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Abstract—In road traffic, critical situations pass by as 

quickly as they appear. Within the blink of an eye, one has 

to come to a decision, which can make the difference 

between a low severity, high severity or fatal crash. Because 

time is important, a machine learning driven Crash Severity 

Predictor (CSP) is presented which provides the estimated 

crash severity distribution of an imminent crash in less than 

0.2ms. This is 𝟔𝟑 ⋅  𝟏𝟎𝟑 times faster compared to predicting 

the same distribution through computationally expensive 

numerical simulations. With the proposed method, even 

very complex crash data, like the results of Finite Element 

Method (FEM) simulations, can be made available ahead of 

a collision. Knowledge, which can be used to prepare 

occupants and vehicle to an imminent crash, activate and 

adjust safety measures like airbags or belt tensioners before 

of a collision or let self-driving vehicles go for the maneuver 

with the lowest crash severity. Using a real-world crash test 

it is shown that significant safety potential is left unused if 

instead of the CSP-proposed driving maneuver, no or the 

wrong actions are taken.  

 
Index Terms—crash severity, vehicle safety, reliable 

prediction, machine learning 

 

I. INTRODUCTION 

Crash severity in vehicle collisions mainly depends on 

the kinetic energy of the crash participants. To reduce the 

crash severity, reducing the forces acting on the 

occupants during a crash has been the goal of vehicle 

safety since its start in the early 1950s. One possibility to 

achieve this goal are structural measures like crumble 

zones, airbags or seat belts, which spread the forces 

experienced by the occupants over a longer time and 

thereby reduce the peak forces on them. These so-called 

Passive Safety measures had a huge impact on vehicle 

safety, pushing the number of fatalities on German roads 

from an all-time high of 21.332 cases in the year of 1970 
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down to 3.206 deaths in 2016, although the number of 

registered vehicles has tripled within this time [1]. 

Despite the success of Passive Safety, there are 

physical limits, such as in a high-speed crash of a small 

vehicle with a heavy truck, which no structural measure 

alone can overcome. At this point, Active Safety 

applications hook up, trying to avoid a collision by 

supporting proper braking or steering. Through 

exteroceptive sensors like lidar, radar, or camera, modern 

vehicles perceive their surroundings like other vehicles, 

pedestrians, or the road infrastructure. Advanced 

perception techniques enable developers of vehicle safety 

functions to recognize, rate and react to critical situations 

as early as a threat becomes visible to the sensors. 

  

Figure 1.  Crash test with dummy vehicle on the CARISSMA outdoor 
facility at Technische Hochschule Ingolstadt 

This is often far ahead of the moment the driver gets 

aware, extending the available timeframe for 

countermeasures by a significant amount of time. One 

system utilizing this principle is the Autonomous 

Emergency Braking (AEB) [2]. The AEB automatically 
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brakes the own vehicle (Ego) if the time gap to the 

leading vehicle (Object), the so-called Time-to-Collision 

(TTC), falls below a specified limit. According to a 2008 

study by the European Commission, the AEB prevents an 

estimated 5,000 fatalities and 50,000 severe injuries in 

Europe every year [3], [4]. Limitations of the AEB are 

that only obstacles in a small sector in front of the Ego-

vehicle are considered and braking is the only possible 

action to be performed.  

In this paper, a machine learning based system is 

proposed, which predicts the crash severity distributions 

for several Ego-maneuvers, taking actions like steering, 

accelerating, braking or combinations of these into 

account. This allows other safety systems or algorithms, 

such as the trajectory planner of a self-driving car, to aim 

for the best driving maneuver. Knowing in advance that a 

sever crash, e. g. the side crash from Fig. 1 is going to 

happen also allows to lower the airbag activation 

thresholds, reducing the deployment time and, as a result, 

increasing the safety potential [5]. Based on the CSP-

prediction, airbags might even be fired ahead of a 

collision if this helps to reduce the crash severity. 

