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 Abstract—This paper aims to extend the existing developed 

approaches for the control synthesis of state feedback 

control for the class of Timed Discrete Event Systems 

particularly its subclass represented by Timed Event 

Graphs. Accordingly, we introduce a new solving approach 

based on the Petri nets under the existence of mixed 

constraints. Capacity and time are both critical criteria that 

could sometimes evolve together and need to be respected at 

the same time for proper systems conduction, especially for 

industrial sensitive applications. In this sense, we look to 

compute suitable control laws in order to meet these critical 

specifications. Wherefore, we aim to satisfy sufficient 

conditions to ensure the respect of these restrictions. Based 

on the use of linear dioid algebra for the analytical modeling 

and on Petri nets for the graphical modeling, the general 

dynamical behavior of the system is described by linear 

Min-plus equations while the mixed constraints are 

represented by linear inequations. 

 

Index Terms—Discrete Event Systems (DES), Petri nets, 

Timed Event Graph (TEG), dioid algebra min-plus, control 

synthesis, strict mixed constraints 

 

I. INTRODUCTION 

Min-plus algebra is a framework of linear algebra over 

Min-plus semiring, which is defined by the set 

min ,( { } ),,   and characterized with both 

operations; multiplication a b a b = +  and addition 

min( , ).a b a b = This idempotent semiring is 

characterized by neural element  = +  and unity 0e = . 

The Arithmetic operation in the sequel of Min-plus 

algebra is also extended to the case of matrix, in our case 

of concern, all matrix multiplications are in the Min-plus 

sense.  

Petri Nets had proved their efficiency in representing a 

wide range of the Discrete Event Systems due to their 

simplicity for a various uses notability for system’s 

analysis and control design. In the sequel of this paper we 

specifically use P-Timed Petri Nets where time delays are 

associated to places. In order to model linear systems we 

used a class of Petri Net such that all of its places have 
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only one input transition and one output transition. This 

class is TEG. The linear representation is deduced worth 

to a set of counter functions according to the evolution of 

the system's status. For this purpose recurring linear 

equations are fixed to represent the behavior of the Timed 

Event Graph, and the inequations are used to describe the 

set of the mixed constraints on places.  Strict 

specifications related to capacity and time are the crucial 

criterions that are needed to be respected for a proper 

system’s conduction. This frequently encountered 

problem faced through many of the real industrial 

processes sensitive to these specifications catches our 

interest that fore we look to solve this issue by providing 

control laws involving delay and satisfying specific 

conditions. 

This current contribution adapts existing approaches in 

order to solve the control problem issue under the 

existence of mixed constraints as well as introduces a 

generalization covering wider encountered applications 

within more complicated systems. We refer to our 

previous works in the same issue like in [1] where a 

control design was established to solve time constraints 

availability in paths. By relaxing some previous 

hypothesizes in the same topic, the presented solution 

proves its efficiency in the problem of possible loops 

without tokens and contributes on keeping the properties 

of the Timed Event graph. 

In Section II we evoke the theoretical recalls required 

in this work notably Min-plus algebra formalism and with 

a focus on the TEG class. The following section is 

focused on the problem formulation by introducing the 

concept and the properties of the mixed constraints over 

Min-plus. In Section IV, we evoke the control synthesis 

resolution. Section V is reserved for the application case 

and finally the conclusion with some future perspectives.  

II. THORETICAL RECALLS  

An abundant literature was dedicated to introduce the 

Petri Nets framework, like in [2] and [3]. Since a Petri net 

is known as a biparti-graph, it is composed of places and 

transitions linked together with arcs. Each marked place 

contains a finite number of tokens that define the 

dynamic of the systems. Considering tokens dynamic 
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inside the graph it is possible to model the state at a 

specific point of the systems evolution.  

1 2 nP p , p ,..., p=  stands for the set of n  places.  

1 2 mT t ,t ,...,t=  stands for the set of m  transitions.  

p   defines the temporizations associated to places, 

they are the minimal durations for a token to move on to 

the next place.  

In our case, we are interested particularly on ordinary 

P- Timed Petri nets where all the arcs linking places to 

transitions are 1 weighted.   

We start with an over view of the matrix multiplication 

and the equation resolution over the dioid algebra Min-

plus. We give the notations: 

Let 
min min min, ,and  m p p n m nA B C     . 

The resulting matrix’s multiplication like:  

 

Remark 1 the matrix calculation considers specific 

properties such that:  

- a , is a non-null integer. 

- e , stands for the neutral element.  

