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Abstract—To support biodiversity conservations, plant 

classification studies, particularly from images, are 

necessary. This study explores the use of the deep 

convolutional neural network as a feature extractor to a 

plant classification problem. An original dataset consisting of 

images of seedlings of the three most important berry trees 

belonging to the Philippine indigenous plants was used. The 

result shows that as the network layers are getting deeper, 

they are becoming better at extracting discriminative 

features, such that, irrespective of classifier used their 

prediction performance keeps on improving. When the 

different layers were individually visualized, the features 

extracted were far from random, uninterpretable patterns. 

Rather, they show relevant properties that are capable of 

sorting patterns progressively from low to higher level. 

Hence, for classification problems bounded with the 

limitation of data, time, and computational hardware, 

leveraging the representational power of the deep 

convolutional neural network is very useful. 

 

Index Terms—feature extraction, deep convolutional neural 

network, deep learning, AlexNet, plant classification, SVM 
  

I. INTRODUCTION 

Plants, particularly berry types of Philippine indigenous 

trees are vital food sources and are known to have distinct 

properties, useful in specialized drug formulation [1]. Yet, 

despite their utmost economic and environmental 

importance, these berry trees are underutilized and 

less-known, even to Filipinos [2]. In addition, the richness 

of these plants is threatened and their extinction rates 

escalate due to climate disruptions [3] and elevated by the 

direct and indirect human exploitation [4].   

According to the Philippine Bureau of Agricultural 

Research and the Department of Agriculture, utilizing and 

propagating these plants will help safeguard their rate of 

survival [2]. To support biodiversity conservations, plant 

classification studies, particularly from seedling images 

are helpful. This will help identify useful seedlings and 

prevent them from being weeded out. Furthermore, this 

will assist farmers to properly manage these plants in order 

to improve their agricultural productivity and 

sustainability [5].  

Plant taxonomy or classification is the science of 

identifying, describing and naming plants. Classification 

can be done by associating one or more discriminating 
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features of a plant to its common or scientific name. 

However, a plant belonging to the same class have subtle 

differences, making it hard for non-experts to classify 

them into different species. Besides this, taxonomic work 

is a highly technical skill, requiring expertise that can only 

be attained over intensive training and experience. In 

addition, there is a limited and yet declining number of 

these skilled taxonomists to classify the more than 450,000 

plant species on earth [5], [6].  

Today, manual taxonomic tasks have greatly improved 

by the recent advancement of technology. This innovation 

is greatly influenced by the application of computer vision 

and machine learning techniques. At present, the 

state-of-the-art solution includes classification based on 

digital images. In this context, classification is defined as 

the process of predicting as to in which category does the 

new and unseen images belong based on discriminating 

features learned from labeled training images. With the 

availability of more sophisticated and efficient way of 

image-based plant classification, indeed, automatic plant 

recognition nearly comes into reality [7]. 

A manifold of successful applications in the field of 

plant classification was found in the literature. Shallow 

machine learning techniques were used in [8]-[10]. 

Whereas easier implementations were found in [11]-[13] 

where deep learning via transfer learning was utilized. In 

addition, faster solutions using feature extraction using the 

deep Convolutional Neural Network (CNN) were 

implemented in [14]-[18]. Comprehensive reviews [5], [6], 

[19] were even conducted, offering solutions and 

presenting algorithms for the same purpose. 

The general workflow for an image-based plant 

classification task is shown in Fig. 1. Accessibility to 

relevant technologies including smartphones, digital 

cameras and the remote access to databases allow easy 

acquisition of plant images. Also, advances in image 

processing provided various preprocessing techniques to 

make the images suitable for feature extraction. Feature 

extraction is the step undertaken in order to find 

discriminating features that will serve as the basis for 

classification. Once the discriminating feature has been 

extracted, the classification task can be carried out using 

several machine learning techniques like Support Vector 

Machines (SVM), Naïve Bayes, k-Nearest Neighbor 

(kNN), and CNN. 

In this study, deep CNN, particularly the widely used 

pre-trained AlexNet [20] (detailed discussion is found in 
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Section II-B) model is being explored as a feature 

extractor. The extracted features are then applied to 

multiclass SVM to classify the images of the seedlings of 

the three most important berry trees belonging to the 

Philippine indigenous plants. Likewise, the end-to-end 

approach using the softmax activation function was also 

implemented. 

A brief introduction to deep CNN and its application to 

plant classification is provided in Section II. Section III 

describes the details of the system design and 

implementation. Results and analysis are discussed in 

Section IV. Finally, Section V wraps up the paper with a 

discussion of the conclusion and future works. 