Adjusting the belt tensioner to a previously known crash 

can minimize the forces an occupant is exposed to due to 

the pyrotechnical activation of the actuator [5]. 

Furthermore, an early activation is also a key requirement 

for future actuators like the exterior airbag, reversible 

electrical belt tensioner or very large indoor airbags, used 

in vehicles with innovative spacious interior designs. 

These applications all have in common that they take 

longer for activation than an average crash lasts and thus 

need to be fired beforehand. 

In Section II, related work from the field of crash 

severity prediction is discussed. Section III describes the 

simulation framework used to generate the training data 

for the CSP. In Section IV, three examples of crash 

severity estimation are presented, one utilizing a rule-

based approach build with the help of a FEM crash 

database, and another using a mass-spring-model. Section 

V deals with the machine learning background of the CSP 

for which the results are presented in Section VI. Section 

VII finally concludes the paper with a summary and a 

discussion about aspects of future work.  

Throughout this paper, vectors and matrices are 

denoted by lower and upper case bold letters. A lower-

case bold letter represents a column vector. 

II. RELATED WORK 

The Frontal Crash Criterion (FCC) [6], the Head Injury 

Criterion (HIC) [7] and the Occupant Load Criterion 

(OLC) [7] are commonly used crash severity metrics. 

They allow comparing different collisions by providing 

figures with no unit, derived from simplified mechanical 

models based on the acceleration during a crash. The 

metrics were designed for frontal crash scenarios and thus 

might not be used for other crash types, like side or rear-

end collisions. 
 

 

When it comes to crash severity prediction, two main 

methodologies need to be distinguished. The first utilizes 

physical models to calculate the future car movements 

and numerically estimate the crash consequences, while 

in the second, statistical methods are used for statements 

about the probability of certain crash severities. 

Representatives of the first approach are [5] and [8], 

where in both works a combination of a vehicle dynamics 

and a collision-model [9] is used, to anticipate the 

severity of an imminent crash. On the other side, it also 

has been shown in [10], [11] and [12], that the crash 

severity of a collision can be classified using statistical 

learning methods. With [13] an approach, combining 

physical and statistical models for crash severity 

prediction has been presented. 

III. SIMULATION FRAMEWORK 

Creating a statistical model requires comprehensive 

knowledge about the respective domain to be described. 

In the case of the CSP, knowledge about pre-crash 

situations with their corresponding crash constellations 

and severities is required. Crash databases like GIDAS 

[14] provide valuable real-world information about a 

large number of collisions, but still cannot satisfy the 

demand of a system, which needs to know how a crash 

changes when the driver reactions vary. Because such a 

system can easily require millions of crash observations, 

getting better with an even further growing number, 

simulations are currently the only feasible way to get 

access to sufficient data. In this section, the simulation 

framework used to generate the training data for the 

Crash Severity Predictor is explained.  

A. Generation of Critical Traffic Scenarios 

The so-called Accident Hypothesis Framework (AHF) 

consists of the open source traffic simulator SUMO [15] 

and a self-developed Matlab component. In the SUMO 

part, a traffic simulation of the city of Bologna [16] is 

carried out. Interfacing with Matlab via the TraCi4Matlab 

wrapper [17], a rule-based selection of potential crash 

candidates is performed. If a candidate is found, the 

SUMO simulation is paused, and the current situation of 

the candidate vehicles is shifted from SUMO to Matlab. 

In Matlab, the desired path of one vehicle is manipulated 

to match one of five randomized maneuver templates, 

four of them depicted in Fig. 2. This step of introducing a 

driving mistake is necessary, as in SUMO no accidents 

occur.  

