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Abstract—Bipartite graphs are used to model many real-

world relationships with applications in several domains, 

such as: medicine, social networks and marketing. Examples 

of such relationships include drugs-adverse reactions 

associations, links between genes and various pathologies, 

actors and the movies they play in, researchers and the 

papers they author. We explore several properties of 

bipartite graphs and propose several notions including the 

measure of biclique similarity of a set of vertices, the measure 

of biclique connectivity of a set of vertices, and the notion of 

chains in bipartite graphs. We introduce the Biclique 

Similarity Ordering Recommendation (BISOR) algorithm, 

an application of maximal bicliques of bipartite graphs to 

recommendation systems that makes use of the notion of 

biclique similarity of a set of vertices in order to recommend 

items to users in a certain order of preference. We justify our 

approach by presenting experimental results that use real-

world datasets: Sushi, MovieLens 100k and MovieLens 

1Million.  

 

Index Terms—bipartite graphs, biclique similarity, polarity, 

recommendation order 

 

I. INTRODUCTION 

Bipartite graphs are graphs whose vertices are 

partitioned in two disjoint sets, and any existing edge 

connects a vertex from one set to a vertex from the other 

set.  Real-world relationships from many domains, such as 

medicine [1] and social networks, could be modeled as 

bipartite graphs. Examples include drugs-adverse 

reactions associations, relationships between genes and 

various pathologies, actors and the movies they play in, 

researchers and the papers they author, persons and the 

movies they like. 

Recommendation systems focus the attention of users 

on items in which they might be interested. For a streaming 

company such as Netflix or Amazon Prime, it might be 

important to recommend movies that users might be 

interested in watching. 

The recommendation systems literature is vast. There 

are different classifications of recommendation systems. 

One of the most common classification splits the 

recommendation systems into content-based filtering, 

collaborative filtering, and mixed-approaches. Content-

based filtering [2], [3] systems recommend items similar 

to items known to be liked by the user. This method 

usually requires the creation of profiles for items and/or 

users. One issue with content-based-filtering is that it will 

only match other items which share similar properties. 

This yields no variety in the recommended items, as using 

this method the user will not be recommended items with 

different properties. Collaborative-filtering techniques try 

to solve this issue by looking at the historical interactions 

between users and items. The term collaborative-filtering 

was first introduced in [4], where the authors described 

Tapestry, an experimental mail system which provided 

support to filter mails using both content-based filtering 

and collaborative-filtering. GroupLens is presented in [5] 

as an architecture that uses collaborative-filtering to 

recommend news articles. One collaborative-filtering 

approach relies on the computations of nearest-

neighborhoods. The user-based collaborative-filtering 

looks at the nearest neighborhood of the user (i.e. users that 

share similar likes/dislikes) and recommends items based 

on the ratings of other users from same nearest 

neighborhood. This works on the assumption that similar 

users have similar likes/dislikes. Item-based collaborative-

filtering approach looks at the nearest neighborhoods of 

items (i.e. items that share similar likes and dislikes). To 

predict the rating of a user for a given item, the items that 

were already rated by the given user are used. One 

drawback with collaborative-filtering recommender 

systems is the cold-start problem which appears when new 

items (or new users) are added to the system, and we do 

not have information with regards to previous interactions 

between them and users (items). Data-sparsity can also 

cause issues with collaborative filtering. Also, when a user 

has very unique preferences, that are not usually shared 

across other users, collaborative-filtering might perform 

poorly. Another collaborative-filtering approach is the 

latent factor models. One of the latent factor models with 

best performance is the matrix factorization model [6], 

which tries to determine a vector of latent factors between 

users and items. A survey on auto-encoders recommender 

systems is presented in [7]. 

In [8], the authors proposed an algorithm for 

recommendation that relies on predicting links in a 

bipartite graph. For any pair of user and item, a kernel 

function that took into consideration random walks from 

that user and that item to close neighbors was used. The 

results from these kernels were fed into a support vector 

machine algorithm in order to classify the new user-item 

link as ‘possible’ or ‘impossible’. In [9], authors introduce 

a recommendation algorithm that uses the notion of 

one-mode projections. 

In [10], the author examines how several graph 

algebraic analysis methods apply to bipartite graphs. 
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The recommendation algorithm we propose belongs to 

the class of collaborative-filtering methods and it uses the 

structure of the bipartite graph that models users-items 

likes. 

We found that the notion of polarity generated by a 

relation is useful in exploring bicliques in bipartite graphs. 

We introduce the measures of biclique connectivity, and 

biclique similarity of a set of vertices. As an application, 

we propose a recommendation algorithm that uses the 

measure of biclique similarity. 

In Section II, we discuss bipartite graphs and polarities 

generated by binary relations.  We explore some properties 

and introduce a special product operation between binary 

matrices. The notion of maximal biclique generated by a 

set of vertices is introduced in Section III. In Section IV, 

we propose the measure of biclique similarity of a set of 

vertices, the measure of biclique connectivity of a set of 

vertices, and the notion of chains in bipartite graphs. Using 

some of these notions, we introduce the Biclique Similarity 

Ordering Recommendation (BISOR) algorithm. In Section 

V, we present experimental results run on three real-world 

datasets. Finally, Section VI presents our conclusion and 

some directions for future work. 

The current paper is an extended version of a paper [11] 

we presented at the ICISDM 2021 conference. 

II. BIPARTITE GRAPHS AND POLARITIES 

The mathematical underpinning of this section is the 

notion of polarity [12]. The set of subsets of a set 𝑈 is 

denoted by P(U).  
Let 𝜌 be a binary relation defined on the sets 𝐿 and 𝑅, 

𝜌 ⊆ 𝐿 × 𝑅. The polarity determined by a relation 𝜌 is a 

pair of mappings 𝜙𝜌: P(L) → P(R) and 𝜓𝜌: P(R) → P(L) 

defined as: 

𝜙𝜌(𝑋) =  {𝑦 ∈ 𝑅 | (𝑥, 𝑦) ∈ 𝜌 for every 𝑥 ∈ 𝑋} 

𝜓𝜌(𝑌) = {𝑥 ∈ 𝐿 | (𝑥, 𝑦) ∈ 𝜌 for every 𝑦 ∈ 𝑌} 

For any subset 𝑋 ⊆ 𝐿 and 𝑌 ⊆ 𝑅.  
We say that 𝜙𝜌(𝑋) is a polar of 𝑋 and 𝜓𝜌(𝑌) is a polar 

of 𝑌. 
The following statements are direct consequences of the 

definitions of 𝜙𝜌 and 𝜓𝜌. Namely, for any binary relation 

𝜌 ⊆ 𝐿 × 𝑅 and for every 𝑋 ⊆ 𝐿 and 𝑌 ⊆ 𝑅 we have: 

𝑋 ⊆ 𝑋1 implies 𝜙𝜌(𝑋) ⊇ 𝜙𝜌(𝑋1)              (1) 

(anti-monotonicity of 𝜙𝜌) 

𝑌 ⊆ 𝑌1 implies 𝜓𝜌(𝑦) ⊇ 𝜓𝜌(𝑌1)               (2) 

(anti-monotonicity of 𝜓𝜌) 

𝑋 ⊆ 𝜓𝜌(𝜙𝜌(𝑋))                           (3) 

𝑌 ⊆ 𝜙𝜌(𝜓𝜌(𝑌))                           (4) 

Theorem 2.1. If (𝜙𝜌, 𝜓𝜌) is a polarity on the sets 𝐿 and 

𝑅, then: 

𝜙𝜌(𝜓𝜌(𝜙𝜓(𝑋))) = 𝜙(𝑋) 

and 

𝜓𝜌(𝜙𝜌(𝜓𝜌(𝑌))) = 𝜓𝜌(𝑌) 

Proof: As we noted, we have 𝑋 ⊆ 𝜓𝜌(𝜙𝜌(𝑋)), hence 

𝜙𝜌(𝑋) ⊇ 𝜙𝜌(𝜓𝜌(𝜙𝜌(𝑋))). The reverse inclusion follows 

by substituting 𝜙𝜌(𝑋) for 𝑌 in Equality (4), which implies 

the first equality of the theorem. The proof of the second 

equality is similar. 

