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Abstract—Handling datasets nowadays has become a crucial 

task, since today’s world is heavily dependent on data 

information. However, many data tend to be big and contain 

redundancy which makes them difficult to deal with. Due to 

that, data pre-processing became almost necessary before 

using any data, and one of the main tasks in data pre-

processing is dimensionality reduction. In this paper we 

propose a new approach for dimensionality reduction using 

feature selection method based on bivariate copulas. This 

approach is a direct application of copulas to describe and 

model the inter-correlation between any two dimensions - 

bivariate analysis. The study will first show how we use the 

bivariate method to detect redundant dimensions and 

eliminate them, and then compare the quality of the results 

against most-known selection methods in term of accuracy, 

using statistical precision and classification models. 
  

Index Terms—bivariate copulas, data pre-processing, 

dimensionality reduction, feature selection 

 

I. INTRODUCTION 

Every field has its hands wet with big data, aiming for 

optimization and efficiency, but most of the time useless 

and redundant observations are added to datasets, which 

increase the time complexity and decrease models 

accuracy. But fortunately, we always apply pre-

processing to any data, and dimensionality reduction is 

part of it, hence various methods were introduced to 

perform this step, including many feature selection 

methods. Feature selection is a dimensionality reduction 

technique that filters the data in order to choose which 

one to select and which one to eliminate without losing 

important information. Many well-known methods were 

introduced in this field, however most of them suffer 

from a high time complexity as a result of the sequential 

search method. Feature selection techniques were applied 

in different fields, recently, Authors proposed an effective 

feature selection method for clinical treatments that 

improved the classification and reduced the running time 

[1], while others published a comparative analysis in the 

Network Intrusion Detection System (NIDS) using the 
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conventional Genetic Algorithm (GA), Genetic 

Algorithm with Improved Feature Selection (GA-IFS) 

technique using the Support Vector Machine (SVM) 

classifier and GA-IFS with Naïve Bayes classifier (NBC) 

[2], they concluded that GA-IFS with SVM classifier 

outperformed both methods in term of accuracy. In 2016, 

a dimensionality reduction technique based on copulas 

and LU-decomposition was proposed [3], this approach 

gives good results against well-known methods, however 

it includes a complex optimization problem and passes by 

a lot of operations, which leads to a long processing time 
2

( ( ))O n , to improve that we propose a new filter method 

with less complex model and time complexity, it is built 

using an algorithm programmed in R, and uses bivariate 

copula as a tool to detect redundancy between each two 

attributes in order to eliminate one of them. Similar work 

has been submitted for publication but using multivariate 

copulas instead “unpublished” [4]. 

Our method will have to outperform other methods of 

dimensionality reduction by having more accuracy, and 

better reduction of data. 

II. BASIC CONCEPT 

In this part, we introduce the mathematical background 

and the necessary tools that constitute our method. We 

choose to use bivariate copula because it separates the 

marginal distributions from the dependency structure of a 

given bivariate distribution, which makes detecting inter-

correlation easier. 

Let X  and Y  be random variables with the 

continuous cumulative functions 
1 ( )F P X x=   and 

2 ( )F P Y y=   respectively. By using the integral 

transform of probability for each individual variable, we 

get the uniformly distributed variables presented in (1).  

1 2( , ) ( ( ), ( ))U V F X F Y=                      (1) 

From this transformation, we are able to generate 

pseudo-random samples from continues random variables 

as in (2). 

1 1
1 2( , ) ( ( ), ( ))X Y F U F V− −=                    (2) 
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The bivariate copula is a cumulative distribution 

function with Uniform [0,1]  margin. It is used to 

describe the inter-correlation (dependency structure) 

between two random variables by combining the bivariate 

distribution function with their one-dimension marginal 

distribution function. Following Sklar’s theorem [5], any 

bivariate joint distribution can also be written as 

univariate marginal distribution functions (a unique 

Copula C  in 2[0,1] ), and standard uniform marginal 

distributions 
1 2( , )U U  which display the dependencies 

between the variables. This relationship is presented in (3) 

(the formula of the bivariate theoretical copula C ), while 

its corresponding bivariate empirical copula 
nC  is 

defined in (4). In these equations, F  represents the joint 

cumulative distribution of the couple ( , )X Y , and n  

represents the number of observations in the random 

variables.  

1 2( , ) ( ( ), ( ))F X Y C F X F Y=                   (3) 

1

1
( , ) 1( , )

n

n i i

i

C u v U u V v
n

=

=                  (4) 

There are several families of bivariate copulas, among 

them, the Elliptical copulas are bivariate distributions and 

come in different types, the one we use is the Gaussian 

copula, a symmetrical type of elliptical copulas. Equation 

(5) represents the theoretical bivariate Gaussian copula, 

where   defines the correlation parameter (also called 

copula's parameter) and   is the cumulative standard 

Gaussian distribution function. This copula is visualized 

in Fig. 1, where Fig. 1.a shows the scatter plot of (5) with 

the parameter 0.5 = , while Fig. 1.b presents the 

corresponding density copula, these plots describe the 

dependency (inter-correlation) between the two random 

variables. 