 
Figure 1. The general workflow of an image-based plant classification 

task. 

II.  RELATED LITERATURE 

An introduction to deep CNN and AlexNet model is 

discussed in this section. Also, a brief overview of studies 

utilizing deep CNN as a feature extractor in plant 

classification problems is presented. 

A.  Deep Convolutional Neural Network 

Basically, deep CNN is consist of a feature extractor 

network and classification neural network as shown in Fig. 

2. The feature extractor is consist of alternating stacks of 

the convolution layer and the pooling layer pairs. Using 

the convolution operation, the convolution layer generates 

images known as feature maps that highlight the features 

of the input image. While the pooling layer combines the 

adjacent pixels as one, reducing the dimension of the 

image [21]. 

The convolutional layers are followed by one or more 

fully connected layers. Each fully connected layer 

combines all of the features learned by the previous layers 

across the images to identify the more intricate features. 

The last fully connected layer acts as the classifier. 

Contrary to shallow machine learning techniques that 

require the feature extractor to be designed manually, deep 

CNN includes the feature extractor in the training process. 

This ability to turn the manual feature extraction to an 

automated one is the primary advantage of deep CNN. 

Deep CNN provides the state-of-the-art solution in the 

areas of image recognition [20], [22]-[24], speech 

recognition [25]-[27], and exceptional capability in 

various natural language tasks [28]-[30]. As a specialized 

machine learning technique, deep CNN is best applied to 

problems where there is a substantial amount of training 

data. It is also vital that pattern should exist from these 

data, but there is no formula that can pin it down 

mathematically [31]. When these conditions are met, the 

application of deep CNN can bring tremendous success 

not only in plant classification tasks but even in detecting 

diseases like cancer [32]. 

B.  AlexNet Model 

AlexNet [20] model was trained with 1000 different 

classes of images from ImageNet Large Scale Visual 

Recognition Challenge (ILSVRC) [33]. It has eight hidden 

layers, comprising of five convolutional and three 

fully-connected layers. Of the five convolutional layers, 

three of which are followed by max-pooling layers, 

making them accountable for feature learning. These 

layers are the first, second and fifth layers.  

The first convolutional layer filters the 224×224×3 

input image with 96 kernels of size 11×11×3 with a stride 

of 4 pixels. The output of the first convolutional layer is 

taken as the input to the second convolutional layer takes 

and filters it with 256 kernels of size 5×5×48. The third, 

fourth, and fifth convolutional layers are connected to one 

another without any intervening pooling or normalization 

layers. The third convolutional layer has 384 kernels of 

size 3×3×256 connected to the outputs of the second 

convolutional layer. The fourth convolutional layer has 

384 kernels of size 3×3×192, and the fifth convolutional 

layer has 256 kernels of size 3×3×192.  

The fully connected layers have 4096 neurons each. The 

last fully-connected layer act as the classification layer, 

ending with a softmax activation function. Fig. 3 shows 

AlexNet architecture. A more detailed overview of this 

architecture can be found for reference in [20]. 

The AlexNet model has a linear architecture that 

permits easy visualization of the different convolutional 

layers and also enables learning to occur in hierarchical 

ways. 

C.  Related Works 

Leaf, stem, flower, and fruit are the common plant 

organs utilized in the plant classification tasks. Most 

studies consider one plant organ for classification, 

although more recent studies explored the use of the entire 

plant or multi-organ based classification. Since plant 

leaves are highly available at any time of the year, it’s the 

most explored plant organ for classification [8]-[10], [14], 

[17], [34]-[36]. 

For any image-based classification task to be successful, 

a large collection of images at the rate of a thousand is 

needed. But, despite this number, these images are merely 

considered a collection of pixels associated with color 

information by machine learning algorithms. Further 

preprocessing is therefore required in order to extract 

discriminating features or useful patterns from these 

ambiguous data.  
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When using the traditional technique, the knowledge of 

a domain expert is needed to manually find and extract 

discriminating features. While yielding inconsistent level 

of performance, this task requires a significant amount of 

cost and time. Similarly, finding these features is not an 

easy task, more so that there is no single feature that can 

sufficiently distinguish plant species from another [6]. In 

fact, in the last decades, 90% of the development effort is 

devoted to the detection and extraction of useful features 

alone [37]. For the past years, this has gradually improved 

with the use of generic computer vision object recognition 

features algorithms, like Scale-Invariant Feature 

Transform (SIFT), Histogram of Gradients (HoG), 

Textons, Rotation-Invariant Generalization (RIFT), 

Speeded-Up Robust Features (SURF), and Gradient 

Location-Orientation Histogram (GLOH). Various plant 

classification studies successfully employed these 

algorithms [8], [9], [38]. However, the performance of 

these algorithms has plateaued in the years of 2010 to 2012 

[39]. In 2012, Krizhevsky et al. [20] rekindled the 

forgotten deep CNN since its successful implementation in 

[40]. The use of deep CNN addresses the limitations of the 

previous generic algorithms. Since then, no other 

implementation has shown a better result than what deep 

CNN has accomplished in feature extraction, object 

recognition, classification tasks. 