If (𝜙𝜌, 𝜓𝜌) is a polarity on the sets 𝐿 and 𝑅, then for any 

subsets 𝑋1, 𝑋2, 𝑋 ⊆ 𝐿 and 𝑌1, 𝑌2, 𝑌 ⊆ 𝑅, we have: 

𝜙𝜌(𝑋1 ∪ 𝑋2) = 𝜙𝜌(𝑋1) ∩ 𝜙𝜌(𝑋2) 

𝜓𝜌(𝑌1 ∪ 𝑌2) = 𝜓𝜌(𝑌1) ∩ 𝜓𝜌(𝑌2) 

These equalities imply immediately  

𝜙𝜌(𝑋) = ⋂ 𝜙𝜌({𝑥})𝑥∈𝑋   

𝜓𝜌(𝑌) = ⋂ 𝜓𝜌({𝑦})𝑦∈𝑌   

A bipartite graph is a triplet G = (𝐿, 𝑅; 𝜌), where L, R 

are two disjoint finite sets of vertices and 𝜌 ⊆ {{𝑢, 𝑣} | 𝑢 ∈
𝐿, 𝑣 ∈ 𝑅} is the set of edges of G. If 𝜌 = 𝐿 × 𝑅, we say that 

G is a complete bipartite graph.  

Let 𝒙, 𝒚 be two row vectors in {0, 1}𝑘 , where 𝒙 =
 (𝑥1, … , 𝑥𝑘) and 𝒚 = (𝑦1, … , 𝑦𝑘). Define x ∧ y as: 

𝒙 ∧ 𝒚 = (min{𝑥1, 𝑦1}, … ,𝑚𝑖𝑛{𝑥𝑘 , 𝑦𝑘}) 

The same operation is defined on column vectors and 

produces a column vector. The transpose of a vector x is 

denoted by 𝒙′. 
For a subset S of a set 𝑈 =  {𝑢1, … , 𝑢𝑘} with |𝑈| = 𝑘 we 

define its characteristic vector 𝒗𝑆 = (𝑣1, … , 𝑣𝑘) as the row 

vector given by: 

𝑣𝑖 = {
1 if 𝑢𝑖 ∈ 𝑆,

   0 otherwise.
 

Note that if 𝑆, 𝑇 ⊆ 𝑈 such that 𝒗𝑆 = (𝑣1, … , 𝑣𝑘)  and 

𝒗𝑇 = (𝑤1, … , 𝑤𝑘) we have: 

𝑣𝑆∩𝑇 = (min {𝑣1, 𝑤1}, … ,min{𝑣𝑘 , 𝑤𝑘}) = 𝒗𝑆 ∧ 𝒗𝑇 

Let G = (𝐿, 𝑅; 𝜌)  be a bipartite graph, where 𝐿 =
{𝑢1, … , 𝑢𝑚} and 𝑅 = {𝑣1, … , 𝑣𝑛}. The biadjacency matrix 

[13] of G is the matrix 𝐵 ∈ {0, 1}𝑚×𝑛 , where 𝑏𝑖,𝑗 = 1 if 

and only if (𝑢𝑖 , 𝑣𝑗) ∈ 𝜌 . The binary relation 𝜌 ⊆ 𝐿 ×

𝑅 defined by the graph G consists of the pairs defined by 

the edges of G. The component 𝑏𝑖,𝑗 of the matrix 𝐵 may be 

denoted as 𝑏𝑢𝑖𝑣𝑗  when we need to mention explicitly the 

members of the sets 𝐿 and 𝑅. 
The rows of the biadjacency matrix of G are the 

characteristic vectors of the sets of the form 𝜙({𝑢𝑖}) while 

the columns are the characteristic vectors of the sets of the 

form 𝜓({𝑣𝑗}). 

For a bipartite graph G = (𝐿, 𝑅; 𝜌) and a subset 𝑋 of 

𝐿 we have 𝒗𝜙(𝑋) =∧𝑥∈𝑋 𝒗𝜙({𝑥}). Therefore, 𝒗𝜙(𝑋)  can be 

obtained by taking the componentwise minimum of the 

columns of the form 𝒗𝜙({𝑥𝑖}) for 𝑥𝑖 ∈ 𝑋. 

Similarly, for a subset 𝑌 of 𝑅  we have 𝒗𝜓(𝑌) =

⋀𝑦∈𝑌 𝒗𝜓({𝑦}) and the row 𝒗𝜓(𝑌) equals the componentwise 

minimum of the rows of the form 𝒗𝜓({𝑦𝑖}) for 𝑦𝑖 ∈ 𝑌. 

Example 2.2. For a bipartite graph: 

G = ({𝑥1, 𝑥2, 𝑥3, 𝑥4}, {𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5}, 𝜌) 
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Shown in Fig. 1, the biadjacency matrix is: 

𝐵𝜌 = (

1   0   1  1   0
0   1   0   0   1
1   1   0   1   0
  1   0   1   1   1 

) 

Thus, a vector 𝒗𝜙({𝑥𝑖}) is the 𝑖𝑡ℎ line of the matrix 𝐵𝜌: 

𝒗𝜙({𝑥1}) = (1, 0,1, 1,0),   𝒗𝜙({𝑥2}) = (0, 1, 0, 0,1) 

𝒗𝜙({𝑥3}) = (1, 1, 0, 1, 0),   𝒗𝜙({𝑥4}) = (1, 0, 1, 1,1) 

and a vector 𝒗𝜓({𝑦𝑖}) is the transpose of the 𝑗𝑡ℎ column of 

𝐵. 
𝒗𝜙({𝑦1}) = (1, 0,1, 1), 𝒗𝜙({𝑦2}) = (0, 1, 1, 0) 

𝒗𝜙({𝑦3}) = (1, 0, 0, 1), 𝒗𝜙({𝑦4}) = (1, 0, 1, 1) 

𝒗𝜙({𝑦5}) = (0, 1, 0, 1) 

which shows that the biadjacency matrix can be written as: 

𝐵𝜌 = (
𝒗𝜙(𝑥1)

⋮
𝒗𝜙(𝑥4)

) 

= (𝒗𝜓({𝑦1})
′  𝒗𝜓({𝑦2})

′  𝒗𝜓({𝑦3})
′  𝒗𝜓({𝑦4})

′  𝒗𝜓({𝑦5})
′ ) 

 

Figure 1.  Example of bipartite graph G = 

({𝑥1, 𝑥2, 𝑥3, 𝑥4}, {𝑦1, 𝑦2,𝑦3,𝑦4,𝑦5};  𝜌). 

Example 2.3. For the bipartite graph considered in 

Example 2.2 we have: 

 𝜓(𝜙({𝑥1, 𝑥3})) = 𝜓({𝑦1 , 𝑦4}) = {𝑥1, 𝑥3, 𝑥4} 

The characteristic vectors that correspond to the sets 

involved are: 

𝒗{𝑥1,𝑥3} = (1, 0, 1, 0) 

𝒗𝜙({𝑥1,𝑥3}) = 𝒗{𝑦1,𝑦4} = (1, 0, 0, 1, 0) 

𝒗𝜓({𝑦1,𝑦4}) = 𝑣{𝑥1,𝑥3,𝑥4} = (1, 0, 1, 1) 

In this paper we use a two-element algebraic structure 

𝑆2 defined on the set {0, 1} equipped with two operations  

𝑚𝑖𝑛 and → , where →  is the propositional implication 

defined by: 

𝑥 → 𝑦 = {
1  if 𝑥 = 0,
𝑦  if 𝑥 = 1.

