more BS, generally known as 

sinks. In general, sensor nodes are very small electronic 

components with a small amount of energy, like 

processing potential, and memory. Such nodes are 

normally constructed in the area to gather specific 

information through multi-hop interaction with BS [3]. 

The main purpose of the sink node is to receive the 

collected information [4], which is carried out by nodes 

and broadcast to the destination. The destination node can 

either be a sensor node or a personal system. Wireless 

networks are mainly designed for replacing the 

conventional wiring methods because of reasons, such as 

being difficult to deploy, being highly expensive, and due 

to accommodated in large spaces. On the other side, small 

size and less expensive devices permit WSNs in large-

scale applications. Moreover, small devices are generally 

structured with small batteries, and wireless networks, and 

efficiently function even in absence of a network 

framework. Though energy consumption of the network is 

a significant part of wireless networks, it becomes a crucial 

limitation because of the energy hole problem [5]. 

The essential characteristic of WSN is that most of the 

evaluation metrics, like energy consumption, and latency 

of communication are mainly based on the position of the 

sink in which the gathered information is solved. If the 

location of the BS is mounted far away from nodes, the 

distance will provoke delay and energy utilization. 

However, if BSs are located as much as close to the nodes, 

it mitigates the latency and energy consumption [6] of the 

system. The major issue that lies in such networks is the 

placement of a single sink node inside the network [7]. 

Sink mobility is broadly classified into two types, such as 

random mobility based and controlled mobility based [8] 

In the former type, the sink is developed to proceed 

unevenly inside the zone, whereas in controlled mobility 

the primary issue is to organize the sink node to roam 

around the system to gather information. Determining the 

optimal placement of sinks is typically an offline issue that 

is mainly because of the high cost of deployment. 

Moreover, estimating the optimal position of BS is a major 

obstacle. The deployment of WSNs can be implemented 

either in a planned or structured manner in a semi-random 

pattern. In such cases, the optimal location of sink nodes 

cannot be solved easily and there is an immediate 
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requirement to ease the reassignment of existing sink 

nodes to position new sink nodes in the network [9]. 

Optimal positioning of BS causes mitigation in the number 

of needed sinks and controllers and subsequently promotes 

the utilization of inexpensive sink nodes. 

The primary objective of this research is to establish an 

effective approach for optimal positioning of mobile sink 

nodes in the WSN network using the Adjacent Cell Score-

based Deep learning method. Initially, the nodes are 

simulated in the WSN network. Then, the simulated nodes 

are transformed to form a cell network utilizing the 

Voronoi partition. After that, the best cluster heads are 

selected based on the concept of Sparse Fuzzy C-means 

(FCM) [10]. To place the mobile sink nodes in an optimal 

location, an adjacency-based cell score is utilized and the 

optimal location is identified using the factors, such as 

predicted energy, distance, and fairness. The predicted 

energy is estimated by exploiting DMN.  

The major contribution of this research is illustrated as 

follows: 

• An effective strategy for optimal positioning of 

mobile sink nodes with deep learning-based energy 

prediction is designed to prolong the lifespan of the 

system and mitigate energy consumed by the entire 

system. The position of the mobile sink is identified 

depending upon the parameters, like predicted 

energy, distance, and fairness. DMN is utilized to 

estimate the predicted energy. 

The rest of the section is structured as follows: The 

literature review of recently published papers 

corresponding to optimal placement of mobile sink nodes 

along with their merits and disadvantages are explained in 

Section II, which motivates the researchers to develop a 

new strategy for optimal placement of mobile sinks. 

Section III describes the developed Adjacency-based Cell 

Score and Deep Maxout Network. The results and 

discussion of the proposed scheme are elaborated in 

Section IV. Finally, the research concludes in Section V. 

II. MOTIVATION 

This section describes the literature review of 

conventional mobile sink placement techniques that are 

collected from the recently published papers along with 

their advantages and limitations. This provokes the 

researchers to design an effective mechanism for optimally 

positioning the mobile sink. 

A. Literature Survey 

Sharafeldin et al. developed an eminent technique for 

evaluating the existing energy in the system model. In their 

research work, sinks were positioned based on the solution 

of the K-mean issue, thereby reducing the entire energy 

utilization of the system and prolonging the lifetime of the 

system [11]. The developed model disclosed a 

considerable profit under lifetime and energy savings. 