For instance, the study of Razavian et al. [41] yielded a 

very good result when deep CNN was used as a feature 

extractor in objects classification, scene recognition, and 

fine-grained recognition, attribute detection, and image 

retrieval applied to a diverse set of datasets. 

Lee et al. [16], [42] implemented deep CNN to extract   

to classify 44 different plant species, collected at the Royal 

Botanic Gardens, Kew, England.  Their result established 

that venation structure is an important feature to identify 

different plant species, and when fit to multilayer 

perceptron yielded 99.6% classification accuracy. 

Furthermore, they proved that combining both local and 

global features can better improve classification accuracy. 

A novel approach to extract features from images based 

on deep CNN was proposed by Tan et al. [14] to classify 

43 plant species of tropical trees collected from three 

locations in the University of Malaya, Kuala Lumpur, 

Malaysia. Their proposed model that ended with a softmax 

classification layer resulted in 94.88% classification 

accuracy. 

Simon et al. [43] also used two deep CNN architectures, 

the AlexNet, and VGG19 as feature detector and extractor 

inside a part constellation modeling framework. Extracted 

features were then fit to SVM classifier. Using Oxford 

Flowers 102 dataset, they yielded 95.34% classification 

accuracy. 

 

Figure 2. A typical deep CNN architecture. 

 

Figure 3. The AlexNet architecture [20]. 
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III. SYSTEM DESIGN AND IMPLEMENTATION 

While there are better deep CNN architectures such as 

ResNet [23] that have provided nearly or beyond human 

classification accuracy, this study still prefers to employ 

the pre-trained AlexNet model as feature extractor due to 

the linearity of its architecture. By using this 

implementation, visualization to the different network 

layers can easily be performed.  In addition, this provides 

the fastest way of using the representational power of 

pre-trained deep CNN's as compared to transfer learning 

and training the model from scratch. 

This study follows the general workflow of an 

image-based plant classification task as presented in Fig. 1, 

consisting of four steps, namely image acquisition, 

preprocessing, feature extraction and classification. In the 

first step, images of seedlings of the three types of berry 

trees belonging to Philippine indigenous plants were 

acquired. These images were then preprocessed.  This is 

then followed by extracting discriminating features using 

deep CNN. Finally, the extracted features were fit to a 

multiclass SVM for classification.   

To further evaluate the functionality of the extracted 

features using the AlexNet model, it was also implemented 

in an end-to-end approach using softmax activation 

function as the classifier. The result of the classification of 

both the multiclass SVM and softmax activation function 

were then compared. 

The implementation was done using MATLAB 2018a 

on a computer equipped with Intel Core i5-7200U CPU 

@2.50 GHz and 2.71 GHz, with NVIDIA GEFORCE 

940MX GPU with CUDA enabled and 16GB of RAM. 

A.  Image Acquisition 

An original dataset consisting of images of seedlings of 

the three most important types of berry trees belonging to 

the Philippine indigenous plants was utilized in this study. 

Plant species include Bignai (T. Antidesma bunius 

Spreng.), Agosip (Symplocos cochinchinensis), and Lipote 

(Szygium curranii).  

Bignai seedling is cotyledons elliptic to almost 

orbicular, about 12-14 × 9-10 mm, base cuneate to obtuse, 

apex obtuse. At the tenth leaf stage: leaves are hairy on 

both the upper and lower surfaces along the midrib; 

scattered hairs visible with a lens elsewhere; petiole hairy; 

stipules filiform, about 10-12 mm long, hairy. Agosip 

seedling is cotyledons linear, also about 12-15 × 2 mm. 

First pair of leaves ovate, about 10-15 × 6-7 mm, margins 

with 1-4 teeth on each side of the leaf blade. At the tenth 

leaf stage: leaf blade elliptic, apex acuminate, base cuneate 

to attenuate, margin serrate, glabrous on the upper surface; 

petiole glabrous. Lipote leaves are alternate, 

oblong-lanceolate or obovate, acuminate, 6 to 20 

centimeters long, 4 to 7 centimeters wide, with 14 to 16 

pairs of secondary veins. 