-  , is the absorbing element, Like it is equals to  

 = + . 

Definition 1 Let 
i

*

m n

n nH  is a square matrix called 

the Kleene star matrix over the smearing Min-plus. It is 

calculated with the formula: 
i

i
H H  such that the 

matrix 0H  is called the unit matrix and it is characterized 

by diagonal entries equal to e  and   otherwhere. 

A counter function associated to a transition 
jt  is an 

increasing application, denoted as ( )jx t  like 

 , ( )jt x t→   →  ( )jx t     corresponds 

to the number of firing of the transition 
jt  until the date 

t  it represents the cumulated number of firing of the 

transitions. 
min( ) mu t  stands for counter functions 

related to source transitions, and 
min( ) nt  stands for 

those of any internal transition of the TEG. Among the 

first research in this filed, dealing with the dynamical 

behavior of Timed Event Graphs, we cite [4], where 

authors expose the implicit equation (1) that could be 

replaced by its equivalent explicit equation (2).  

max

0
( ) (A . ( ) . ( ))t t B u t



 


   
=

=  −  −               (1) 

* *

0 0
0

( ) ( . . ( ) . . ( ))t A A t A B u t 


   


=  −  −            (2) 

We give: 

minA n n  is a square matrix, in which its entries are 

defined by 
,A ij  representing the initial marking 

ijm  of 

each place 
ijp , if the place is not marked we note the 

corresponding entry like 
ijm = . 

min

n mB  where the entries represent the marking of 

the places linked straight to the resource transition. 
max  represents the maximum delay arising in the 

Timed Event Graph. Such that:  max

/
max .

ij

ij
ij p P

 


=  

*

0A  is the Kleene star of 0A , as already same as 

defined. 

We consider the earliest starting policy where each 

transition fires as soon as it is enabled. 

A. State Space Model for TEG 

Similar to the linear classical systems theory and in 

order to seek for the state space model equation:  

( ) . ( 1) ( ) x t A x t Bu t= −                          (3) 

The concept consists in substituting each places on the 

TEG with a temporizations 1   and time units 

temporizations by a number of   places and a number of 

( 1) −  transitions. The resulting extended graph is 

characterized by a number of 
'n counter functions for 

these added transitions. As a result the state space vector 

is given as follows: 
min( ) Nx t   like 'N n n= + . 

The dynamical behavior of the TEG could be 

expressed through the following equation:  

* *

0 1( ) . ( ) . ( 1) ( )x t A x t A x t Bu t=  −   

Like we have: * *

0 1.A A A=  and *

0 .B A B= .  

It is equivalent to the sate space equation being given 

by equation (3).  

We conclude from all the previous notations that the 

event graph is deterministic, depending basically on the 

input ( )u t  and on some initial conditions. As this 

dependency could be explicit, we shall use the following 

equation: 

1

0
( ) . ( ) . . ( )k

k
x t A x t A B u t k


 

−

=

 
= −   −  

             (4) 

This equation holds true, for every 1  . 

III. MIXED CONSTRAINTS PROBLEM  

A. Time Constriant 

Temporal constraints are mostly common restrictions 

to a wide range of discreet event systems. Therefore, the 

respect of time in the control synthesis resolution is a 

serious research issue that has attracted the attention of 

researches’ interest. For instance, in [5], authors look to 

determine the sizing and the control of the plant under an 

existent temporal constraint. Authors in [6], focus on 

automatic test systems in which they show the validation 

of systems that include timing constraints. An application 

of rail transport is deployed in order to illustrate their 

approach. In addition, similar to application in [7], 

authors take into account time constraints caused by the 

leading train through solving optimal control problem 

based on the use of two different approaches: the greedy 

1

( )  
p

ij ij ik kj
k

C A B A B
=

=  = 
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and the simultaneous approach. In [8] and [9], their main 

interest was about real time constraints in order to find 

control processing times minimizing a cost function for 

each task subject of the constraints. Moreover, Also 

temporal constraints were the main concern for authors of 

[1] and [10], control laws with the use of both semiring of 

dioid algebra Min-plus and Max-plus were determined to 

ensure these specifications. It has shown in [11] the way 

timing issues are crucial especially for manufacturing 

systems, they proposed a formal method for the analysis 

and the control of P-Timed petri nets. Unlike some 

developed approaches listed under the framework of non-

timed dynamic event systems as in [12], in our case, we 

are going besides to focus on the class of Timed Event 

systems with critical time, like the case of tasks delimited 

by a time bound. In the place 
ijp , let min

ij  is the minimal 

sojourn time of the token that is taking in advance by the 

linear model. Since min

ij ij = , only the maximal time 

must not be exceeded that seems the additional temporal 

specification that we are aiming to satisfy.  