Moreover, the effect of the energy hole problem was 

considerably reduced when the number of sink nodes 

increased. Lemia Louail and Violeta Felea introduced a 

centroid-based single sink placement method, which was 

employed to provide the appropriate data about the shape 

of the construction field and structures of the empty fields. 

The major contribution of this developed approach was to 

mitigate the latency of interaction by positioning BS as 

near as possible to the geographic distance of each node. 

The main advantages of the developed method are that it 

reduced the delay in communication and minimized the 

energy consumption of the network [12]. However, it 

failed to provide accurate performance for the circle model 

since the sink nodes are located in the void area. 

Mir Md. Sajid Sarwar and Punyasha Chatterjee modeled 

a distributed algorithm for the effective determination of a 

deployed minimum number of sinks. In this mechanism, 

the system was k-covered and the delay was covered by 

M-hop. It was evaluated that the count of BSs varied 

inversely with the broadcasting limit of the nodes and the 

network delay. Moreover, the number of sinks was directly 

proportional to the fault tolerance stage, but it failed to 

integrate the energy effectiveness of the network and it 

only considered the value of K as 1 to 4, which surpasses 

the lifetime of the network. Govind P. Gupta and Binit 

Saha developed a novel hybrid meta-heuristic strategy for 

solving the node clustering problem. The dynamic 

placement of the mobile sink nodes was accomplished 

using an Artificial Bee Colony algorithm and further 

optimized the load balancing and energy consumption [4]. 

The uniform selection of CH and load distribution between 

the CHs saved energy utilization. In addition, the lifespan 

of the system was improved by dynamic adjustment of 

mobile sink placement. The method was not suitable for 

underwater wireless sensor networks. The approach, on the 

other hand, was not suitable for a wireless sensor network 

submerged in water. Authors proposed a strategy for 

geographically segmenting the network into a few cells, 

and then using two mobile sinks to collect the data that is 

being sensed by these cell nodes [13] The NS2 software 

was used to perform simulations of the strategy that was 

suggested. The application of EGRPM results in a large 

drop in average energy consumption and data delivery 

delay and causes a substantial increase in packet delivery 

rate and network lifetime, as shown by a comparison 

between the performance of EGRPM and that of 

conventional approaches. Sachan et al. [14] proposed a 

study of a new probabilistic algorithm for analyzing 

network connectivity by using characteristics like network 

probability, detection area, individual node radius, and the 

total detection area, this study proposes. Free space 

propagation takes place in the intended area. A workable 

mathematical network model has been discovered through 

the use of probability theory [13]. We've taken a look at 

how sensor nodes vary across the detecting region in this 

model. The connectivity factor can be increased in a new 

algorithm to improve energy efficiency and preserve 

connectivity. The proposed model's simulation graph is 

also shown to verify the mathematical network model. 

Hajipour et al. [15] analyzed the Energy-Efficient Layered 

Routing Protocol (EELRP). The network is divided into a 

few concentric circles with various radii using the 

suggested method. Eight equally sized sectors are created 

within the circles. Crossovers between sectors and layers 

result in sections. Each segment has a few nodes, and the 
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agent is chosen from among them based on its 

circumstances. Each section's nodes communicate the 

sensed information to their agent. The outcomes revealed 

that EELRP's performance is superior to conventional 

approaches when compared to the network lifetime, 

energy consumption, packet delivery rate, and path hop 

count. Fu et al. [16] suggested a study on an energy-

efficient data gathering mechanism (BIIE) to increase 

network lifetime by balancing inter-cluster and inner-

cluster energy. They created a better hierarchical 

clustering technique for the proposed BIIE to cut down on 

communication expenses. By creating an effective system 

to choose the best Rendezvous Node (RN) for each cluster 

and by using particle swarm optimization to create the 

mobile sink's trip path, they were able to balance the 

energy between clusters (PSO). Additionally, simulated 

studies were performed that demonstrate that, in 

comparison to other widely-used algorithms, the proposed 

BIIE can extend network lifetime by roughly 46% and 

reduce the path length of the mobile sink by roughly 7%. 

(i.e., WRP and EAPC). Srivastava et al. proposed a genetic 

algorithm-based approach to plan the path for the mobile 

sink. All the basic intermediate operations of genetic 

algorithms, i.e., chromosome representation, crossover, 

and mutation are well explained with suitable examples. 

The proposed algorithm showed its efficacy over the 

randomly generated path [16]. 