Each plant was raised individually from seeds at the 

Clonal Nursery of Aklan State University, Banga, Aklan, 

Philippines. During image acquisition, plants were one to 

four months old.  In this study, each species of berry tree 

comprised of 500 different images. These were captured at 

varying periods at daytime from January to March 2018 by 

different smartphones in a natural environment with 

variable elevation and lighting conditions. Images of the 

whole plant seedlings were captured and were saved in jpg 

format. The horizontal and vertical resolution of the 

images ranges from 72 to 96 dpi, all in RGB format, and 

sizes vary from 2448×3264 to 3120×4160.  

Full annotation of these images was conducted by three 

domain experts. A sample of resized images that were 

utilized in the study is shown in Fig. 4.  

 
Figure 4. Sample images of the three types of berry trees belonging to the 

Philippine indigenous plants that were utilized in the study. (a) Bignai (T. 

Antidesma bunius Spreng.); (b) Agosip (Symplocos cochinchinensis); 

and (c) Lipote (Szygium curranii). 

B.  Image Preprocessing 

When implementing the pre-trained AlexNet model, it 

is required that the input image should be resized to match 

with that of the model. Further, to build a powerful image 

classifier that avoids the effect of overfitting and prevents 

the network from memorizing the exact details of the 

training images, a variety of label preserving image 

transforms were performed. These are the random rotation 

of images with an angle up to 360 degrees, random 

horizontal reflections and random vertical reflections, and 

a random translation of up to 30 pixels horizontally and 

vertically. It should also be noted that during this process, 

no fine-tuning of the parameters of AlexNet was made. 

Other than resizing, no augmentation was done in the 

testing set. 

C.  Feature Extraction 

Indeed, the remarkable success of the use of deep CNN 

for plant classification tasks is undisputable. However, 

even with this impressive classification performance, the 

use of this technique can perhaps be considered a black 

box [17] with no clear interpretation as to why this 

technique is performing so well [44]. Moreover, the 

implementation deep CNN is computationally expensive, 

requiring the use of a large dataset, coupled with powerful 

computational hardware, and significant training time.  
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To leverage on the representational power of 

pre-trained deep networks while using less powerful 

computing hardware and lesser training time, this study 

utilized AlexNet model as a feature extractor. Features 

maps formed from the five convolutional layers and two 

fully connected layers of AlexNet were individually 

extracted in this phase. The feature extraction approach 

employed in this study is shown in Fig. 5.  

D.  Classification  

Images of seedlings of the three most important types of 

berry trees belonging to the Philippine indigenous plants 

were utilized in this study. The dataset was randomly 

partitioned into 70% training and 30% testing sets. In the 

classification phase, features that were extracted from five 

convolutional layers and two fully connected layers were 

fit to a multiclass SVM classifier. SVM is a powerful 

discriminative classifier based on supervised machine 

learning approach. Supplied with ample amount of labeled 

training data, it can be able to deal with high dimensional 

space and data points that are not linearly separable. SVM 

was chosen to act as classifier because it can be 

implemented faster even with low-storage devices. 

 

Figure 5. The outputs of the feature extraction network comprising of the five convolutional layers and two fully connected layers were fit individually 

to the SVM for classification. 

IV. RESULTS AND ANALYSIS 

This study was able to extract features learned from the 

different layers of the pre-trained AlexNet model useful in 

classifying three of the most important types of berry trees 

belonging to the Philippine indigenous plants.  To 

overcome the effects of overfitting, the 1500 images was 

increased to five times using different image augmentation 

techniques. 

To evaluate how useful the extracted features are, each 

of the extracted features in every layer was fit individually 

to a multiclass SVM for classification.  

The performance metric is defined as, 

100xAccuracy
N
N

t

c=                 (1) 

where Nc is the number of accurate prediction and Nt is the 

total number of test images.  

Table I summarizes the classification accuracy on test 

images when discriminative features learned from the 

different layers of AlexNet including the five 

convolutional layers and two fully connected layers of the 

pre-trained AlexNet model were fit to a multiclass SVM 

classifier. It should be noted that conv1 to conv5 refer to 

convolutional layers 1 to 5, while fc6 and fc7 denote fully 

connected layers 6 and 7, respectively. 