2

2 1 2 1 2 1 1

2

1
( , , )

1

( ( ) ( ) ) 2 ( ) ( )
exp[ ]

2(1 )

C u v

u v u v




 



− − − −

=
−

 +  −  

−


(5) 

 
(a) Theoretical copula.                   (b) Density copula. 

Figure 1.  The bivariate Gaussian copula ( 0.5 = ). 

To describe the dependency between the variables, we 

introduce the relationship between Kendall’s tau   and 

the copula’s parameter as a tool to detect the inter 

correlation. For this study, we use the relationship 

between Kendall’s tau ij  and the Gaussian bivariate 

copula’s parameter ij  defined in (6), where 

, {1,..., }i j m  are the indices of the variables. 

2
arcsinij ij 


=                           (6) 

III. PROPOSED APPROACH 

This section focuses on introducing the Proposed 

Approach (PA) and the algorithm behind it. 

Let X  be the input matrix of n m  dimensions 

containing redundant variables. In order to transform the 

matrix X ’s attributes into random variables between 

[0,1] , we use the pseudo observation transformation 

defined in (7) by forcing the variates to fall inside the 

open unit hypercube. 

1

ij

ij

r
u

n
=

+
                              (7) 

where {1,..., }i n , {1,..., }j m  and 
ij

r  denotes the rank 

of ijX  among all kjX  where {1,..., }k n . Next, in order 

to visualize the dependency between the pairs attributes, 

we use (4) to calculate and plot the bivariate empirical 

copulas for each pair of attributes, after that we follow 

these steps: 

1) Determine the bivariate theoretical copulas for 

each pairs using the data based on the scatter plot 

of the bivariate empirical copula and the marginal 

distributions of the datasets. 

2) Pick the first pair of attributes. 

3) Calculate Kendall’s tau  . 

4) Deduce the bivariate theoretical copula’s 

parameter   using (6). 

5) Eliminate one of the correlated attributes if 

| 0.5|  = , otherwise skip to the next pair of 

attributes and go back to step 3. 

6) After all the attributes are tested, we get a new 

reduced data as output with uncorrelated attributes 

holding the same information as the input matrix 

X .  

ALGORITHM I.  DIMENSIONALITY REDUCTION USING THE PA 

Input: Data matrix X . 

Output: Matrix of reduced data X . 

Begin 

 = NULL. 

for i: =1 to m do 

   for j: =1 to m do 

      sin( / 2 )ij ij  =  . 

      if | 0.5| ij  then 

         Delete one of the attributes. 

      end 

   end 

end 

end 
 

Algorithm I and Fig. 2 represent the Proposed 

Approach (PA). Taking as input the matrix X , this 

algorithm checks for inter-correlation between two 

attributes and eliminate one attribute each time 

correlation is detected. The choice of which to eliminate 

between the two is random, as the first one detected will 
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be directly flagged for elimination. We then apply the 

same procedure to all the possible pairs, leaving us with a 

new relevant and uncorrelated dataset representing the 

same information as the input matrix X . 

 

Figure 2.  Flow chart of the PA. 

To improve our algorithm, and to reduce its time 

complexity, we use a method proposed in [6] and has 

been described with more details in [7] and [8] named 

Fast Kendall's tau instead of the commonly used method 

for calculating the Kendall’s tau   (time complexity of 

O( 2
n )). It uses a process called sorting by exchanging 

that decreases the time complexity to O( logn n ). The 

equation of Fast Kendall’s tau is presented in (8).  

4
1

( 1)

c

n n
 = −

−
                            (8) 

where c  defines the concordant pairs. This leads to an 

initial time complexity of O(
2

logm n n ) for the entire 

Algorithm I, but due to the nature of this algorithm, the 

time complexity is variable and decreases each time an 

attribute is eliminated. The memory complexity on the 

other hand is O( m n ). 

In Fig. 3, we can see an illustration of how our 

approach treats the data, using the matrix X  as input for 

algorithm I, we eliminate k  redundant attributes where 

1 1k m  − , as an output we get a reduced and relevant 

data where 1 l m k  − . 

 

Figure 3.  Illustration of the PA. 

IV. EXPERIMENTAL RESULTS 

The results shown in this study were obtained from 

simulations on RStudio using R version 4.0.3 [9] (64bit), 

and a PC with the following specs: PU: Intel Core i5-

9300H (4 Cores, 8 Threads, up to 4.10 GHz), RAM: 8 

GB DDR4 (2666 MHz), GPU: GTX 1050, Disk: SSD and 

OS: Win 10 (64bit). 

To demonstrate the performance of our method, we 

apply it on real data, then compare the results with 

baseline methods. For that, we choose datasets taken 

from UCI machine learning repository [10], which are: 

“Crop mapping using fused optical-radar” dataset [11] 

with 174 attributes and 325834 rows, “First-Order 

Theorem Proving” datasets [12] with 52 attributes and 

4589 rows, where the last column defines the class, and 

lastly “Vehicle” datasets [13] with 18 attributes and 846 

rows. Fig. 4, Fig. 5 and Fig. 6 are the plots of the 

empirical copulas [14], Gaussian theoretical copulas, and 

copula densities respectively for these datasets. The 

graphs are obtained using the transformation in (7). By 

using the goodness of fit test [15] between the bivariate 

empirical copula and the bivariate theoretical Gaussian 

copula, we can assume that they belong to the same 

distribution. 