The randomized maneuvers are applied to the changing 

road and vehicle constellations taken from SUMO, 

resulting in unique traffic scenarios. With all randomness 

involved, the use of a Two-Track-Model (TTM) [13], 

[18]-[20] ensures that all simulated trajectories are 

physically plausible. The fact, that realistic road networks 

are used in the process, accounts for the circumstance, 

that the geometry of a road network carries a priori 

knowledge about the probabilities of certain crash 

constellations [21], [22]. 
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Figure 2.  Accident hypothesis framework maneuver templates 

B. Crash Severity Distribution 

The goal of the AHF is the generation of crash severity 

distributions for a large number of pre-crash scenarios. 

As e.g. 500ms before a collision it is unclear, how the 

drivers are going to react, it cannot clearly be stated what 

crash and thus, what crash severity is going to appear. A 

probabilistic description of the situation is needed. 

Therefore, the AHF takes a pre-crash situation and 

anticipates with the TTM how the situation evolves, 

considering hundreds of maneuvers for both, the Ego- 

and the Object-vehicle. A maneuver is defined as the 

combination of a steering and an acceleration instruction 

like [-15, -0.6] for steering 15° right and decelerating 

with 60 % of the vehicle-specific maximum deceleration. 

A usual set of maneuvers contains the combinations of 

ten steering and ten acceleration instructions, ranging 

from extreme steering or accelerating to no-change. This 

gives 100 maneuvers per vehicle and 10.000 possible 

trajectory combinations for two vehicles, assuming that 

both use the same set of maneuvers. An Unavoidability 

Detector [13] checks whether all combinations end in a 

crash and rejects those scenarios with possible evasion 

trajectories. Situations, where a crash is avoidable, are 

rejected because an activation of irreversible safety 

systems is not desired in these cases. Typically, 

unavoidability occurs at TTCs of around 150 up to 800ms. 

When a crash is found unavoidable, all 10.000 trajectory 

combinations lead to one of 10.000 crash constellations. 

The pre-crash situation all the maneuvers start from is 

identified by 𝑠 ∈{1, . . 𝑆} , where S denotes the total 

number of different pre-crash situations processed during 

a simulation run. 

C. Data Structure 

As stated above, a single unavoidable pre-crash 

situation 𝑠  can lead to several different crash 

constellations, which, in turn, can have very different 

crash severities. For that reason, pairs of Ego- and 

Object-trajectories are evaluated until all crash severities 

CS𝑠 = [
cs11

𝑠 ⋯ cs1𝑀
𝑠

⋮ ⋱ ⋮
cs𝑁1

𝑠 ⋯ cs𝑁𝑀
𝑠

] ∈ ℝ𝑁×𝑀 (1) 

 

of the current pre-crash situation 𝑠 are determined, with 

𝑁  and 𝑀  denoting the number of considered Ego- and 

Object-maneuvers. Thus, the matrix element cs𝑛𝑚
𝑠  is the 

crash severity, which appears for the trajectory pair 

resulting from the 𝑛th
 Ego- and the 𝑚th

 Object-maneuver, 

starting from the pre-crash situation 𝑠. For each new pre-

crash situation adopted from SUMO, a feature vector d𝑠 

is generated and added as a new row entry to the training 

database 𝓓:  
 

d𝑠 = [preCrash𝑠,T, anticipate𝑠,T, labels𝑠,T]T 

d𝑠 ∈ ℝ𝐿×1, 
(2) 

 

The vector d𝑠 is made up of the three elements, 
 

preCrash𝑠 = [𝛏Ego
T (tpc

𝑠 ), 𝛏Obj
T (tpc

𝑠 )]
T

∈ ℝ2𝐹×1 (3) 

anticipate𝑠 = [𝛏Ego
T (t0

𝑠), 𝛏Obj
T (t0

𝑠)]
T

∈ ℝ2𝐹×1 (4) 

labels𝑠 = distribCS𝑠 OR  𝒑fire
𝑠  (5) 

 

with 𝛏Ego
T (tpc

𝑠 ) and 𝛏Obj
T (tpc

𝑠 ) being the states vectors of the 

Ego- or the Object-vehicle each of length 𝐹 at a point in 

time tpc
𝑠  of the 𝑠 th

 scenario, after the unavoidability but 

before the crash time instance t0. The first two elements 

preCrash𝑠  and anticipate𝑠  are state vectors which 

describe the present and one of the many possible future 

states of both vehicles. 