Referring to [13] and [14], the expression of the 

temporal constraint is deduced from the following 

inequality: 

                    max

0( ) ( )i ij j ijx t m x t  −                         (5) 

 

Figure 1. Mixed constraints on the place  

B. Marking Constraints 

Marking in terms of Petri Nets characteristics assigns to 

places a nonnegative integer which refers to tokens. Their 

dynamic follows some firing rules. For instance, they 

could be translated as the caring capacity of materials for 

stock areas, memory capacity in networked 

communication systems, products to be proceeded in an 

industrial production line. In literature, several attempts 

have revolved around the control synthesis resolution to 

satisfy marking constraints such as in [15] and [16], we 

find approaches based on the use of Petri Nets place 

invariants to synthesize control that consider constraints 

on the system’s marking behavior, these constraints are  

linear inequalities based on elements of Petri Nets 

marking vectors. Even though the approach can be used to 

build Petri net controllers in a modular manner, it is not 

efficient for the case of uncontrollable transitions. 

Recently in [17], an approach has showed an interest in 

the places with critical marking. Authors explored the 

Generalized Mutual Exclusion Constraints (GMECs), 

through using resource-based observers in order to 

approximate the maximum markings of critical places. 

Another attempt in [18] to resolve the problem of marking 

restriction. On which the objective of the developed 

control design is to restrict the number of tokens at certain 

places with the use of both Min-plus algebra and TEGs. 

Accordingly, authors established some relaxing 

hypothesizes. Although their approach was applied to a 

manufacturing line and to an assembly system, the 

proposed formulation does not consider the issue of 

unobservable transitions on the TEG.  

Assuming that the place illustrated in Fig. 1 is assigned 

to indicate the maximal marking to be tolerated. Let 
0ijm  

be the initial marking of this place, ( )jx t  is the counter 

function assigned to the transition 
jt  up to t  time and 

ijm  

represents the available marking in the place 
ijp  at t  time 

which is equivalent to 
0( ) ( ) .j i ijx t x t m− + According to 

[18], the marking is represented by the inequality 

( )ijm t b  is equivalent to: 

0( ) ( )j i ijx t x t m b− +   

Which could be transformed to the equivalent following 

Min- plus inequality of the constraint:  

0( ) ( ). ( )j ij ix t b m x t −                         (6) 

IV. CONTROL FORMULATION OVER DIOID MIN-PLUS  

In this section, we address the control formulation step 

in order to find suitable control laws in the case of mixed 

constraints on places. Thereupon, we introduce the 

Theorem 1, which gives an overview of the control 

synthesis in the case of the existence of single mixed 

constraints.  

Taking equation (4) into consideration, if we substitute 

the parameter  , it will be substituted by  . Hence, we 

get the equation (7) as follows:  

1

1 0
( ) ( ) ( ) ( . ) . ( )

N
k

i ir r i
r k

x t A x t A B u t k


 
−

= =

   
=  −   −   

  
  (7) 

Such that the parameter   is 1   and it is equals to 

x =  in the case of the time constraint and 
y =  is 

substituted when it consists of capacity constraint.  

Having 
min

n nA  and 
min

n mB . Such that n denotes 

the number of the internal transitions and m denotes the 

number of the input transitions. Accordingly ( )irA

designs the 
thi  components of the matrix A .  

Let   denotes the path delimited by the resource 

transition and the upstream transition of the place under 

mixed constraint. We define by   and m  successively; 

the sum of all time delays and the sum of the markings.  

As ( )jx t  represents the counter function of the 

upstream transition of the constrained place, and ( )xu t  

represents the counter function of the resource transition. 

Accordingly, we provide the following inequation: 

( ) . ( )j xx t m u t  −                             (8) 

This inequation represents the key to achieve the 

following results. 

ijp
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Remark 3 we admit that ( )xu t  stands for the control 

that satisfies time constraint case and ( )yu t  is the control 

in the case of marking constraint. 

Theorem. 1.  