 

Note that 𝑥 → 𝑦 = 1 − 𝑥 − 𝑥𝑦. This operation is 

neither associative nor commutative. However, 𝑚𝑖𝑛 is 

distributive over " → ", that is: 

𝑚𝑖𝑛{𝑥, 𝑦 → 𝑧} = min{𝑥, 𝑦} → 𝑚𝑖𝑛{𝑥, 𝑧}  

as it can be easily verified. This structure generalized the 

notion of semi-ring [14]. 

A commutative semiring [14] is a set 𝑆  together with 

two binary operations " + " and " ⋅ " which satisfy the 

following three axioms: 

i) The operation "+" is associative and commutative 

and there is an additive neutral element called "0" 

such that 𝑥 + 0 = 𝑥 for all 𝑥 ∈ 𝑆. 
ii) The operation " ⋅ " is also associative and 

commutative and there is a multiplicative neutral 

element called "1" such that 𝑥 ⋅ 1 = 1; 

iii) The distributive law holds that: 

(𝑎 ⋅ 𝑏) + (𝑎 ⋅ 𝑐) = 𝑎 ⋅ (𝑏 + 𝑐) 

for all triples (𝑎, 𝑏, 𝑐) from 𝑆 

Example 2.4. The set [0,∞] is a semiring relative to the 

operations 𝑥 + 𝑦 = min{𝑥, 𝑦}  and 𝑥 ⋅ 𝑦 = 𝑥𝑦  for 𝑥, 𝑦 ∈
[0,∞] . The additive neutral element is ∞ , while the 

multiplicative neutral element is 1 . Also, we have the 

distributive equality: 

𝑚𝑖𝑛{𝑎𝑏, 𝑎𝑐} = 𝑎 𝑚𝑖𝑛{𝑏, 𝑐} 

for 𝑎, 𝑏, 𝑐 ∈ [0,∞]. 
We introduce a special product operation between 

binary matrices. If 𝐴 ∈ {0, 1}{𝑚×𝑛} and 𝐵 ∈ {0,1} {𝑛×𝑝} , 

then we denote their new product 𝐶  by 𝐴 ⋆ 𝐵 ∈
{0,1}{𝑚×𝑝}. The matrix 𝐶 ∈ {0,1}{𝑚×𝑝} is defined as: 

𝑐𝑖𝑘  =  𝑚𝑖𝑛1≤𝑗≤𝑛   (𝑎𝑖𝑗 → 𝑏𝑗𝑘) 

For a row vector 𝒂 ∈ {0,1}{1× 𝑛} and 𝐵 ∈ {0,1}𝑛×𝑝, we 

have (𝒂 𝐵)𝑘 = min
1≤ 𝑗≤ 𝑛

(𝑎𝑗 → 𝑏𝑗𝑘).  Similarly, if 𝒄 ∈

{0,1}𝑝 is a column vector we have (𝐵𝒄)𝑗 = min
1≤ 𝑘≤ 𝑝

(𝑏𝑗𝑘 →

𝑐𝑘). 

Because of the asymmetry of the → operation, the 

transpose of a matrix product is distinct from the product 

of the transposed matrices in reverse order. Note that the 

⋆ product between matrices is not associative, in general. 

Also, for 𝐵 ∈ {0,1}𝑚×𝑛: 

(0, … , 0) ⋆ 𝐵 = (1,… , 1) 
and 

(1, … , 1) ⋆ 𝐵 = (min 𝒃1, … ,min 𝒃𝑛) 

where 𝒃𝑗 is the 𝑗𝑡ℎ  column of 𝐵. 

Theorem 2.5. Let (𝜙𝜌, 𝜓𝜌) be the polarity determined 

by a relation 𝜌 ⊆ 𝐿 × 𝑅 . If 𝐵𝜌 ∈ {0,1}
𝑞×𝑟 is the 

biadjacency matrix determined by the relation 𝜌, then: 

𝒗𝑿 ⋆ 𝐵𝜌 = 𝒗𝜙𝜌(𝑋) 

and 

𝒗𝑌 ⋆ 𝐵
′
𝜌 = 𝒗𝜓𝜌(𝑌) 

for any subsets 𝑋 ⊆ 𝐿 and 𝑌 ⊆ 𝑅. 

Proof. Let 𝐿 = {𝑥1, … , 𝑥𝑞} and 𝑅 = {𝑦1, … , 𝑦𝑟}. If 𝑋 ⊆

𝐿 , 𝑋 = {𝑥𝑖1 , … , 𝑥𝑛} , it follows that 𝒙 = (𝑎1, … , 𝑎𝑞) ∈

{0,1}𝑞 is a vector that contains 1s in positions 𝑖1, … , 𝑖𝑛. 
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We have (𝒗𝑋 ⋆ 𝐵𝜌)𝑘
= 1  if and only if  

𝑚𝑖𝑛1≤ 𝑗≤ 𝑛(𝑎𝑗 → 𝑏𝑗𝑘) = 1 , or 𝑎𝑗 → 𝑏𝑗𝑘 = 1  for all 𝑗 ∈

{1, … , 𝑛} . This amounts to the fact that 𝑎𝑗 = 1  implies 

𝑏𝑗𝑘 = 1, which is equivalent to saying that for all 𝑥𝑗 ∈ 𝑋 

we have (𝑥𝑗 , 𝑦𝑘) ∈ 𝜌, that is, 𝑦𝑘 ∈ 𝜙𝜌(𝑋). This means that 

𝒗𝑋 ⋆ 𝐵𝜌 equals 𝒗𝜙𝜌(𝑋). 

Suppose now that 𝑌 ⊆ 𝑅 and 𝑌 = {𝑦𝑘1 , … , 𝑦𝑘𝑚}. Then, 

𝒗𝑌 = (𝑐1, … , 𝑐𝑟) , where 𝒗𝑌  contains 1  in the positions 

𝑘1, … , 𝑘𝑚. 

We have  (𝒗𝑌 ⋆ 𝐵
′
𝜌)𝑖

= 1  if and only if 

𝑚𝑖𝑛1≤  ℓ≤ 𝑟 (𝑐ℓ → 𝑏𝑖ℓ) = 1 , or 𝑐ℓ → 𝑏𝑖ℓ = 1 for ℓ ∈
{1, … , 𝑟}. This means that 𝑐ℓ = 1 implies 𝑏𝑖ℓ = 1, which 

is equivalent to saying that for all 𝑦𝑖 ∈ 𝑌  we have 

(𝑥ℓ, 𝑦𝑖) ∈ 𝜌, that is 𝑥ℓ ∈ 𝜓𝜌(𝑌). This means that 𝒗𝑌 ⋆ 𝐵𝜌 

equals 𝒗𝜓𝜌(𝑌). 

Corollary 2.6. Let (𝜙𝜌, 𝜓𝜌) be the polarity determined 

by a relation 𝜌 ⊆ 𝐿 × 𝑅 . If 𝐵𝜌 ∈ {0,1}
𝑞×𝑟  is the 

biadjacency matrix determined by the relation 𝜌, then: 

𝒗𝜓(𝜙(𝑋)) = (𝒗𝑋 ⋆ 𝐵𝜌) ⋆ 𝐵𝜌
′  

𝒗𝜙(𝜓(𝑌)) = (𝒗𝑌 ⋆ 𝐵𝜌
′) ⋆ 𝐵𝜌 

For anu subsets 𝑋 ⊆ 𝐿 and 𝑌 ⊆ 𝑅.  
Proof: The corollary follows directly from Theorem 2.5. 