The state vector 

𝛏Ego(t) = [xObj(t), yObj(t), ψObj(t), vEgo(t) 

vObj(t), a𝑥,Ego(t), a𝑦,Ego(t), … ]T ∈ ℝ𝐹×1 
(6) 

 

describes the situation of the Ego-vehicle with 

information such as the position of the Object-vehicle 

[xObj
𝑠 , yObj

𝑠 ] in the Ego body frame, the angle between the 

heading of both vehicles ψ,  the velocity v  or the 

acceleration a.  Accordingly, 𝛏Obj(t)  describes the 

situation of the Object-vehicle from an Object-vehicle 

perspective, with the quantities of 𝛏Obj being described in 

the Object body frame. While preCrash𝑠 represents the 

state vector at tpc e.g. 500ms before a crash, anticipate𝑠 

contains the equivalent description for the start of the 

crash that would occur when both cars maintain the 

direction and velocity they have at tpc  (no-change 

assumption). The length 𝐹  of 𝛏Ego  or 𝛏Obj  represents the 

number of features that are used to describe the state of 

either Ego or Object. In total, there are more than 150 

features available in the AHF from which a small subset 

of up to 29 features is selected. The ten most important 

features are presented in Section VI.E. 

The vector labels𝑠contains the values, which later shall 

be predicted by the CSP.  Depending on what description 

of the crash severity is desired (see Section IV), labels𝑠 is 

either distribCS𝑠  or 𝒑fire
𝑠 .  While 𝒑fire

𝑠  represents the 

probability for a crash severity that requires an airbag 

activation, as explained in Section IV.B, distribCS𝑠 

stands for quantities that describe the estimated 
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distribution of an arbitrary crash severity measure to be 

predicted. As it would be inefficient to learn all elements 

in CS𝑠  to obtain its distribution, the main distribution 

characteristics like the minimum or maximum crash 

severity are learned instead:  
 

distribCS𝑠 = [csmin
𝑠,T , csp25

𝑠,T , csmed
𝑠,T , … 

csp75
𝑠,T , csmax

𝑠,T ]T ∈ ℝ5𝑁×1 
(7) 

 

csmin
𝑠 = [min(cs11

𝑠 . . cs1𝑀
𝑠 ) , min(cs21

𝑠 . . cs2𝑀
𝑠 ) , … 

min(cs𝑁1
𝑠 . . cs𝑁𝑀

𝑠 )]T ∈ ℝ𝑁×1 
(8) 

 

csp25
𝑠 = [p25(cs11

𝑠 . . cs1𝑀
𝑠 ) , p25(cs21

𝑠 . . cs2𝑀
𝑠 ) , … 

p25(cs𝑁1
𝑠 . . cs𝑁𝑀

𝑠 )]T ∈ ℝ𝑁×1 
(9) 

 

where min(cs11
𝑠 . . cs1𝑀

𝑠 )  denotes the minimum value of 

the first row of CS𝑠 and p25 denotes the 25
th

 percentile of 

the corresponding row. The median csmed
𝑠 , 75

th
 percentile 

csp75
𝑠 , and maximum csmax

𝑠  are calculated equivalently.  

As from an Ego-safety-system-perspective, the Ego-

maneuver is the only means to influence the outcome of a 

crash all elements in distribCS𝑠 are calculated on a per-

ego-maneuver basis. That is why csmin
𝑠 , csp25

𝑠  etc. are 

𝑁 ×  1  vectors, containing one value for each Ego-

maneuver. With distribCS𝑠  it is possible to say, which 

Ego-maneuver leads to which minimum, median and 

maximum crash severity together with the 25
th

 and 75
th

 

percentile of the estimated distribution. This allows a 

prediction of the expected crash severity for the Ego-

vehicle, despite the fact that the Object-maneuver is 

unknown. A statement about how reliable the prediction 

is can be made up based on the interquartile range 

𝒊𝒒𝒓𝑠 =  csp75
𝑠 − csp25

𝑠 , ∈ ℝ𝑁×1 (10) 

The smaller the interquartile range of the predicted 

distribution for a particular Ego-maneuver, the smaller 

the variations in the crash severity and the higher the 

chance that a crash severity close to the predicted median 

occurs. 