A TEG whose evolution is given by the equation (3), is 

subject to both time and capacity constraints on the place  

ijp  respectively of the form (5) and (6). It admits a 

control law u( t )  of the form:  

( ) min( ( 1), ( 1)) ( ( ) ( ))x r y r x yu t F x t F x t u t u t= − − =   

( 1) ( 1)x r y rF x t F x t= −  −                                    (9) 

Wit 
1

[ ( ) . ]x

N

x ir ij
r

F A m m



=

=  − , where max 1x ij  = + +

and 
1

[ .(( ) )]y

N

y ij
r

F A b m m



=

=  − − , where 1y  = +  

Which also equivalent to: ( )u t =  

1 1

1 1

min([ ( ) . ]. ( 1),[ ( ).(( ) ) ]. ( 1))

[ ( ) . ]. ( 1) [ ( ).(( ) ) ]. ( 1)

yx

yx

N N

ir ij r ij ir r
r r

N N

ir ij r ij ir r
r r

A m m x t A b m m x t

A m m x t A b m m x t



 



 

= =

= =

 − −  − − −

=  − −   − − −

 

If the following conditions hold true:  

( ).( . )k

iijm b Am B  −    for every 0k = to    (10) 

0xF     and  0yF                       (11) 

Proof.  

The place 
ijp  is subject to mixed constraint of time and 

capacity of the forms (5) and (6). 

Correspondingly, in the equation (5), if we substitute 

the counter function 
ix ( t )  by its expression that already 

given by (7), we will get the following inequation:  

1
max

1 0
( ) ( ) ( . ) . ( ) ( )

x

x

N
k

ir r x i ij j ij
r k

A x t A B u t k m x t


  
−

= =

   
 −   −  −   

  
 

As a result, we deduce that the satisfaction of the mixed 

constraint represented by both equations (5) and (6) 

implies that of the following inequalities (12) and (13): 

max

1
( ) ( ) ( )x

n

ir r x ij j ij
r

A x t m x t
  

=
 −  −             (12) 

1
max

0
( . ) . ( ) ( )

x
k

i x ij j ij
k

A B u t k m x t



−

=
 −  −             (13) 

From the inequality (8), if we substitute the term
max( )j ijx t −  in both (12) and (13) the expression of these 

two inequalities become as follows:  

max max

1
( ) ( 1) . . ( )

N

ir r ij ij x ij
r

A x t m m u t


     
=

 − − −  − −  (12a) 

1
max

0
( . ) . ( ) . . ( )k

i x ij x ij
k

A B u t k m m u t


  
−

=
 −  − −       (13a) 

By choosing max 1x ij  = + + , in the (12a) and (13a) 

we notice that the second inequation (13a) is always 

verified since the counter function of the resource 

transition ( )xu t , is an increasing function and the terms 

( . )k

iA B  are non-negative. After simplification, the 

inequation (12a) induces:  

 

Which is equivalent to ( 1)x rF x t −  part of the control 

that already introduced by (9). 

Otherwise, to investigate the control ( )yu t  as a 

function of ( 1)x t −  we proceed similarly, the place 
ijp  is 

also subject to capacity constraint, we proceed by 

substituting equation (8) in (6), we get the following:  

1

1 0
( ) ( ) ( ) ( ) ( . ) . ( )

y

y

N
k

j ij ir r y i y
r k

x t b m A x t A B u t k





−

= =

  
 −  −   −     

 

We assume that the satisfaction of the constraint (6) 

implies the satisfaction of both of the following 

inequalities: 

1
( ) ( ) ( ) ( )y

N

j ij ir r y
r

x t b m A x t



=

 
 −  −  

              (14) 

1

0
( ) ( ) ( . ) . ( )

y

k

j ij i y
k

x t b m A B u t k
 −

=

 
 −  − 

 
             (15) 

Now, considering (10), these two inequations are 

equivalent to:  

1
. ( ) ( ) ( ) ( )y

N

y ij ir r
r

m u t b m A x t


  
=

 
−  −  −  

    (14a) 

1

0
. ( ) ( ) ( . ) . ( )

y

k

y ij i
k

m u t b m A B u t k


 
−

=

 
−  −  − 

 
   (15a) 

If we choose 1y  = + , the inequation (14a) can be 

written as: 

1
. ( ) ( ) ( ) ( 1)y

N

y ij ir r
r

m u t b m A x t



=

 
 −  −  

 

It is equals to: 

1
( ) (( ) ) ( ) ( 1)y

N

y ij ir r
r

u t b m m A x t



=

 
 − −  −  

 

In this light, we admit that above inequality represents 

( 1)y rF x t −  that establishes the desired control law in the 

case of capacity constraint on the same place, if the 

following conditions from (15. a) are satisfied. 
1

0
(( ) ) ( . ) . ( ) 0

Y
k

ij i
k

b m m A B u t k




−

=

 
− −  −  

 
 

( ).( . )k

iijm b Am B  −  

V. APPLICATION CASE: FLEXIBLE WORKSHOP 

We introduce an application case that inlay within the 

framework of automated production systems. An example 

of a flexible workshop is suggested. Main Parts of this 

system are the dark room that is reserved for the chemical 

1
[ ( ) . ]. ( 1) ( )x

n

N

ir ij r x
r

A m m x t u t



=

 − − 
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treatment task and the pick and place of two axis robot 

for the load/ unload task. Loaded products from an input 

area are picked by the robot arm and putted into the dark 

room for a dangerous chemical treatment during a time 

period parameterized depending on the piece’s materials. 