B. Challenges 

Some of the limitations faced by conventional optimal 

sink placement techniques are deliberated as follows, 

• The number of fixed sink nodes in a given set of 

mobile nodes was hard to determine as the mobile 

sink nodes collaborated with the fixed BSs to gather 

the sensor's information [17]. 

• This method effectively tackled the limitation of 

node positioning to offer target coverage and 

connectivity in WSNs with various sink nodes [18]. 

However, it failed to ensure the upper bound of the 

approximation ratio. 

• Design distributed online algorithms rather than 

using a centralized optimal algorithm as it enhances 

the execution speed in large-scale networks and 

provides accurate results while testing in real-world 

applications [19]. 

III.    OPTIMAL PLACEMENT OF MOBILE SINK USING 

PROPOSED ADJACENCY-BASED CELL SCORE 

The major challenging issue lies in WSN is the optimal 

placement of mobile sinks without deteriorating the 

performance of the network and reducing energy 

consumption [20]. Thus, this research proposes an 

adjacency-based cell score be designed and developed to 

achieve optimal positioning of the mobile sink. Initially, 

the nodes are simulated in the WSN network. After that, 

the simulated nodes are converted into a cell employing 

the Voronoi partition [21]. Once the cell transformation is 

completed, the cluster head selection is performed utilizing 

sparse FCM. Finally, the optimal position of the mobile 

sink node is effectively carried out using an adjacency-

based cell score based on certain factors, such as predicted 

energy, distance, and fairness. Besides, the predicted 

energy is effectively determined by adopting DMN. Fig. 1 

represents a block diagram of the optimal placement of the 

mobile sink. 

 

Figure 1. Block diagram of optimal placement of the mobile sink. 

A. Transformation of Cell Network Using Voronoi 

Partition 

To transform nodes in the cell network, the simulated 

nodes in WSN are initially grouped and the simulated 

nodes in the network are transformed into different cells 

by exploiting the Voronoi partition, which is mainly 

utilized to find the optimal partitioning of the cells in WSN. 

The group of various cell regions is indicated as Rn, such 

( )pnn  1 . However, p  represents the number of 

partitioned cell regions in the wireless sensor network [22, 

23]. Such partitioned cell regions are created depending on 

the nodes 𝑁1, 𝑁2, . . . ,  𝑁𝑚 . Moreover, the transformed 

network using the Voronoi partition is generally referred 

to as a cell network. After the completion of cell network 

transformation, the transformed cell is subjected to the CH 

selection process to choose the optimal cluster head. 

B. Sparse FCM for Effective CH Selection 

After the transformation of the cell network, it is 

necessary to choose optimal CH in every area to achieve 

the effective positioning of mobile sink nodes [24]. The Ch 

selection mechanism is performed by exploiting sparse 

FCM. However, the sparse FCM is derived by the 

integration of the FCM algorithm and sparse regularization. 

The Sparse-FCM has the potential to tackle the limitations 

related to data clustering. The Sparse-FCM generates 

cluster-centroids and it is expressed as, 

C = {C1, C2, … Cj, … Cα}                       (1) 

where the available number of cluster centroids in the 

system is denoted as α. Let us consider the data matrix 
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vug

rsg XD ==   u  as a count of data points and v  as 

a number of values. Thus, it is represented as ( )ur1  

and ( )vs1 . Here,  vu  specifies the dimension of 
thg  matrix and the columns of 

gD is expressed as 

ug

sX   and rows of 
gD  is indicated as vg

rX  . 

Generally, the Sparse-FCM chooses the optimal CH 

depending on the minimum distance among the specific 

data point and center of clusters [25]. Algorithm 1 

illustrates the pseudo-code of Sparse-FCM. The 

algorithmic procedure followed by the Sparse-FCM is 

elaborated as follows, 

Step 1: Initialization 

Let us consider attribute weights and it is denoted as, 

x
WWW

b

x

b 1
....1 ====

 and initialize the population. 

Step 2: Update the matrix of partition 

Let us assume the attribute weight as W , and C  is 

specified as cluster center such that  is reduced utilizing 

the below condition and it is expressed as, 
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here, ( )kcard  indicates the cardinality set k . The 

computed distance between cluster center and data values 

is accomplished using the below equation and the distance 

determined in sparse FCM is expressed as, 

( )
=

−=
e

f

flhllh LLHM
1

2   (3) 

Step 3: Update the cluster center 

Let W  and  be the group and ( )C  is reduced if it 

follows the below condition, 
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Step 4: Estimate the class 

The class attribute is determined according to Q  and

C . The class 
iE  is denoted as 

=

x

i

ii EW
1

.max such 

cWW
y

y
 ,1

2

2
 and determined W . However, the 

tuning parameter is denoted as c . 