IV. CRASH SEVERITY ESTIMATION 

To fill the previously introduced scenario description 

d𝑠  with the crash severity measures of distribCS𝑠 , the 

crash severity has to be estimated first. The used crash 

severity measure is interchangeable. A selection of three 

exemplary measures is presented in this section.  

A. Relative Velocity 

It is known that the relative velocity between two 

vehicles  

vrel = √(vEgo,𝑥 − vObj,𝑥)
2

+ (vEgo,𝑦 − vObj,𝑦)
2
 (11) 

 

correlates with the injury risk of the occupants [9]. Thus, 

predicting the expected crash severity for a certain 

maneuver can be achieved, by anticipating the future car 

movements with the TTM and measure the relative 

velocity vrel,t0,𝑛𝑚
𝑠  at 𝑡0, the moment the crash, caused by 

the 𝑛th
 and 𝑚th

 Ego- and Object-maneuver, begins. One 

drawback of vrel,t0,𝑛𝑚
𝑠  is that it neither reflects the 

influence of the vehicle orientations nor the influence of 

the collision point. The difference in the crash severity 

between e. g. a front and a side crash, which arises from 

the lack of crumble zones in a side collision, is neglected 

if both constellations have the same vrel,t0. 

B. Airbag Activation Probability 

For the next crash severity measure the matrix  
 

Fire𝑠 ∈ ℝ𝑁×𝑀 , fire𝑛𝑚
𝑠 ∈ {0,1} (12) 

 

is required, with its elements fire𝑛𝑚
𝑠  indicating whether 

an airbag was fired or not in the corresponding crash 

constellation identified by the Ego- and Object-

maneuvers 𝑛  and 𝑚 . Using Fire𝑠 , the conditional 

probability for the event of an airbag activation λ = 1, 

given a certain Ego-maneuver 𝑛  executed starting from 

the pre-crash situation preCrash𝑠 can be calculated: 
 

 

𝑝fire,𝑛
𝑠 = 𝑃(λ = 1|preCrash𝑠) 

           ≈  
1

𝑀
∑ fire𝑛𝑚

𝑠

𝑀

𝑚=1

, 𝑛 ∈ {1, . . 𝑁} 
(13) 

and for all Ego-maneuvers:  

𝒑fire
𝑠 = [𝑝fire,1

𝑠 , … , 𝑝fire,N
𝑠 ]

T
 

(14) 

 

A higher probability 𝑝fire,𝑛
𝑠  means that for the 𝑛th

 Ego-

maneuver it is more likely to face a situation where an 

airbag is required, indicating a higher crash severity. 

Whether a crash is a fire or no-fire case is thereby 

determined with the help of the so-called Labeler.  

The Labeler decides whether a crash constellation 

makes the use of one or more airbags necessary or not. It 

does so because an automated way to differentiate fire 

from no-fire cases is required when millions of crash 

constellations generated by the Accident Hypothesis 

Framework shall be processed. With this, it replaces a 

human expert, which would analyze each collision and 

give it either the label fire or no-fire, depending on the 

expectation of the expert on whether a given situation 

will make the use of one or more airbags necessary.  