A. Dimensionality Reduction 

Table I represents the number of attributes left after 

performing reduction with the Proposed Approach (PA), 

using the package [16] for fast Kendall’s tau, and the two 

other selection methods: LASSO technique and Stepwise 

Selection Method (SW) using the 3 datasets. Stepwise 

selection is a combination between the Forward Selection 

and the Backward Elimination [17], the reduction is 

performed following the best model criteria [18]. While 

LASSO technique is applied using 10 folds cross-

validation [19]. These two methods are performed using 

the packages “MASS” [20] and “glmnet” [21] 

respectively. 

TABLE I.  DIMENSIONALITY REDUCTION RESULTS 

Datasets Original data PA LASSO SW 

Crop mapping 174 24 67 141 

First order 

theorem proving 

51 14 32 27 

Vehicle 18 5 16 16 

B. Fitting to the Classification Models 

In order to show the performance of the proposed 

approach against other methods, we fit the dataset “First-

order theorem proving” to several classification models. 

Before that, we normalize and shuffle the reduced dataset 

in order to reduce the risk of overfitting. We also perform 

10 folds cross-validation for each model to make sure we 

pick the best parameters for the models. The 

classification models that we chose are: “Artificial Neural 

Network (ANN)” [22], “Random Forest” [23] and 

“Adaboost”. To run these models, we use the packages 

“neuralnet” [24], “caret” [25], “dplyr” [26] and 

“fastAdaboost” [27] respectively. The obtained results are 

shared in Table II. 

TABLE II.  ACCURACY OF “THE FIRST ORDER THEOREM PROVING” 

DATASETS 

 Original 

data 

PA LASSO SW 

Dimensions 51 14 32 27 

 
Accuracy 

Neural Network 0.761 0.724 0.719 0.715 

Random Forest 0.843 0.837 0.829 0.830 

Adaboost 0.818 0.817 0.815 0.812 
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C. Discussion 

After performing the feature selection methods (Lasso, 

Stepwise, and PA) for all the datasets, and also the 

accuracy checks through several models, we obtained the 

results that will allow us to determine which method is 

best for each desired type of performance: 

• Crop mapping dataset: Starting with the Stepwise 

selection, it selected 141 dimensions out of 174. 

Next comes the Lasso technique which left 67 

dimensions, and finally our PA, leaving out only 

24 features. 

• First-Order Theorem Proving datasets: the dataset 

is reduced to 27 variables by the Stepwise method, 

giving an accuracy of 0.715 on Neural Network 

model, 0.83 on Random Forest and 0.812 on 

Adaboost. Followed by Lasso technique which 

managed to lower it to 32 variables, which retain 

0.719 accuracy on Neural Network, 0.829 on 

Random Forest, and 0.815 on Adaboost. Finally, 

our PA cleared out most of redundancy, leaving 

only 14 variables while also maintaining an 

accuracy of 0.761 on Neural Network, 0.843 on 

Random Forest, and 0.818 on an Adaboost model. 

• Vehicle dataset: from 18 features in the original 

data, both Stepwise selection and Lasso technique 

eliminated enough to leave 16 features, while PA 

reduced their number down to 5. 

• Accuracy test for the “Crop mapping” and 

“Vehicle” datasets was not included, because these 

datasets didn’t have a proper class column that 

could be used to calculate accuracy after 

prediction. 

 
(a) The empirical copula.                                       (b) The theoretical copula.                              (c) The copula density. 

Figure 4.  The attributes pair 80 81( , )X X , 0.75 = −  from “Crop Mapping” dataset. 

 
a) The empirical copula.                                       (b) The theoretical copula.                              (c) The copula density. 

Figure 5.  The attributes pair 1 2( , )X X , 0.06 =  from “First-Order Theorem Proving” dataset. 

 
(a) The Empirical Copula.                                       (b) The Theoretical Copula.                              (c) The Copula Density. 

Figure 6.  The attributes pair 1 2( , )X X , 0.77 =  from “Vehicle” dataset. 
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Random Forest model showed high accuracy values 

for all the methods, and that’s because it is a good fit to 

the “First Order Theorem” dataset. 

V. CONCLUSION 

Even though reduction methods react in a different 

way to different datasets, our Proposed Approach (PA) 

was able to maintain a slightly higher accuracy within 

different models, with results being close to the other 

tested feature selection methods. But in term of 

dimensionality reduction, it is way ahead of them as it 

was able to reduce much more features, cleaning a lot of 

redundancy and noise in the way. Other data and studies 

can be found in [28]. 

Future work will focus on which attribute of the 

detected pair to eliminate for the best result. It will use a 

special algorithm to predict the final outcome before 

eliminating. 
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