TABLE I.  CLASSIFICATION ACCURACY ON TEST IMAGES WHEN 

DISCRIMINATIVE FEATURES LEARNED FROM THE DIFFERENT LAYER OF 

THE PRE-TRAINED ALEXNET MODEL WERE FIT TO A MULTICLASS SVM 

CLASSIFIER 

AlexNet Network Layers Classification Accuracy (%) 

conv1 59.30 

conv2 87.60 

conv3 71.60 

AlexNet Network Layers Classification Accuracy (%) 

conv4 89.80 

conv5 95.30 

fc6 97.80 

fc7 97.10 

 

As expected, classification accuracy improves with the 

increasing depth of the layers. Fifth convolutional layer 

“conv5" and the two fully connected layers “fc6” and 

“fc7” of the AlexNet model are powerful feature 

extractors, as when extracted features from these layers 

were classified using multiclass SVM, they yielded above 

95% accuracy. As observed, deeper layers generally, are 

better at extracting the discriminant information. This 

finding agrees with [18], [39], [44]-[47], that the deeper 

the layer, the more abstractive and more dataset-specific 

features become. Further, the earlier layers have poorly 

discriminated plants as to species because so far, it has just 

learned the more generic and simple features, making it 

hard for the classifier to distinguish one berry species from 

another.  

In addition, to compare the outcome of the softmax 

activation function, with that of the multiclass SVM, the 

result of both classifiers in terms of testing and training 

time, including classification accuracy is reflected in 

Table II. 

TABLE II.  COMPARISON OF SOFTMAX ACTIVATION FUNCTION AND 

MULTICLASS SVM CLASSIFIERS TO PREDICT SPECIES OF BERRY TREES 

Classifiers 
Training and Testing 

Time 

Classification 

Accuracy (%) 

softmax activation 

function 
239 min 33 sec 97.80% 

SVM 4 min 57 sec 97.10% 
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As revealed from this result, regardless of the classifier 

used, features that were extracted from the input images 

using deep CNN technique are useful in predicting as to in 

which species the new and unseen images of berry 

seedlings belongs. The result also shows that the 

classification accuracy is high for both softmax activation 

function and multiclass SVM classifiers. Also, both 

classifiers almost yielded the same classification accuracy.  

However, in terms of training and testing time, a 

significant difference was observed. This simply proves 

that using deep CNN as a feature extractor is a very useful 

technique as this provides the fastest implementation of 

deep CNN in image classification problems. 

To be able to understand the internal behavior of the 

AlexNet model, the output of visualization per 

convolutional layer is illustrated in Fig. 6. Each figure 

depicts a montage of the images comprising of the output 

activations per convolutional layer. There are 96, 256, 384, 

384, and 256 feature maps in the first, second, third, fourth, 

and fifth convolutional layers, respectively.  

Several channels comprise areas of activation both in 

white and black pixels. White pixels depict strong positive 

activations while black pixels represent strong negative 

activations. Channels denoted by gray are not strongly 

activated on the input image. The position of a pixel 

corresponds to the same position as of the original image. 

Each layer is a new representation of an input image were 

discriminative features are gradually extracted. 

 

Figure 6. From left to right, top to bottom, (a) to (e) shows the internal 

behavior constructed by the output activations per convolutional layer of 

the AlexNet model.  

Fig. 6 depicted too many images to investigate in details. 

For better understanding, the strongest activations within 

the different layers of AlexNet is shown in Fig. 7. As 

revealed, visualization clearly responds to the structure of 

the input image. When compared to the original image, 

channels in the first two layers learn more general, simple 

and low-level features like outlines and edges. Subsequent 

layers collect and combine the features in the earlier layers. 

Contour, base, and shape of the plant become more evident 

in the third to fifth layers. It can be also observed that 

dissimilar information is removed gradually from low to 

high layers. Consequently, channels in the deeper layers 

learn more-data specific or high-level features, suggesting 

that the network constructs a hierarchical representation of 

input images. 

 

Figure 7. Visualization of the strongest activation from the different 

layers of AlexNet. (a) original image; (b) conv1; (c) conv2; (d) conv3; (e) 

conv4; (f) conv5; (g) fc6; (h) fc7. 

V.  CONCLUSION AND FUTURE WORKS 

This study supports the idea that the features extracted 

from within the layers of AlexNet were far from random, 

uninterpretable patterns. Rather, they show relevant 

properties that are capable of gradually sorting patterns 

from low to higher level. Through the comparison of 

classification accuracy as to the features learned with 

different depths, it shows that deeper CNN is better at 

discriminant information extraction, thus improves the 

prediction performance regardless of the classifier used 

(either SVM or softmax). Hence, when data, 

computational hardware, and training time are constrained, 

leveraging on the representational power of deep CNN 

such as AlexNet is very useful.  

In the future, state-of-the-art techniques to detect and 

locate plant seedling images from the background will be 

explored, such that the deep CNN will only focus on the 

discriminative features rather than the background. The 

use of more sophisticated machine learning techniques 

such as CNN for classification will also be applied. 
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