To automate this step, a FEM-database with 1,487 

highly detailed simulations of car-to-car collisions, also 

containing the information about which airbags were 

fired, is used. By analyzing the database, a ruleset could 

be defined to correctly classify 99.4 % of the database 

collisions. The remaining nine entries were found to be 

outliers, caused by numerical issues during the FEM-

simulations. Fig. 3 illustrates the different steps to finally 

separate fire from no-fire cases in an easily interpretable, 

two-dimensional space. First, the crash constellations are 

divided into three clusters, depending on whether they 

describe a Front-Front, Rear-Front or Front-Rear collision, 

whereas Front is defined as the frontal 50 % of the vehicle 

length and Rear as the remaining rear 50 % of the vehicle 

length. A Front-Rear collision stands for the Ego-vehicle 

hitting with its front the rear of the Object-vehicle. Rear-

Rear collisions are very unlikely as usually, at least one 

car drives forward and thus are not present in the 

database. 
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Figure 3.  Interpretable decision tree like fire/no-fire labeler 

In a second step, the crash constellations are separated 

by the angle between the vehicle headings. The four cases:  

[-45°, 45°], [45°, 135°], ([135°, 180°] or [-135°, 180°]) 

and [-135°, -45°] are distinguished. The previous two 

steps result in 12 clusters, which finally can be visualized 

in the space spanned by the Average Kinetic Energy 
 

ake = 
1

2
(ekin,Ego + ekin,Obj) (15) 

and the Anticipated Overlap Area  

aoa = 𝒪 (𝛏Ego(t0 + 50 ms), 𝛏Obj(t0 + 50 ms)) (16) 

 

where 𝒪 returns the extrapolated overlap in [m²] of both 

vehicles 50ms after t0 , assuming linear vehicle 

movement without interaction between the cars. The aoa 

is an important feature because it combines the vehicle 

shapes, velocities, orientations, and relative positions. 

The ake on the other side also uses the velocities and 

adds the information about the vehicle masses, as ekin = 

0.5 ∙ mv². 

Finally, a decision boundary to separate fire from no-

fire cases is manually applied to each cluster.  

C. Mass-Spring-Model 

Both previously presented metrics do not model the in-

crash phase but instead directly map from a crash 

constellation to either vrel,t0 or λ. The mass-spring-model 

approach [13] in contrast considers the in-crash phase by 

simulating the interactions of two crash participants. The 

cars are represented through their masses m1  and m2  as 

well as their positions r1  and r2  along the axis of their 

relative movement. 

 

Figure 4.  Crashing vehicles with superimposed mass-spring-model 

 

The car structures are modeled through two springs 

with their primary characteristic being their stiffnesses k1 

and k2 . A third virtual mass m3  with position r𝑀 

completes the mass-spring model by connecting the two 

springs and thereby, forming a line of three masses 

interlinked by the two springs, as shown in Fig. 4. 

The vehicle velocities v1(t0)  and v2(t0)  are known 

and thus, the compression of the springs and thereby the 

resulting forces 
  

f1(t) = k1(rM(t) − r1(t))

f2(t) = k2(r2(t) − rM(t))
 (17) 

 

can be calculated. Given the forces also the accelerations 

in longitudinal and lateral vehicle direction 
 

a𝑝(t) =
f𝑝(t)

m𝑝

[
cos (α𝑝(t))

sin (α𝑝(t))
] , 𝑝 ∈ {1,2} 

 

(18) 

 

are known. With the accelerations, the velocities, in turn, 

can be updated and so on. A detailed description of the 

model was presented in [13]. The anticipated crash pulse 

a𝑝 carries valuable information about the crash severity 

and e. g. can be used to calculate the OLC or other pulse-

induced metrics. Because the OLC works only for frontal 

collisions, a prototypical crash severity measure which 

draws on the results from the mass-spring-model, 

accepting any possible crash constellation is suggested 

below.   