Example 2.7. Consider the relation 𝜌 ⊆ {𝑥1, 𝑥2, 𝑥3} ×
{𝑦1, 𝑦2}  whose bipartite graph is shown in Fig. 2. The 

biconnectivity matrix is: 

𝐵𝜌 = (
0 1
0 1
1     1

) 

The characteristic vector of {𝑥1} is 𝒗{𝑥1} = (1, 0, 0).  

Note that: 
(1, 0, 0) ⋆ 𝐵𝜌 = (0, 1) 

hence 𝒗𝜙({𝑥1}) = 𝒗{𝑥1} ⋆ 𝐵𝜌 = (0, 1). 

In other words, 𝜙({𝑥1}) = {𝑦2} . Since 𝒗{𝑦2}𝐵𝜌
′ =

(1, 1, 1), it follows that 𝜓𝜌 (𝜙𝜌({𝑥1})) = {𝑥1, 𝑥2, 𝑥3}. 

 

Figure 2.  Example of bipartite graph G = ({𝑥1, 𝑥2, 𝑥3}, {𝑦1, 𝑦2};  𝜌). 

Example 2.8. For the bipartite graph 

G=({𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6}, {𝑦1 , 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6}, 𝜌) shown 

in Fig. 3, the biadjacency matrix is: 

𝐵𝜌 = 

(

  
 

1 0    0    0   0    0 
1 1    1    1    0    0
0     1    1    1    1    0
0     1    1    1    0    1
0     1    1    1    0    1
0     0    0    0    0    1)

  
 

 

Thus, a vector 𝒗𝜙({𝑥𝑖}) is the 𝑖𝑡ℎ line of the matrix 𝐵𝜌: 

The characteristic vectors that correspond to the sets 

involved are: 

𝒗𝜙({𝑥1}) = (1, 0, 0, 0, 0, 0),    𝒗𝜙({𝑥2}) = (1, 1, 1, 1, 0, 0) 

𝒗𝜙({𝑥3}) = (0, 1, 1, 1, 1, 0),    𝒗𝜙({𝑥4}) = (0, 1, 1, 1, 0, 1) 

𝒗𝜙({𝑥5}) = (0, 1, 1, 1, 0, 1),    𝒗𝜙({𝑥6}) = (0, 0, 0, 0, 0, 1) 

and a vector 𝒗𝜓({𝑦𝑗}) is the transpose of the 𝑗𝑡ℎ column of 

B: 

𝒗𝜙({𝑦1}) = (1, 1, 0, 0, 0, 0),    𝒗𝜙({𝑦}) = (0, 1, 1, 1, 1, 0) 

𝒗𝜙({𝑦3}) = (0, 1, 1, 1, 1, 0),    𝒗𝜙({𝑦4}) = (0, 1, 1, 1, 1, 0) 

𝒗𝜙({𝑦5}) = (0, 0, 1, 0, 0, 0),    𝒗𝜙({𝑦6}) = (0, 0, 0, 0, 0, 1) 

Which shows that the be biadjacency matrix can be 

written as: 

𝐵𝜌 = (
𝒗𝜙({𝑥1})

⋮
𝒗𝜙({𝑥6})

) 

= (𝒗𝜓({𝑦1})
′   𝒗′𝜓({𝑦2})  𝒗𝜓({𝑦3})

′   𝒗𝜓({𝑦4})
′   𝒗𝜓({𝑦5})

′   𝒗𝜓({𝑦6})
′ ) 

 

 

Figure 3.  Example of bipartite graph G = 

({𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6}, {𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑦5, 𝑦6}, 𝜌). 

Example 2.9. For the bipartite graph considered in 

Example 2.8 we have: 

𝜓(𝜙({𝑥2, 𝑥3})) = 𝜓({𝑦2, 𝑦3, 𝑦4}) =  {𝑥2, 𝑥3, 𝑥4, 𝑥5} 

The characteristic vectors that correspond to the sets 

involved are: 

𝒗{𝑥2,𝑥3} = (0, 1, 1, 0, 0, 0) 

𝒗𝜙({𝑥1,𝑥3}) = 𝒗{𝑦2,𝑦3,𝑦4} = (0, 1, 1, 1, 0, 0) 

𝒗𝜓({𝑦2,𝑦3,𝑦4}) = 𝒗{𝑥2,𝑥3,𝑥4,𝑥5} = (0, 1, 1, 1, 1, 0) 

III. BICLIQUES IN BIPARTITE GRAPHS 

Definition 3.1. A biclique in a bipartite graph 

G=(𝐿, 𝑅;  𝜌) is a subgraph of G induced by the sets 𝑈, 𝑉 

such that 𝑈 ⊆ 𝐿, 𝑉 ⊆ 𝑅 and 𝑈 × 𝑉 ⊆ 𝜌. This biclique is 

denoted by (𝑈, 𝑉). 
A bipartite graph G= (𝐿, 𝑅;  𝜌) generates a polarity 

defined by the relation 𝜌  between 𝐿 and 𝑅.  Namely, we 

have: 
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𝜙𝜌(𝑋) =  {𝑦 ∈ 𝑅 | {𝑥, 𝑦} ∈ 𝜌 for every 𝑥 ∈ 𝑋} 

𝜓𝜌(𝑌) = {𝑥 ∈ 𝐿 | {𝑥, 𝑦} ∈ 𝜌 for every 𝑦 ∈ 𝑌} 

Theorem 3.2. Let G = (𝐿, 𝑅;  𝜌) be a bipartite graph. A 

pair of sets (𝑈, 𝑉), where 𝑈 ⊆ 𝐿 and 𝑉 ⊆ 𝑅 is a biclique 

in G if and only if 𝑉 ⊆ 𝜙𝜌(𝑈) or, equivalently, if 𝑈 ⊆

𝜓𝜌(𝑉). 

Proof. If (𝑈, 𝑉) is a biclique, 𝑈 × 𝑉 ⊆ 𝜌 , and this 

implies 𝑈 ⊆ 𝜓𝜌(𝑉)  and 𝑉 ⊆ 𝜙𝜌(𝑈) . Note that these 

inclusions are equivalent. 

Conversely, suppose that 𝑈 ⊆ 𝜓𝜌(𝑉). The definition of 

𝜓𝜌(𝑉) means that for every 𝑥 ∈ 𝑈 we have 𝑥 ∈ 𝜓𝜌(𝑉), 

hence 𝑈 × 𝑉 ⊆ 𝜌.  
Definition 3.3. Let 𝐵1 = (𝑋1, 𝑌1) and 𝐵2 = (𝑋2, 𝑌2) be 

two bicliques in a bipartite graph G=(𝐿, 𝑅;  𝜌). We write 

𝐵1 ⊑ 𝐵2 (and we say 𝐵2 contains 𝐵1) if 𝑋1 ⊆ 𝑋2 and 𝑌1 ⊆
𝑌2. A biclique (𝐵, 𝐵′) is maximal if there is no biclique 

distinct from (𝐵, 𝐵′) that contains (𝐵, 𝐵′). 
There are two variants of the maximal biclique problem; 

the vertex maximum biclique problem that seeks to find a 

biclique (𝑈, 𝑉)  such that |𝑈| + |𝑉|  is maximal, and the 

edge maximum biclique problem that seeks to find a 

biclique with the largest number of edges.  The first 

problem can be solved in polynomial time (see, for 

example the problem GT24 in [15]); the second problem is 

NP-complete as shown in [16]. 

