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Abstract—Wearable sensors using sensor-based Human 

Activity Recognition (S-HAR) are generally capable of 

regular simple actions (walking, sitting, or standing), but are 

indistinguishable from sophisticated activities, such as 

sports-related activities. Because these involve a more 

comprehensive, contextual, and fine-grained classification of 

complex human activities, simplex activity recognition 

systems are ineffective for growing real-world applications, 

for example remote rehabilitation observation and sport 

performance tracking. So, an S-HAR framework for 

recognizing sport-related activity utilizing multimodal 

wearable sensors in numerous body positions is proposed in 

this study. A public dataset named UCI-DSADS was used to 

investigate the recognition performance of five deep learning 

networks. According to the experimental results, the BiGRU 

recognition model surpasses other deep learning networks 

with a maximum accuracy of 99.62%.  

 

Index Terms—deep learning, multimodal wearable sensor, 

human activity recognition, CNN, LSTM 

 

I. INTRODUCTION 

Wearable sensor technology is rapidly evolving due to 

a variety of factors, including lower sensor device costs 

and significant computational improvements in 

miniaturized sensors [1], [2]. Wearable sensors are small 

gadgets that users can take around with them while going 

about their regular activities. Motion sensors, such as 

accelerometers, gyroscopes, and magnetometers, could 

collect a human's bodily movement signals at any time and 

from any location [3]-[5]. Many mobile applications, 

including remote healthcare services for monitoring 

elderly people [6]-[9], abnormal driving monitoring [10], 

sport performance tracking [11], and the assistance mobile 

platform for individuals with disabilities [12], [13], make 

use of the benefits of all these wearable sensors. 

Human-centered computing is a relatively new field of 

research and application that focuses on human behavior 

and the interaction of people and their social contexts with 

digital technology [14]. Human Activity Recognition 

(HAR), which attempted to determine the behavior, 

characteristics, and objectives of one or more individuals 

from a temporal series of data provided from one or more 

sensors [15], [16], is necessary and encompassed by this 

[17]. In sensor-based HAR, classification models were 

developed using standard Machine Learning (ML) 

algorithms such as decision trees, naive Bayes, and 

Support Vector Machine. Although various machine 

learning algorithms have demonstrated a high-

performance model for HAR, these methods are restricted 

by the issue of manual feature extraction. Human 

knowledge and experience limit the precision of manually 

derived characteristics, resulting in low accuracy. Many 

researchers have subsequently proposed deep learning 

solutions to handle the limited concerns [18]-[21]. Deep 

neural networks have recently been suggested to learn 

features automatically without any need for handcrafted 

feature extraction, bypassing the limitations of human 

expertise and experience [22]. 

Most recognition techniques are currently still dealing 

with HAR problems for suitable performance. These 

findings suggest a gap in HAR research to know the 

unified model of DL, in terms of accuracy and 

computational time, to automatically extract 

characteristics and recognize complex human activities. 

Therefore, in this study, the multimodal wearable sensor-

based HAR of sport-related activities is focused on. With 

five different deep learning models, we investigate the use 

of different wearable sensors (accelerometer, gyroscope, 

and magnetometer) to enhance performance of sport-

related activity recognition. These wearable sensors were 
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placed on the torso, left arm, right arm, left leg, and right 

leg, among other body positions. BiGRU outperforms 

other deep learning networks in terms of maximum 

accuracy, according to testing data. 

The remaining part of the paper is divided into the 

sections following. Section II describes the proposed 

multimodal wearable sensor-based HAR for sport-related 

activity identification. Section III provides the research 

findings. Section IV brings the results to a conclusion. 

II. PROPOSED METHODOLOGY 

This paper proposes a multimodal wearable sensor-

based human activity recognition framework that uses 

sensor data from wearable sensors to characterize the 

activity that the individuals have accomplished. The 

proposed methodology followed in this study to obtain our 

research goal is demonstrated in Fig. 1.  

 

Figure 1. The proposed framework of multimodal wearable sensor-based HAR used in this study. 

A. UCI-DSADS Dataset 

In this study, we used a HAR dataset called “Daily and 

Sports Activities Dataset” (called UCI-DSADS dataset) 

[23] that is publicly available at the University of 

California-data Irvine’s repository to investigate the 

proposed model. The UCI-DSADS dataset used five MTx 

2-DOF orientation trackers to interpret activity sensor data 

from eight participants who were designed to attend 19 

activities in 5 different body locations (torso, left arm, right 

arm, left leg, and right leg) as shown in Table I: 9 activities 

in everyday life and 10 sports-related activities. Some 

samples of the activity sensor data are shown in Appendix 

A. 