D. Prototypical Crash Severity Measure 

The following prototypical crash severity measure is 

proposed 
 

pcs = fo2c =
1

2loi

moccvo2c
2 (toi) (19) 

vo2c(t) = ∫ ‖a𝑝(t)‖d𝑡
𝑡

𝑡0

 (20) 

 

with vo2c(toi)  being the relative occupant-to-car (o2c) 

velocity with which the occupant hits the vehicle interior 

at toi , loi  being the deceleration streak over which the 

occupant is decelerated in interaction with the interior 

and mocc  being the occupant mass. Equation (20) holds 

given that the occupant is not decelerated by any restraint 

system like seatbelt or airbag. Furthermore, it is assumed 

that the whole kinetic energy of the occupant  
 

ekin,o2c =
1

2
moccvo2c

2  (21) 

is transformed during the crash into the mechanical work  

wo2c = fo2cloi (22) 

 

Thus, the pcs  corresponds to the force fo2c , 

experienced by an occupant when he hits the vehicle 

interior. Varying the deceleration streak loi , harder or 

softer parts of the interior can be modeled. Fig. 5 shows 

exemplarily how a vehicle in the AHF can be divided into 

different stiffness zones.  
 

…
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Figure 5.  Soft (g), hard (b) and very hard (r) vehicle interior zones 

Green zones represent soft interior (e.g. seats) whereas 

blue and red zones represent hard and very hard parts, 

like the steering wheel, the chassis or as in this example, 

a table how it might appear in the center of a modern, 

self-driving vehicle. The circle marks the moving 

occupant position. 

To determine where and when an occupant hits the 

interior its relative displacement 
 

do2c(t) = ∬ a𝑝(t) dt
t

t0

 (23) 

 

needs to be calculated. While the orientation and the 

velocity of both vehicles might continuously change 

during the crash due to the crash forces, the occupants are 

assumed to be decoupled from the vehicles and thus, 

maintain the velocity and direction they have at t0. This 

linear motion is continued until a collision of the 

occupant with one of the zones is detected and, as a 

consequence, vo2c(toi) becomes known. 

V. RELIABLE  CRASH SEVERITY PREDICTION 

The goal of the CSP is to predict the crash severity 

only milliseconds ahead of a collision. Evaluating 

thousands of trajectory pairs to obtain 𝒑fire
𝑠  or distribCS𝑠 

as discussed in Section IV, is hardly feasible under the 

given time constraints. While some crash severity 

measures like 𝒑fire
𝑠  or vrel,t0  might be suitable for online 

evaluation, the estimation of the possible crash 

constellations for the given pre-crash situation remains as 

a computationally expensive step. It always has to be 

performed before a crash severity estimation can be 

carried out. This means that for a large number of 

trajectory pairs differential equations would need to be 

solved numerically in real-time. For that reason, machine 

learning is used to directly predict the crash severity 

instead. Methods like Random Forest [23], Multi Layer 

Perceptron [24], [25] or Support Vector Machine [26] 

have been tested against this problem, and in accordance 

with the results of other researchers dealing with similar 

problems [12], Random Forest was found to perform well 

regarding training speed and prediction accuracy.  

The general idea is to use the AHF, as presented in 

Section III, to generate the data for a large number of 

situations during an offline (=outside the car) simulation 

session, lasting days, weeks or even months. This data is 

then used to train a so-called Random Jungle, composed 

of multiple independent Random Forest models, one for 

each desired target variable, like the minimum, median or 

maximum crash severity. The Random Jungle can then 

provide all these information online (=inside the car) 

within very short time. Especially compared to simulating 

all trajectory pairs online this is much faster as discussed 

in Section VI.F. For each pre-crash situation, the whole 

crash severity distribution is available during the AHF 

simulation and the characteristic variables like maxima, 

minima, etc. are stored and shall now be learned. The 

goal of this process is shown in Fig. 6: The prediction of 

a boxplot for 𝑁 = 5 different Ego-maneuvers. For each 

of the five maneuvers a box, representing the crash 

severity distribution for the corresponding Ego-maneuver 

is depicted.  
 

 

Figure 6.  CSP result: 5 ego-maneuvers with their CS-distributions 

The data required to plot all boxes was introduced as 

distribCS𝑠 in Section III.C. To produce a result like the 

depicted one, 25 Random Forest models have to be 

trained, as each of the five maneuvers requires a csmin, 

 csp25, csmed, csp75, and csmax.  