Step 5: Termination 

The aforementioned explained process is continued till 

the optimal solution is attained or until satisfying 

requirements. The cluster centroid attained utilizing the 

Sparse-FCM is specified as, 

4
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 Algorithm 1. Pseudo code of Sparse-FCM 

1 
Input: a cluster, and data matrix as 

vug

rsg XD ==   

2 
Output: cluster centroid  

aj CCCCC ,...,,...., 21=

and 
bW  

3 Begin 

4 Initialize 

x
WWW

b

x

b 1
....1 ====  

5 Compute Q  

6 Specify C  

7 
Fix Q and C  calculate iE  

8 
Compute 

W  

9 Terminate 

C. Optical Placement of Mobile Sink 

After the selection of CH using Sparse FCM, the best 

positioning of the mobile sink is carried out in the WSN 

network [26, 27]. The adjacency-based cell score plays a 

significant role in placing the mobile sink, such that the 

lifetime of the network is prolonged and also it 

considerably reduces the consumption of energy [28]. 

However, the best position of the mobile sink is identified 

by utilizing factors, such as predicted energy, distance, and 

fairness. The predicted energy is determined by applying 

the energy as an input to the DMN and this classifier 

determines the predicted energy, which is considered one 

of the factors in optimally placing the mobile sink node. 

Let us assume V  number of cells and V  CHs in the 

WSN network and it is expressed as, 

  VoBBBBB Vo = 1;,.....,...., 21         (6) 

The location of the mobile sink from oB  to sB depends 

on the adjacency-based cell score and it is expressed as, 

( )ss

p

ss FGKA −++= 1                      (7) 

where the predicted energy 
p

sK  and the distance 
sG  are 

specified by the following equations, 

( )
=

=
t

product

loss

p

s K
t

K
1

1




                     (8) 

( )sos LocLocGG ,=         (9) 

where the Euclidean distance is represented as ( )G  the 

position of BS at the 
tho  cell is specified as oLoc  and 

sLoc  indicates the position of the sink at the 
ths  cell. The 

fairness sF  is expressed as, 

V

V
F

q

s =
    (10) 
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where 
qV  indicates the maximum number of nodes that 

equally distribute its resources. 

1) Structure of deep Maxout network 

DMN is a type of trainable activation factor and is 

mainly included with a multi-layer structure [29]. Here, an 

efficient activation function known as Maxout allocates a 

non-zero slope to both positive terms and negative terms. 

In general, Maxout assists steps to solve the optimization 

problem by partially protecting the hidden components 

from transiting to an abnormal mode [30−32]. Though the 

Maxout plays like a trainable activation parameter, it does 

not play the role of arbitrary function approximator. The 

energy 
sK  is subjected to DMN and the output obtained 

from the Deep Maxout Network is represented as 
P

sK . 

Fig. 2 represents the structure of DMN. The activation of 

the hidden unit is determined as follows: 
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here, 
mmI  represents the count of units in 

thmm  the layer 

and nn  is the overall layers in the Maxout network [33, 

34]. 

 
Figure 2. Structure of deep Maxout network. 

IV. RESULTS AND DISCUSSION 

This section deliberates the results of the developed 

Adjacency-based Cell Score + DMN in terms of 

performance measures. 

A. Experimental Setup  

The experimentation of developed Adjacency-based 

Cell Score + DMN is carried out in Network Simulator-2 

(NS-2) using 200 nodes, 300 nodes, and 400 nodes by 

changing the number of rounds. 

B. Evaluation Metrics 

The performance enhancement of developed 

Adjacency-based Cell Score + DMN is evaluated using 

performance measures, such as distance, residual energy, 

normalized fairness, network lifetime, and normalized 

throughput. 

C. Comparative Methods 

The performance of the developed scheme is analyzed 

with that of conventional approaches, like Ant Colony 

Optimization-based Mobile Sink Path determination 

(ACO-MSPD), Multi-Objective Particle Swarm 

Optimization (MOPSO) F-ROA, and Adjacency-based 

Cell Score. 

D. Comparative Analysis 

This part explains the comparative assessment of 

Adjacency-based Cell Score + DMN concerning the 

evaluation metrics by changing the number of rounds. 