TABLE I.  LIST OF ACTIVITIES PROVIDED IN THE UCI-DSADS 

DATASET 

Activity in Daily Life Sport-related Activity 

Sitting 
Walking on a treadmill with 

4km/h in flat 

Standing 
Walking on treadmill with 15 
inclined pos. 

Lying on the back side 
Running on a treadmill with 8 

km/h 
Lying on the right side Exercising on a stepper 
Ascending stairs Exercising on a cross trainer 

Descending stairs 
Cycling on an exercise bile in 

horizontal pos. 

Standing still in an elevator 
Cycling on an exercise bile in 
vertical pos. 

Moving around in an elevator Rowing 
Walking in a parking lot. Jumping 
 Playing basketball 

Each of the foregoing activities is conducted for five 

minutes by eight volunteer participants (four females and 

four males, ages 20-30). The eight participants are 

requested to answer the activities in their own unique style, 

with no restrictions. Sensor devices are calibrated to 

collect data at a sampling rate of 25Hz. The five-minute 

signals are split into five-second portions, from which 

certain characteristics are obtained. For each activity, this 

produces 480 signal segments. 

B. Convolution Neural Network 

Convolutional Neural Networks (CNNs) are deep 

learning models that can entirely work with 2D input like 

images and videos [24]-[26]. CNNs can extract spatially 

local information and differentiate objects in the input 

image using some filters [27]. The convolutional layers are 

formed by the filter, which are usually followed by some 

fully-connected layer that perform the classification 

process. Aside from being better at learning features, 

CNNs can scale to massive datasets due to various pooling 

layers. Convolutional (Conv) layer, activation layer, 

pooling, Fully Connected (FC) layer, and SoftMax layer 

are the 5 fundamental layers in the CNN model. The 

convolutional layer is composed of a number of 

convolutional filters, each of which activates different 

features from the sensor input. After determining a 

nonlinear function of the input, the activation layer, also 

known as a Rectified Linear Unit (ReLU), activates the 

specific neuron. By reducing the spatial dimension of the 

input, the pooling layer minimizes the number of 

parameters. The fully-connected layer, which is similar to 

hidden layers in conventional neural networks, represents 

essential composite and aggregated features or information 

from all convolutional layers that have occurred before it. 

The SoftMax layer normalizes the predictions and allows 

the network to provide probabilistic outputs. At a SoftMax 

layer, cross-entropy loss is also assessed. The structure of 

a CNN network illustrated in Fig. 2. 

Journal of Advances in Information Technology Vol. 13, No. 2, April 2022

© 2022 J. Adv. Inf. Technol. 133



 

Figure 2. The structure of a CNN network. 

C. Recurrent Neural Network 

Artificial neural networks with an internal memory are 

known as Recurrent Neural Networks (RNNs). Because 

the output computed for the current input is dependent on 

both the input and the outcomes of previous computations, 

they are called recurrent neural networks [28]. The current 

output is really sent back into the network and combined 

with the current input to generate the next output. RNNs 

are created for processing sequences, as opposed to CNNs, 

which are designed specifically for processing a grid of 

values to extract spatial information. RNNs, unlike normal 

Feed-Forward Neural Networks (FNNs), preserve a state 

that can express temporal data from any length of context 

window [29]. As a result, while a FNN can only map from 

input to output vectors, an RNN can theoretically map 

from each input's whole history to each output. 

Long Short-Term Memory Networks (LSTMs) are an 

extension of RNNs that perform substantially better than 

ordinary RNNs when it concerns to memorizing 

dependencies for a long period of time [30]. The design of 

the recurring module in these networks enables this 

capacity. A layer termed the cell state, as well as three 

other levels called gates, create these layers. The LSTM 

memory is the cell state. While LSTM has proven to be a 

reliable option for avoiding the exploding/vanishing 

gradient problem, the architecture’s memory cells result in 

a higher memory required. Cho et al. [31] introduced the 

Gate Recurrent Unit (GRU) network, a unique RNN-based 

model, in 2014. The GRU is a basic variation of the LSTM 

that does not include a distinct memory cell in its 

configuration [32]. In the network of a GRU, there is an 

update and reset gate that handles the updated degree of 

each concealed state. It determines which data 

requirements are to be transferred to the next state and 

which do not. 

 

Figure 3. Comparison of (a) RNN, (b) LSTM and (c) GRU structures. 