Theorem 3.4. If (𝜙𝜌, 𝜓𝜌) is a polarity on the sets 𝐿 and 

𝑅, then: 

𝜙𝜌(𝜓𝜌(𝜙𝜌(𝑋))) = 𝜙𝜌(𝑋) 

and 

𝜓𝜌(𝜙𝜌(𝜓𝜌(𝑌))) = 𝜓𝜌(𝑌) 

Proof. As we noted, we have 𝑋 ⊆ 𝜓𝜌(𝜙𝜌(𝑋)) hence 

𝜙𝜌(𝑋) ⊇ 𝜙𝜌(𝜓𝜌(𝜙𝜌(𝑋))) The reverse inclusion follows 

by substituting 𝜙𝜌(𝑋) for 𝑌 in Equality (4), which implies 

the first inequality of the theorem. The proof of the second 

equality is similar. 

Theorem 3.5. Let G= (𝐿, 𝑅;  𝜌) be a bipartite graph. A 

pair of sets of vertices (𝑋, 𝑌)  is a maximal biclique if 

𝜙𝜌(𝑋) = 𝑌 and 𝜓𝜌(𝑌) = 𝑋. 

Proof. Let 𝜙𝜌(𝑋) = 𝑌 and 𝜓𝜌(𝑌) = 𝑋. Clearly, (𝑋, 𝑌) 

is a biclique. Suppose that (𝑋, 𝑌) is not maximal and let 

(𝑈, 𝑉) be a biclique such that 𝑋 ⊆ 𝑈 and 𝑌 ⊆ 𝑉.  
Since (𝑈, 𝑉) is a biclique, we have 𝑉 ⊆ 𝜙𝜌(𝑈). Next, 

we have 𝜙𝜌(𝑈) ⊆ 𝜙𝜌(𝑋)  because 𝑋 ⊆ 𝑈.  Finally, 

𝜙(𝑋) = 𝑌 by hypothesis, hence 𝑉 ⊆ 𝑋. Since we assumed 

the reverse inclusion, we have 𝑋 = 𝑉. Similarly, 𝑌 = 𝑈, 
so (𝑋, 𝑌) is indeed a maximal biclique. 

Conversely, suppose that (𝑋, 𝑌) is a maximal biclique. 

Since (𝑋, 𝑌)  is a biclique we have 𝑌 ⊆ 𝜙𝜌(𝑋)  and 𝑋 ⊆

𝜓𝜌(𝑌) by Theorem 3.2. Thus, (𝑋, 𝑌) is contained in the 

biclique (𝜙𝜌(𝑌), 𝜓𝜌(𝑋)). By the maximality of (𝑋, 𝑌) we 

have 𝑌 = 𝜙𝜌(𝑋) and 𝑋 = 𝜓𝜌(𝑌). 

Corollary 3.6. In a bipartite graph G= (𝐿, 𝑅; 𝜌)  the 

maximal biclique generated by a set of vertices 𝑆 ⊆ 𝐿 is a 

pair of sets 𝐵𝑠 = (𝑈, 𝑉) given by: 

𝑉 = 𝜙𝜌(𝑆) and 𝑈 = 𝜓𝜌(𝜙𝜌(𝑆)) 

The maximal biclique generated by a set of vertices 𝑇 ⊆
𝑅 is the pair of sets 𝐵𝑇 = (𝑈, 𝑉) given by: 

𝑈 = 𝜓𝜌(𝑇) and 𝑉 = 𝜙𝜌(𝜓𝜌(𝑇)) 

Proof. For 𝑆 ⊆ 𝐿, 𝑉 = 𝜙𝜌(𝑆), 𝑈 = 𝜓𝜌(𝜙𝜌(𝑆)) we have: 

𝜙𝜌(𝑈) = 𝜙𝜌(𝜓𝜌(𝜙𝜌(𝑆)))  = 𝜙𝜌(𝑆) = 𝑉 

(by the first equality of Theorem 3.4) 

𝜓𝜌(𝑉) = 𝜓𝜌(𝜙𝜌(𝑆)) = 𝑈 

which shows that (𝑈, 𝑉) is the maximal biclique generated 

by 𝑆 by Theorem 3.5. The argument for 𝑇 is entirely 

similar. 

Corollary 3.7. The following statements are equivalent: 

(1) (𝑋, 𝑌) is a maximal biclique 

(2) (𝒗𝑋 ⋆ 𝐵𝜌) ⋆ 𝐵𝜌
′ = 𝒗𝑋 and 𝒗𝑋 ⋆ 𝐵𝜌 = 𝒗𝑌; 

(3) (𝒗𝑌 ⋆ 𝐵𝜌
′) ⋆ 𝐵𝜌 = 𝒗𝑌 and 𝒗𝑌 ⋆ 𝐵𝜌

′ = 𝒗𝑋 

Lemma 3.8. Let G = (𝐿, 𝑅; 𝜌) be a bipartite graph. For 

any set of sets {𝑆1, 𝑆2, … , 𝑆𝑘}, 2 ≤ 𝑘 ≤ 2
|𝐿|, where 𝑆𝑖 ⊂ 𝐿, 

for any 1 ≤ 𝑖 < 𝑘, satisfying 𝑆𝑖 ⊂ 𝑆𝑗 for any 1 ≤ 𝑖 < 𝑗 ≤

𝑘, we have: 

𝜙𝜌(𝑆1) ≥ 𝜙𝜌(𝑆2) ≥ ⋯ ≥ 𝜙𝜌(𝑆𝑘) 

For any set of sets {𝑇1, 𝑇2, … , 𝑇𝑚}, 1 ≤ 𝑚 ≤ 2
|𝑅|, where 

𝑇𝑖 ⊂ 𝑅, for any 1 ≤ 𝑖 < 𝑚, satisfying 𝑇𝑖 ⊂ 𝑇𝑗 for any 1 ≤

𝑖 < 𝑗 ≤ 𝑚, we have: 

𝜓𝜌(𝑇1) ≥ 𝜓𝜌(𝑇2) ≥  … ≥ 𝜓𝜌(𝑇𝑚) 

Proof. It results from the fact that 

 𝜙𝜌(𝑆) = ⋂ 𝜙𝜌({𝑠})𝑠∈𝑆  

𝜓𝜌(𝑇) = ⋂ 𝜓𝜌({𝑡})𝑡∈𝑇   

IV. RECOMMENDATION SYSTEMS AND BICLIQUES 

Assume that for a bipartite graph G = (𝐿, 𝑅; 𝜌),  𝐿 

represents a set of users, 𝑅 represents a set of items, and 

that we have an edge between a user 𝑢 ∈  𝑅 and an item 

𝑣 ∈  𝑅 when user 𝑢 likes item 𝑣. The existence of a large 

biclique containing user 𝑢 means the preferences of user 𝑢 

are spread across a large number of users and items. The 

more preferences the user has and the more users share 

these preferences, the more central this user is. 

An item has a higher connectivity if users that like this 

item share a large number of preferred items.  

Definition 4.1. Let G=(𝐿, 𝑅; 𝜌) be a bipartite graph. The 

biclique connectivity of a set of vertices 𝑆 ⊆ 𝐿 is given by: 

𝑐𝑆 = |𝜓𝜌(𝜙𝜌(𝑆))| ⋅ |𝜙𝜌(𝑆)| 

Similarly, the biclique connectivity of a set of vertices 

𝑇 ⊆ 𝑅 is: 

𝑐𝑇 = |𝜓𝜌(𝑇)| ⋅ |𝜙𝜌(𝜓𝜌(𝑇))| 

We refer to 𝑐{𝑢} as the biclique connectivity of 𝑢 ∈ 𝐿; 

similarly, 𝑐{𝑣} is the biclique connectivity of 𝑣 ∈ 𝑅. 