After this period, the robot picks the piece and put it in 

the evacuation area. The Timed Event Graph of this 

application is given by Fig. 2. 

 

Figure 2. TEG of the flexible workshop   

The task between t1 and t3 represents the chemical 

treatment. This process is time and capacity sensitive at a 

particular point which is illustrated by the place 
3p . A 

suitable control must be applied in order to respect this 

mixed critical constraint which is essential for the proper 

functioning of the process. The modeling step consists on 

determining a Min-plus model meaning of linear 

equations such that the state space equation (3). As in the 

Fig. 2 the place is 2 time units we must use the expanded 

model given by B. 

1

( ) ( 1) . ( )1

2

e e

e e

e

x t x t u te

e

e

     

     

     

     

      

      

      

   
   
   
   
   

= −    
   
   
   
   
     

The place 
32p  have 

max max

32ij =  which is the maximal 

time bound such that max

32 1 =  time unit. In addition, as 

there exists a capacity bound such that 2,b = the mixed 

constraint is reduced to both following inequalities:  

2 3( ) 1. ( )x t x t  

2 3( ) 1. ( 2)x t x t −  

The cumulated delay to be considered around the bath 

  is going from the resource transition ut  to the 

upstream transition of the constrained place 2t . It is given 

by:  = 0. 0m =  is the cumulated marking of the path 

 . In this case, we have 2x =  and 1.y =  Then we 

could express the equation (7) according to 2x =  as:  

7 1
2

1 0
( ) ( ) ( 2) ( . ) . ( )k

i ir r i
r k

x kt A x t A B u t
= =

   
=  −   −        

And according to 1y = , we have: 

7
1

1
( ) ( ) ( 1)ir ri

r
x t A x t

=

 
=  −    

Since this system’s problematic corresponds to the 

problem solved through theorem 1, and after checking the 

following conditions: 

30 1.( . )kA B  holding true   for  0k =  and 1k =            

          and      0xF     and  0yF                                      

The following control law guarantees the respect of the 

mixed constraints on the place and it is given like:  

1 1

7 7
2 1

3 3
1 1

4 7 2 5

( ) min( ( 1), ( 1))

( ) [ ( ) . ]. ( 1) [ ( ).(( ) ) ]. ( 1)

     [ ( ) ( 1)] [ ( ).((2 1) 0) ]. ( 1)

     2. ( 1) 1. ( 1) 1. ( 1) 1. (

yx

x r y r

N N

ir ij r ij ir r
r r

r r r r
r r

u t F x t F x t

u t A m m x t A b m m x t

A x t A x t

x t x t x t x t



 
= =

= =

= − −

=  − −   − − −

=  −   − − −

= −  −  −  −1)

 

From the above control and the extended Timed Event 

Graph, we deduce that the firing time of the transition 
2t  

exceeds those of 
4t , 

7t  and 
5t . Accordingly, the general 

control law that satisfies the mixed constraint on the place

32p  is equals to: 
2( ) 1. ( 1).u t x t= −

 
The computed control law is represented by a delayed 

and marked place added to the extended TEG of Fig. 2. 

Hence, we illustrate the controlled TEG in Fig. 3 

below. 

 

Figure 3. The controlled TEG of the constrained system  

VI. CONCULSION 

TEG constitutes a major class within the paradigm of 

discrete event systems. This type of system seems to be 

more sensitive when the general process is exposed to 

mixed constraints related to time and capacity at once. 

Therefore the originality of the proposed problem 

resolution with Min-plus seminring through the existence 

of mixed constraints, provide an efficient solution; by 

checking the sufficient conditions, the resulting control 

laws satisfy these specifications. The graphical design of 

the controlled timed event graph witness the presence of 

added marked and delayed control places. Some 

interesting perspective for future works would be 
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interesting to deal with performance evaluation for more 

complex TEGs cases, like CTEG. 
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