 

Figure 4. Bidirectional sequence learning models which one hidden layer in the unfold form: (a) Bidirectional LSTM (b) Bidirectional GRU. 
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Fig. 3 depicts the unit cell of a normal RNN, an LSTM, 

or a GRU unit cell to summarize the discussion concerning 

RNN-based models. One significant drawback of such a 

network is that it is unidirectional. Aside from the current 

input, the output at any time stage solely depends on the 

previous data in the input sequence. In some cases, 

nevertheless, it may be more beneficial to develop 

predictions based on both the past and the future. This can 

be performed using a bidirectional network [33], as shown 

in Fig. 4. 

D. Evaluation Metrics 

To evaluate the five deep learning networks, we used 

the performance metric from the field of HAR. The 

accuracy is the standard metric to summarize the overall 

classification performance for all activity classes: 

 

 TP TN
Accuracy

TP TN FP FN

+
=

+ + +
           (1) 

 

where: 

TP represents the number of positive instances that were 

classified as positive, 

TN represents the number of negative instances that were 

classified as negative, 

FP represents the number of negative instances that were 

classified as positive, 

FN represents the number of positive instances that were 

classified as negative. 

III. EXPERIMENTS AND RESULTS 

The experiment setting, performance measurements, 

and findings utilized to validate the developed deep 

learning model for sensor-based HAR are described in this 

section. 

A. Experiments 

Python's Scikit-learn and Keras were used to develop 

the deep learning model. The Google Colab Pro platform 

with GPU Tesla P100-PCIE-16GB was used to run all of 

the implementations. For the UCI-DSADS dataset, we 

performed a series of experiments to see which one 

produced the best results. For the experiments, we 

employed a 10-fold cross-validation methodology. 

B. Experimental Results 

This study included three different types of sensors 

(accelerometer, gyroscope, and magnetometer) and five 

different body positions to investigate the recognition 

performance of DL networks (torso, left arm, right arm, 

left leg, and right leg). 

Table II shows that the use of sensor data from all body 

postures, the BiGRU model obtained the maximum 

accuracy of 99.616%. We separated each type of sensor 

data to develop the DL models in this experiment, and the 

study reveals that the BiGRU surpasses the other DL 

models, which is shown in Fig. 5. 

 

TABLE II.  PERFORMANCE OF THE DEEP LEARNING MODELS USED IN 

THIS WORKS USING ALL THREE SENSOR DATA 

Model 

Accuracy (%) 

Torso 
Right 

Arm 

Left 

Arm 

Right 

Leg 

Left 

Leg 
All 

CNN 97.401 97.105 97.368 98.191 98.246 98.728 

LSTM 98.629 97.533 97.982 98.728 98.640 99.583 

BiLSTM 98.476 98.158 98.520 98.925 98.980 99.594 

GRU 98.520 97.895 98.158 98.805 99.178 99.507 

BiGRU 98.969 98.235 98.509 99.046 99.002 99.616 

 

 

Figure 5. Comparison performance of the five DL models with different 
sensor data. 

Fig. 6 shows the training progress of the proposed 

BiGRU model, respectively. As shown, we monitored the 

accuracy and loss trend for up to 200 epochs. In this 

process, we noticed that the stability of the proposed 

BiGRU model after ten epochs. Moreover, there is no 

overfitting for the proposed BiGRU model. 

 

Figure 6. Accuracy and loss trends of the proposed BiGRU model for 
UCI-DSADS dataset. 

Fig. 7 shows a confusion matrix obtained from the 

experimental results of the proposed BiGRU. The results 

evidence that the proposed BiGRU well performs for the 

sport-related activity recognition. 
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Figure 7. A confusion matrix of the proposed BiGRU model for UCI-

DSADS dataset. 

IV. CONCLUSION AND FUTURE WORKS 

This study introduced an S-HAR framework for 

recognizing sport-related activity utilizing multimodal 

wearable sensors on numerous body positions. A public 

dataset named UCI-DSADS was used to evaluate the 

recognition performance of five deep learning models. 

According to the experimental results, the BiGRU network 

surpasses other deep learning networks with a maximum 

accuracy of 99.616%. 

In the future, we plan to improve the BiGRU model and 

study them with various hyperparameters such as learning 

rate, batch size, optimizer, and many others. We also aim 

to introduce our model to more complicated activities in 

order to address other DL models. 

APPENDIX A  SOME SAMPLES OF DATASET USED IN THIS 

RESEARCH 

 

Figure A1. Some samples of accelerometer data from the UCI-DSADS 
dataset. 

  

Figure A2. Some samples of gyroscope data from the UCI-DSADS 
dataset. 

 

Figure A3. Some samples of magnetometer data from the UCI-DSADS 
dataset. 
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