Example 4.2. Let G=(𝐿, 𝑅; 𝜌)  be the bipartite graph 

given in Fig. 1. Vertex 𝑥1 generates the maximal biclique 
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({𝑥1, 𝑥4}, {𝑦1, 𝑦3, 𝑦4}). The biclique connectivity of 𝑥1  is 

given by: 

𝑐{𝑥1} = 2 ⋅ 3 = 6 

In the same bipartite graph, the set of vertices {𝑥2, 𝑥4} 
generates the maximal biclique ({𝑥2, 𝑥4}, {𝑦5}). Thus, the 

biclique connectivity of the set {𝑥2, 𝑥4} is given by: 

𝑐{𝑥2,𝑥4} = 2 ⋅ 1 = 2 

The higher the connectivity of a set of users, the more 

popular a large number of items liked by these users are 

among a large number of items and users. 

Let G=(𝐿, 𝑅; 𝜌) be a bipartite graph where 𝐿 represents 

a set of users, 𝑅 represents a set of items, and 𝜌 is a set of 

edges representing the likes. A set of users has a large 

biclique connectivity when the given users share a large 

number of common likes, or their common liked items are 

liked by a large number of other users. Similarly, a set of 

items has a large connectivity value if a large number of 

users like all these items, or there are many other items that 

are all liked by the users who like the items from the given 

set. 

There are cases in which we would like to know when a 

set of users have many common likes, or when a set of 

items are commonly liked by a large number of users. We 

can consider that the more common preferences some 

users have the more alike those users are. And for a given 

set of items, the more users like all these items, the more 

things in common these items have.  Hence, we introduce 

a notion of similarity between a set of vertices that uses 

only one side of the maximal biclique generated by that set. 

Definition 4.3. Let G=(𝐿, 𝑅; 𝜌) be a bipartite graph. The 

biclique similarity of a set of vertices 𝑆 ⊆ 𝐿 is given by: 

𝑠𝑆 = |𝜙𝜌(𝑆)| 

The biclique similarity of a set of vertices 𝑇 ⊆ 𝑅 is: 

𝑠𝑇 = |𝜓𝜌(𝑇)| 

Lemma 4.4. Let G=(𝐿, 𝑅; 𝜌)  be a complete bipartite 

graph. The biclique connectivity of any set of vertices 𝑆 ⊆
𝐿, 𝑆 ≠ ∅ is given by:  

𝑐𝑆 = |𝐿| ⋅ |𝑅| 

Similarly, the biclique connectivity of any set of vertices 

𝑇 ⊆ 𝑅, 𝑇 ≠ ∅ is: 

𝑐𝑇 = |𝐿| ⋅ |𝑅| 

Proof. It results from the fact that all vertices from 𝐿 are 

connected to all vertices from 𝑅 . This means that the 

maximal biclique generated by any sets of vertices either 

in 𝐿 or in 𝑅 is the complete bipartite graph itself. 

Lemma 4.5. Let G=(𝐿, 𝑅; 𝜌)  be a complete bipartite 

graph. The biclique similarity of any set of vertices 𝑆 ⊆
𝐿, 𝑆 ≠ ∅ is given by:  

𝑠𝑆 = |𝑅| 

Similarly, the biclique similarity of any set of vertices 

𝑇 ⊆ 𝑅, 𝑇 ≠ ∅ is: 

𝑠𝑇 = |𝐿| 

Proof. It results from the fact that all vertices from 𝐿 are 

connected to all vertices from 𝑅 . This means that the 

maximal biclique generated by any sets of vertices either 

in 𝐿 or in 𝑅 is the complete bipartite graph itself. 

Example 4.6. Using the bipartite graph from Fig. 3, we 

have the following connectivity measures: 

𝑐{𝑥2,𝑥3} = |{𝑥2, 𝑥3, 𝑥4, 𝑥5}| ⋅ |{𝑦2, 𝑦3, 𝑦4}| = 4 ⋅ 3 = 12 

𝑐{𝑥1,𝑥2} = |{𝑥1, 𝑥2}| ⋅ |{𝑦1}| = 2 ⋅ 1 = 2 

𝑐{𝑥2} = |{𝑥2}| ⋅ |{𝑥1, 𝑥2, 𝑥3, 𝑥4}| = 1 ⋅ 4 = 4 

𝑐{𝑥1,𝑥3} = 0 

𝑐{𝑥4,𝑥5} = |{𝑥4, 𝑥5}| ⋅ |{𝑦2, 𝑦3, 𝑦4, 𝑦6}| = 2 ⋅ 4 = 8 

𝑐{𝑥4} = |{𝑥4, 𝑥5}| ⋅ |{𝑦2, 𝑦3, 𝑦4, 𝑦6}| = 2 ⋅ 4 = 8 

𝑐{𝑥2,𝑥4,𝑥5} = |𝑥2, 𝑥3, 𝑥4, 𝑥5| ⋅ |{𝑦2, 𝑦3, 𝑦4}| = 4 ⋅ 3 = 12 

𝑐{𝑦1} = |{𝑥1, 𝑥2}| ⋅ |{𝑦1}| = 2 ⋅ 1 = 2 

𝑐{𝑦1,𝑦2} = |{𝑥2}| ⋅ |{𝑦1, 𝑦2, 𝑦3 , 𝑦4}| = 1 ⋅ 4 = 4 

𝑐{𝑦6} = |{𝑥4, 𝑥5, 𝑥6}| ⋅ |{𝑦6}| = 3 ⋅ 1 = 3 

Some of the similarity measures for vertices in 𝐿: 

𝑠{𝑥1,𝑥2} = |{𝑦1}| = 1 

𝑠{𝑥1,𝑥3} = 0 

𝑠{𝑥1,𝑥4} = 0 

𝑠{𝑥1,𝑥5} = 0 

𝑠{𝑥1,𝑥6} = 0 

𝑠{𝑥2,𝑥3} = |{𝑦2, 𝑦3, 𝑦4}| = 3 

𝑠{𝑥2,𝑥4} = |{𝑦2, 𝑦3, 𝑦4}| = 3 

𝑠{𝑥2,𝑥5} = |{𝑦2, 𝑦3, 𝑦4}| = 3 

𝑠{𝑥2,𝑥6} = 0 

𝑠{𝑥3,𝑥4} = |{𝑦2, 𝑦3, 𝑦4}| = 3 

𝑠{𝑥3,𝑥5} = |{𝑦2, 𝑦3, 𝑦4}| = 3 

𝑠{𝑥3,𝑥6} = 0 

𝑠{𝑥4,𝑥5} = |{𝑦2, 𝑦3, 𝑦4, 𝑦6}| = 4 

𝑠{𝑥4,𝑥6} = |{𝑦6}| = 1 

𝑠{𝑥5,𝑥6} = |{𝑦6}| = 1 

𝑠{𝑥2,𝑥4,𝑥5} = |{𝑦2, 𝑦3, 𝑦4}| = 3 

Some of the similarity measures of vertices in 𝑅:  

𝑠{𝑦1,𝑦2} = |{𝑥2}| = 1 

𝑠{𝑦1,𝑦3} = |{𝑥2}| = 1 

𝑠{𝑦1,𝑦4} = |{𝑥2}| = 1 

𝑠{𝑦1,𝑦5} = 0 

𝑠{𝑦1,𝑦6} = 0 

𝑠{𝑦2,𝑦3} = |{𝑥2, 𝑥3, 𝑥4, 𝑥5}| = 4 

𝑠{𝑦2,𝑦4} = |{𝑥2, 𝑥3, 𝑥4, 𝑥5}| = 4 
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𝑠{𝑦2,𝑦5} = |{𝑥3}| = 1 

𝑠{𝑦2,𝑦6} = |{𝑥4, 𝑥5}| = 2 

𝑠{𝑦3,𝑦4} = |{𝑥2, 𝑥3, 𝑥4, 𝑥5}| = 4 

𝑠{𝑦3,𝑦5} = |{𝑥3}| = 1 

𝑠{𝑦3,𝑦6} = |{𝑥4, 𝑥5}| = 2 

𝑠{𝑦4,𝑦5} = |𝑥3| = 1 

𝑠{𝑦4,𝑦6} = |{𝑥4, 𝑥5}| = 2 

𝑠{𝑦5,𝑦6} = 0 

We need to determine the order in which to recommend 

new items to users. For a given user and a new item, we 

compute the average of similarities between the new item 

and items we know the given user likes. This will associate 

a numerical value to each new item. The new items will be 

sorted according to these values in descending order. This 

will be the order in which the new items will be 

recommended to that given user. 