1) Analysis using 200 nodes 

Fig. 3 represents the assessment of the proposed 

Adjacency-based Cell Score + Deep Maxout Network 

based on 200 nodes concerning the evaluation measures by 

increasing the count of rounds. 

Fig. 3(a) illustrates the assessment of distance by 

increasing the count of rounds. If rounds are 2000, the 

proposed Adjacency-based Cell Score + DMN achieved a 

distance of 127.826, whereas the existing techniques 

attained the distance of 138.080 for ACO-MSPD, 141.885 

for MOPSO, 146.619 for F-ROA, and 134.470 for 

Adjacency-based Cell Score. The performance 

enhancement of the developed approach while comparing 

it with the traditional approaches are 7.426%, 9.908%, 

12.817%, and 4.940% for ACO-MSPD, MOPSO, F-ROA, 

and Adjacency-based Cell Score, respectively. 

Fig. 3(b) represents the analysis of residual energy 

concerning the count of rounds. If the number of 

rounds=100, energy attained by Adjacency-based Cell 

Score + DMN is 70.713, which shows the performance 

development of the proposed technique with that of the 

conventional schemes, such as ACO-MSPD is 7.569%, 

MOPSO is 4.572%, F-ROA is 3.933%, and Adjacency-

based Cell Score is 4.681%. However, the residual energy 

achieved by traditional techniques, like ACO-MSPD is 

65.361, MOPSO is 67.481, F-ROA is 67.932, and 

Adjacency-based Cell Score is 67.403. 

The analysis of normalized fairness in terms of the count 

of rounds is represented in Fig. 3(c). If the number of 

rounds=2000, fairness achieved by conventional 

approaches, such as ACO-MSPD, MOPSO, F-ROA, and 

Adjacency-based Cell Score is 50.684, 44.759, 43.342, 

and 51.734, respectively. However, the proposed 

Adjacency-based Cell Score + Deep Maxout Network 

attained the fairness of 54.601 that outcomes the 

performance enhancement of 7.174% for ACO-MSPD, 

18.024% for MOPSO, 20.620% for F-ROA, and 5.250% 

for Adjacency-based Cell Score. 

Fig. 3(d) shows the analysis of network lifetime. If the 

count of rounds=2000, the network lifetime obtained by 

the proposed Adjacency-based Cell Score + DMN is 20 

results in the performance enhancement of the designed 
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method with that of the classical schemes, such as ACO-

MSPD is 15%, MOPSO is 10%, F-ROA is 15%, and 

Adjacency-based Cell Score is 5%. However, the network 

lifetime obtained by conventional schemes, such as ACO-

MSPD is 17, MOPSO is 18, F-ROA is 17, and Adjacency-

based Cell Score is 19. 

The analysis of normalized throughput is depicted in Fig. 

3(e). By considering the number of rounds is 2000, the 

normalized throughput attained by existing methods, like 

ACO-MSPD is 52.156, MOPSO is 53.490, F-ROA is 

53.259, and Adjacency-based Cell Score is 54.255. 

However, the proposed Adjacency-based Cell Score + 

Deep Maxout Network attained the normalized throughput 

of 56.605 that resulting in the performance enhancement 

developed with that of traditional methods, like ACO-

MSPD, MOPSO, F-ROA, and Adjacency-based Cell 

Score is 7.860%, 5.503%, 5.910%, and 4.152%, 

respectively. 

 
(a) Distance 

 

 
(b) Residual energy 

 

 
(c) Normalized fairness 

 
(d) Network lifetime 

 
(e) Normalized throughput 

Figure 3. Analysis using 200 nodes a) distance b) residual energy c) 
normalized fairness d) network lifetime e) normalized throughput. 

2) Analysis based on 300 nodes 

Fig. 4 illustrates the assessment of developed 

Adjacency-based Cell Score + DMN following the 

performance metrics using 300 nodes. 

Fig. 4(a) represents the analysis of distance by changing 

the count of rounds. When the number of rounds=2000, the 

distance achieved by the proposed Adjacency-based Cell 

Score + DMN is 133.701, and the conventional schemes 

of ACO-MSPD are 150.194, MOPSO is 153.429, F-ROA 

is 145.030, and Adjacency-based Cell Score is 144.474. 

However, the proposed approach outcomes the 

performance development of 10.982% for ACO-MSPD, 

12.859% for MOPSO, 7.812% for F-ROA, and 7.457% for 

Adjacency-based Cell Score. 

The analysis of residual energy in terms of the count of 

rounds is depicted in Fig. 4(b). By changing the number of 

rounds=2000, residual energy attained by developed 

Adjacency-based Cell score + DMN is 24.244, whereas 

existing methods achieved the residual energy of 14.436 

for ACO-MSPD, 16.544 for MOPSO, 16.795 for F-ROA, 

and 19.600 for Adjacency-based Cell Score. 

Fig. 4(c) portrays the analysis of the proposed 

Adjacency-based Cell Score using normalized fairness for 

the count of rounds. If the count of rounds=2000, 

normalized fairness attained by the developed approach is 

61.457 which shows the performance enhancement of the 

developed scheme with that of conventional schemes, such 

as ACO-MSPD is 17.978%, MOPSO is 16.350%, F-ROA 

is 9.547%, and Adjacency-based Cell Score is 6.379%. 
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The analysis of the network lifetime of the proposed 

approach to the count of rounds is illustrated in Fig. 4(d). 

By considering the number of rounds as 2000, the lifetime 

attained by Adjacency-based Cell Score + DMN is 44, 

whereas the conventional techniques show the lifetime for 

methods ACO-MSPD is 32, MOPSO is 33, F-ROA is 33, 

and Adjacency-based Cell Score is 36. 

Fig. 4(e) represents the analysis of normalized 

throughput by changing the count of rounds. If the number 

of rounds=1000, the throughput obtained by Adjacency-

based Cell Score + DMN is 83.952 reveals the 

performance development of developed with that of the 

traditional techniques like ACO-MSPD is 9.757%, 

MOPSO is 3.921%, F-ROA is 4.179%, and Adjacency-

based Cell score is 2.417%. However, the normalized 

throughput attained by the traditional approaches, such as 

75.761 for ACO-MSPD, 80.660 for MOPSO, 80.444 for 

F-ROA, and 81.923 for Adjacency-based Cell Score. 

 
(a) Distance 

 

 
(b) Residual energy 

 

 
(c) Normalized fairness 

 
(d) Network lifetime 

 
(e) Normalized throughput 

Figure 4. Analysis using 300 nodes a) distance b) residual energy c) 
normalized fairness d) network lifetime e) normalized throughput. 

3) Analysis based on 400 nodes 

Fig. 5 represents the assessment of developed 

Adjacency-based Cell Score + DMN concerning 

evaluation metrics. 

Fig. 5(a) depicts the assessment of developed 

Adjacency-based Cell Score + DMN in terms of distance. 

If the count of nodes=2000, the distance obtained by the 

proposed Adjacency-based Cell Score + DMN is 137.364 

reveals the performance enhancement proposed with that 

of the traditional approaches, such as ACO-MSPD is 

16.365%, MOPSO is 11.915%, F-ROA is 11.439%, and 

Adjacency-based Cell Score is  6.483%. Moreover, the 

distance measured by traditional techniques, such as ACO-

MSPD, MOPSO, F-ROA, and Adjacency-based Cell 

Score is 164.242, 155.945, 155.107, and 146.887, 

respectively. 

The assessment of residual energy by changing the 

count of rounds is represented in Fig. 5(b). For 

round=1000, residual energy attained by the Adjacency-

based Cell Score + DMN is 77.942 showing the 

performance enhancement of the developed method with 

that of the conventional schemes, like ACO-MSPD is 

11.038%, MOPSO is 10.649%, F-ROA is 9.982%, and 

Adjacency-based Cell Score is 3.313%. 

Fig. 5(c) depicts the analysis of normalized fairness. By 

varying the count of rounds to 2000, the normalized 

fairness attained by the proposed Adjacency-based Cell 

Score + DMN is 64.426 results the performance increment 

developed with that of the conventional approaches, such 

as ACO-MSPD is 12.275%, MOPSO is 14.509%, F-ROA 

is 12.645%, and Adjacency-based Cell Score is 10.110%. 
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However, the existing methods attained the normalized 

fairness of 56.518 for ACO-MSPD, 55.078 for MOPSO, 

56.279 for F-ROA, and 57.912 for Adjacency-based Cell 

Score. 