Let G be a bipartite graph represented by biadjacency 

matrix 𝐵 ∈  { 0,1}|𝐿|×|𝑅|. For any pair of 𝑢𝑖 ∈ 𝐿 and 𝑡𝑗 ∈ 𝑅 

for which 𝑏𝑢𝑖,𝑡𝑗 = 0, the likelihood that user 𝑢𝑖  will like 

item 𝑡𝑗 is given by: 

ℓ(𝑢𝑖 , 𝑡𝑗) =
∑ 𝑠{𝑡𝑘,𝑡𝑗} ⋅ 𝑏𝑢𝑖𝑡𝑘
|𝑅|
𝑘=1,𝑘≠𝑗

∑ 𝑏𝑢𝑖,𝑡𝑘
|𝑅|
𝑘=1,𝑘≠𝑗

 

A similar version that uses the biclique similarity 

between users instead of the biclique similarity between 

items is given below: 

ℓ′(𝑢𝑖 , 𝑡𝑗) =
∑ 𝑠{𝑢𝑘,𝑢𝑖} ⋅ 𝑏𝑢𝑘𝑡𝑗
|𝐿|
𝑘=1,𝑘≠𝑖

∑ 𝑏𝑢𝑘,𝑡𝑗
|𝐿|
𝑘=1,𝑘≠𝑖

 

Note that for function ℓ, we would need user 𝑢𝑖 to have 

liked at least one item, and for ℓ′ we would require the 

item 𝑡𝑗 to be liked by at least one person. Otherwise the 

denominator of the two fractions would be zero. This is 

related to the cold start problem. One possible solution 

could be to temporarily assign a small number of random 

likes to any new users and new items. 

Example 4.7. Using the bipartite graph G= (𝐿, 𝑅; 𝜌) 
from Fig. 3, where 𝐿  represents a set of users and 𝑅 

represents a set of items, some of the likelihoods are given 

below. 

Using the similarity between items we get: 

ℓ(𝑥2, 𝑦6) =  
𝑠{𝑦1,𝑦6} + 𝑠{𝑦2,𝑦6} + 𝑠{𝑦3,𝑦6} + 𝑠{𝑦4,𝑦6}

4
 

= 
0 + 2 + 2 + 2

4
=
6

4
= 1.5 

ℓ(𝑥1, 𝑦6) =  
𝑠{𝑦1,𝑦6}

1
=  
0

1
= 0 

This means that between user 𝑥1 and user 𝑥2, user 𝑥2 is 

more likely to like item 𝑦6. While the likelihood that 𝑥2 

will like item 𝑦6 is 1.5, the likelihood that user 𝑥1 likes the 

same item is 0. 

Using the similarity between users, we have: 

ℓ′(𝑥2, 𝑦6) =
𝑠{𝑥2,𝑥4} + 𝑠{𝑥2,𝑥5} + 𝑠{𝑥2,𝑥6}

3
 

= 
3 + 3 + 0

3
= 2 

ℓ′(𝑥1, 𝑦6) =  
𝑠{𝑥1,𝑥4} + 𝑠{𝑥1,𝑥5} + 𝑠{𝑥1,𝑥6}

3
 

= 
0 + 0 + 0

3
= 0 

Same as with the similarity between items, when using 

the similarity between users, there is a likelihood of 0 that 

user 𝑥1 will like item 𝑦6. The likelihood that user 𝑢2 will 

like item 𝑦6 , is higher than when using the similarity 

between items. 

Definition 4.8. Given a bipartite graph G=(𝐿, 𝑅; 𝜌) , 

where 𝐿 is a set of users, 𝑅 is a set of items., and 𝜌 is a set 

of edges representing likes. 𝜌 induces a set of sets of liked 

items given by: 

𝑙𝑖𝑘𝑒𝑠(𝐿) =  {𝜙(𝑢)| 𝑢 ∈ 𝐿} 

Definition 4.9 Given a bipartite graph G= (𝐿, 𝑅; 𝜌) ,  

where 𝐿 is a set of users, 𝑅 is a set of items, and 𝜌 is a set  

of edges representing likes. A chain 𝐶 = {𝐶1, … , 𝐶𝑘} , 

where 2 ≤ 𝑘 ≤ |𝑙𝑖𝑘𝑒𝑠(𝐿)| , is an ordered subset of 

𝑙𝑖𝑘𝑒𝑠(𝐿) with property: 

𝐶𝑖 ⊂ 𝐶𝑖+1  

for any 1 ≤ 𝑖 < 𝑘 

𝐶  is a maximal chain, if no other chain 𝐶′ ⊃ 𝐶  can be 

formed from 𝑙𝑖𝑘𝑒𝑠(𝐿). 
Note that 𝐶′ ⊃ 𝐶 , if 𝐶′ ≠ 𝐶  and all elements of 𝐶  are 

present in 𝐶′.  
The likes of a user will be part of at least one chain if 

they are either a proper subset or proper superset of the 

likes of at least one different user. The set of likes of a user 

𝑢 will be the first element in a chain, if there is at least 

another user whose likes are a proper superset of the user 

𝑢’s likes. The set of likes of a user 𝑢 will be placed in the 

last position of a chain if there is at least one user whose 

likes are a proper subset of the user 𝑢’s likes. The likes of 

a user 𝑢 will be placed in the middle of a chain, if there is 

at least one user whose likes are a proper superset of user 

𝑢's likes, as well as at least one another user whose likes 

are a proper subset of user 𝑢's likes. 

Example 4.10. Let G=(𝐿, 𝑅; 𝜌) be the bipartite graph 

from Fig. 1, where 𝐿  represents a set of users and 

𝑅 represents a set of items. We have: 

𝑙𝑖𝑘𝑒𝑠(𝐿) = {{𝑦1, 𝑦3, 𝑦4}, {𝑦2, 𝑦5} 

{𝑦1 , 𝑦2, 𝑦4}, {𝑦1 , 𝑦3, 𝑦4, 𝑦5}} 

This set contains chain ({𝑦1, 𝑦3, 𝑦4}, {𝑦1, 𝑦3 , 𝑦4, 𝑦5}) , 

which is a maximal chain. 

Example 4.11. Let G=(𝐿, 𝑅; 𝜌) be the bipartite graph 

from Fig. 2, where 𝐿  represents a set of users and 

𝑅 represents a set of items.  

We have: 

𝑙𝑖𝑘𝑒𝑠(𝐿) = {{𝑦2}, {𝑦1, 𝑦2}} 

This set contains chain ({𝑦2}, {𝑦1, 𝑦2}) , which is a 

maximal chain. 
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Example 4.12. Let G=(𝐿, 𝑅; 𝜌) be the bipartite graph 

from Fig. 3, where 𝐿  represents a set of users and 𝑅 

represents a set of items.  

We have: 

𝑙𝑖𝑘𝑒𝑠(𝐿) =  {{𝑦1}, {𝑦1, 𝑦2 , 𝑦3, 𝑦4}, {𝑦2 , 𝑦3, 𝑦4, 𝑦5} 

{𝑦2, 𝑦3, 𝑦4, 𝑦6}, {𝑦6}} 

The set contains two chains, each of them of length two, 

given by: 
({𝑦1}, {𝑦1, 𝑦2 , 𝑦3, 𝑦4}) 

({𝑦6}, {𝑦2, 𝑦3, 𝑦4, 𝑦6}) 

Both chains are maximal. 

This notion of chains might be useful when analyzing a 

bipartite graph. We plan to investigate this notion and see 

how it relates to association rules for items. 

We introduce next the Biclique Similarity Ordering 

Recommendation (BISOR) Algorithm, a technique that 

determines the order in which to recommend items to users. 

 

V. EXPERIMENTAL RESULTS 

We present experimental results for the version of the 

algorithm that uses the similarity between items. The 

algorithm was implemented in Java.  

Offline validation techniques were used to verify our 

recommendation algorithm. The steps are straightforward: 

we remove a number of likes, we run the recommendation 

algorithm, and then we validate against the likes we have 

removed. 

For the step that selects the likes to be removed we 

propose two methods: 

Sampling-Method 1: We randomly select a percentage 

of users. For each user from that set, we remove a number 

of likes (i.e. edges) only if that user contains a given 

minimum of preferences (i.e. edges). In the experiments 

presented below, if the selected user had at least five likes, 

we randomly removed two of them. 

Sampling-Method 2: We randomly remove a percentage 

of edges representing likes. 

The recommendation algorithm we propose determines 

the order in which to recommend other items to users. The 

recommendation algorithm looks at what positions in the 

ordered recommendation list are the likes we have 

previously removed. The position in the list is not enough 

for validation. Recommending an item at position 5 out of 

10 is not the same as recommending an item at position 5 

out of 1000. Therefore, we look at the normalized index 

of the items in the ordered list of recommendations. For 

example, if we recommend 1,000 items to the user, and a 

given item is at position 5 in the ordered list, we say that 

the normalized index of this item is 5/1000 = 0.005. The 

smaller the average of the normalized index across all 

validated likes is, the better the recommendation system. 

A normalized index, named 𝑟, is used in [9] to validate the 

recommendation result. 

We present experimental results run on three real-world 

datasets. Each experiment was run 10 times. We present 

the min, max and average values of the measurements 

across all runs. We compared the validation results 

obtained by running our BISOR algorithm, with the results 

obtained by running one of the most widely used 

Collaborative Filtering (CF) algorithm [17], [18], [9]. We 

implemented the CF algorithm using their proposed 

method with similarity between items. 

The Sushi dataset [19] contains 5000  users and 100 

types of sushi. The original dataset contains the ratings 

given by users to different types of sushi. Ratings ∈
{0,1, 2, 3, 4} , with 0  representing a dislike, and 4 

representing a like. We created the biadjacency matrix of 

likes by taking into account only ratings greater than 2. 

The resulted matrix contains an edge between a user and a 

sushi type if that user rated that sushi with a 2, a 3 or a 4. 

Table I presents experimental results using both Sampling-

Method 1 and Sampling-Method 2, which shows BISOR 

algorithm performed substantially better than the CF 

algorithm. 

TABLE I.  SUSHI DATASET 

Sampling-Method 1 – 10 runs 

 
No. Likes 
Validated 

BISOR Avg. 
Normalized Index 

CF Avg 

Normalized 

Index 

10% 

Users 

avg = 965 
min = 952 

max = 980 

avg = 0.2298 
       min = 0.22 

max = 0.2365 

avg = 0.7319 
min = 0.7191 

max = 0.7445 

Sampling-Method 2 – 10 runs 

10%  

Edges 

avg = 4142 

min = 4142 
max = 4142 

avg = 0.2255 

min = 0.2193 
        max = 0.2305 

avg = 0.7348 

min = 0.7292 
  max = 0.7402 

 

MovieLens 100k Dataset [20] contains about 100k 

ratings between 943  users and 1682  movies. Ratings ∈
{1, 2, 3, 4, 5} , with 1  representing a dislike, and 5 

representing a like. We created the biadjacency matrix of 

likes by taking into account only ratings ≥ 3 . Table II 

presents experimental results, which shows BISOR 

algorithm performed better than the CF algorithm. When 

using Sampling-Method 1, the average normalized index 

across all runs was 0.104 for BISOR and 0.2127 for CF 

algorithm. For Sampling-Method 2, the averages were 

0.1166 for BISOR and 0.2153 for CF. 
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TABLE II.  MOVIELENS 100K DATASET 

Sampling-Method 1 – 10 runs 

 
No. Likes 
Validated 

BISOR Avg. 
Normalized Index 

CF Avg 

Normalized 

Index 

10% 
Users 

avg = 188 

min = 188 

max = 188 

avg = 0.104 

       min = 0.0881 

max = 0.1277 

avg = 0.2127 

min = 0.1908 

max = 0.2271 

Sampling-Method 2 – 10 runs 

10%  

Edges 

avg = 8252 
min = 8252 

max = 8252 

avg = 0.1166 
min = 0.1141 

        max = 0.119 

avg = 0.2153 
min = 0.2096 

  max = 0.2192 

 

MovieLens 1 Million Dataset [20] contains 6040 users, 

3952 movie titles and about 1,000,000 ratings. Ratings ∈
{1, 2, 3, 4, 5} , with 1  representing a dislike, and 5 

representing a like. We created the biadjacency matrix of 

likes by taking into account only ratings ≥ 3. Table III 

presents experimental results, which shows BISOR 

performed substantially better than the CF algorithm. 

TABLE III.  MOVIELENS 1 MILLION DATASET 

Sampling-Method 1 – 10 runs 

 
No. Likes 

Validated 

BISOR Avg. 

Normalized Index 

CF Avg 

Normalized 
Index 

10% 

Users 

avg = 1207.2 

min = 1204 

max = 1208 

       avg = 0.0969 

       min = 0.0864 

max = 0.1063 

avg = 0.4681 

min = 0.4603 

max = 0.4786 

Sampling-Method 2 – 10 runs 

10%  
Edges 

avg = 57528 

min = 57528 

max = 57528 

avg = 0.0971 

min = 0.0965 

        max = 0.098 

avg = 0.4581 

min = 0.4571 

  max = 0.4591 

 

The experimental results run on all three real-world 

datasets show better results for BISOR algorithm than for 

one of the most widely used collaborative filtering 

algorithm. BISOR performed significantly better on the 

Sushi dataset and MovieLens 1 million dataset and slightly 

better on the MovieLens 100k dataset. BISOR algorithm 

showed a more consistent performance across multiple 

datasets, with an average normalized index in 0.08𝑥  to 

0.23𝑥  range across all runs. For the CF algorithm, the 

performance varied substantially from one dataset to 

another, with a best average normalized index in 0.19𝑥 to 

0.22𝑥 range for MovieLens 100k, an average normalized 

index in the range of 0.45𝑥  to 0.47𝑥  for MovieLens 1 

million, and 0.71𝑥 to 0.74𝑥 range for Sushi dataset. 

VI. C FUTURE WORK 

The notion of maximal biclique generated by a set of 

vertices in a bipartite graph and a measure of biclique 

similarity are applied to the formulation of the Biclique 

Similarity Ordering Recommendation (BISOR) Algorithm, 

a method that leverages the connectivity patterns within a 

bipartite graph of likes to determine the order in which to 

recommend items to users. Our approach is using polarities 

generated by binary relations. 

We validated our findings using three real-world 

datasets: Sushi, MovieLens 100k and MovieLens 1 Million. 

Compared with one of the most widely used Collaborative 

Filtering (CF) algorithm, the BISOR algorithm performed 

substantially better on the Sushi and MovieLens 1 million 

datasets and slightly better on the MovieLens 100k dataset. 

We are seeking to extend this approach to incorporate 

users’ dislikes. We would also like to further investigate 

whether giving more weight to items/users with high 

biclique connectivity would improve our algorithm. We 

also plan to further investigate how the notion of chains in 

bipartite graphs could be used when analyzing a bipartite 

graph and the association between different vertices.  
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