The analysis of network lifetime by an increasing count 

of rounds is shown in Fig. 5(d). If the count of 

rounds=2000, the lifetime obtained by existing methods, 

such as ACO-MSPD is 50, MOPSO is 49, F-ROA is 49, 

and Adjacency-based Cell Score is 52 and the performance 

improvement of the existing techniques is 16.667%, 

18.333%, 18.333%, and 13.333% for ACO-PSMD, 

MOPSO, F-ROA, and Adjacency-based Cell Score. 

Fig. 5(e) represents the assessment of normalized 

throughput in terms of the count of rounds. By varying the 

number of rounds=2000, the proposed Adjacency-based 

Cell Score + Deep Maxout Network obtained the 

normalized throughput of 60.613 that outcomes the 

performance enhancement developed with that of 

conventional approaches like ACO-MSPD is 9.715%, 

MOPSO is 6.714%, F-ROA is 4.554%, and Adjacency-

based Cell Score is 4.207%. 

 
(a) Distance 

 
(b) Residual energy 

 
(c) Normalized fairness 

 
(d) Network lifetime 

 
(e) Normalized throughput 

Figure 5. Analysis using 400 nodes a) distance b) residual energy c) 

normalized fairness d) network lifetime e) normalized throughput. 

4) Comparative discussion 

TABLE I. COMPARATIVE DISCUSSION  

Nodes Metrics ACO-

MSPD 

MOPSO F-ROA Adjacency-

based Cell 
Score 

Proposed 

Adjacency-
based Cell 

Score + Deep 

Maxout 
Network 

 

 

 

 

200 

Distance 138.080 141.885 146.619 134.470 127.826 

Residual 

energy 

14.746 13.861 16.554 17.222 24.511 

Normalized 

Fairness 

50.684 44.759 43.342 51.734 54.601 

Network 
lifetime 

17 18 17 19 20 

Normalized 

Throughput 

52.156 53.490 53.259 54.255 56.605 

 

 

 

 

300 

Distance 150.194 153.429 145.030 144.474 133.701 

Residual 
energy 

14.436 16.544 16.795 19.600 24.244 

Normalized 

Fairness 

50.408 51.408 55.589 57.537 61.457 

Network 
lifetime 

32 33 33 36 44 

Normalized 

Throughput 

51.996 53.501 57.920 59.642 66.138 

 

 

 

 

 

 

400 

Distance 164.242 155.945 155.107 146.887 137.364 

Residual 

energy 

13.516 14.502 19.494 21.410 30.903 

Normalized 

Fairness 

56.518 55.078 56.279 57.912 64.426 

Network 

lifetime 

50 49 49 52 60 

Normalized 

Throughput 

54.725 56.544 57.853 58.063 60.613 
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Table I portrays the comparative discussion of the 

proposed Adjacency-based Cell Score + DMN When the 

count of nodes is considered as 400, residual energy 

yielded by the developed approach is 30.903, while the 

conventional techniques, such as ACO-MSPD is 13.516, 

MOPSO is 14.502, F-ROA is 19.494, and Adjacency-

based Cell Score is 21.410. The throughput attained by the 

developed approach for 200 nodes is 56.605, the Network 

lifetime is 20, and residual energy is 24.511. From the 

discussion, it is clear that the proposed Adjacency-based 

Cell Score + DMN achieved minimal distance, maximal 

residual energy, Fairness, Network lifetime, and 

Normalized throughput. 

V.     CONCLUSION 

In this research, an effective approach called Adjacency 

based Cell Score Network along with Deep learning is 

proposed to identify the optimal positioning of mobile sink 

nodes in the WSN network. Typically, WSNs comprise an 

infinite number of sensor nodes that are very affordable in 

terms of cost. Existing WSN methods face serious issues, 

like latency, energy consumption, and energy hole 

problem that considerably reduces the lifetime as well as 

the performance of the network. The cause of such issues 

is mainly because of the reason that the placement of 

sensor nodes close to the sink nodes consumes abundant 

energy and hence, it is significant to design an effective 

technique for determining the best positioning of mobile 

sink nodes. To overcome such limitations, this research 

proposes a deep learning-based energy prediction for 

optimal positioning of mobile sink nodes. Moreover, an 

adjacency-based cell score is utilized to determine the 

location of sink nodes employing factors, like predicted 

energy, distance, and fairness. The predicted energy is 

identified using DMN. However, the adjacency-based Cell 

Score + DMN attained a minimum distance of 137.364, 

maximal residual energy of 30.903, maximum normalized 

fairness of 64.426, maximum network lifetime of 60, and 

maximum normalized throughput of 60.613. 
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