One benefit of having data like this available before a 

collision is to be able to adjust further steps to the given 

circumstances. It becomes clear what range of crash 

severity must be expected and which maneuver should be 

performed to mitigate the crash consequences as good as 

possible. The deviation of particular maneuvers can be 

seen, and probabilities for different events, like exceeding 

a certain severity can be derived.  

VI. RESULTS 

A. AHF-Data 

In the course of one week, a database 𝓓 with 275,594 

different entries d𝑠 , each describing one pre-crash 

situation, has been generated. To speed up the process, a 

crash severity distribution with only 15 ×  15 =  225 

maneuvers was chosen, leading altogether to more than 

62million simulated accidents. The 15 maneuvers 

evaluated for each car are [A]ccelerate, [B]rake and 

[C]ontinue, combined with the five steering actions 1: 

hard left, 2: left, 3: straight, 4: right and 5: hard right. The 

corresponding Ego-maneuvers are denoted as A1, A2, …, 

C5. Continue stands for maintaining the initial velocity. 

For validation purpose, the data was split into a distinct 

training set 𝓛  with cardinality 𝑆ℒ =  201,044  and a test 

set 𝓣  with 𝑆𝒯 =  74,550 . For the validation of the 

prototypical crash severity measure pcs  two dedicated 

test and training sets with 𝑆ℒ,pcs =  32,056  and 

𝑆ℒ,pcs =  1,241 have been created. This was done because 
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the pcs requires a more time-consuming AHF simulation, 

including the mass-spring-model for in-crash modeling.  

B. Prediction Accuracy 

The CSP Random Jungle consists of 15 individual 

Random Forest models to predict 𝑝fire  plus another 75 

models for predicting either vrel,t0 or the pcs. To evaluate 

the prediction accuracy of the CSP, the Mean Absolute 

Error  
 

𝑚𝑎𝑒 =
1

𝑆
∑ |𝑌s − 𝑇s|

S

s=1
, with S = |𝒯| (24) 

 

and the Pearson correlation coefficient 
 

𝜌 =
cov(𝑌, 𝑇)

𝜎𝑌𝜎𝑇

 (25) 
 

are calculated for each model individually. 𝑌s denotes the 

prediction result produced by a model for the situation s, 

𝑇s  denotes the correct target value or label of the 

corresponding test data and 𝜎𝑌, 𝜎𝑇  are the standard 

deviations of 𝑌 and 𝑇. Table I shows the results of both 

metrics for all 165 models. The first line of each box 

represents the 𝑚𝑎𝑒,  the second line the correlation 

coefficient 𝜌. It should be noted that the units of the 𝑚𝑎𝑒 

vary with the prediction target which can be either the 

probability of 𝑝fire, the velocity in [m/s] for vrel,t0 or the 

force on an occupant in Newton for the pcs. It is shown 

in Table I that all three crash severity measures can 

successfully be learned by the CSP. 

TABLE I.  RANDOM JUNGLE PREDICTION ACCURACY 

 

𝑝fire 
[p] 

vrel,t0 [m/s] pcs [N] 

m
in
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5
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5
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7
5
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m
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A1 

0.027

0.985 

0.156

0.999 

0.150

0.999 

0.148

0.999 

0.153

0.999 

0.155

0.999 

289.1

0.965 

307.7

0.961 

341.7

0.947 

397.3

0.942 

477.3

0.929 

A2 
0.026
0.985 

0.155
0.999 

0.150
0.999 

0.152
0.999 

0.154
0.999 

0.156
0.999 

286.7
0.963 

313.9
0.959 

357.8
0.942 

427.0
0.937 

473.5
0.929 

A3 
0.024

0.987 

0.151

0.999 

0.150

0.999 

0.151

0.999 

0.154

0.999 

0.157

0.999 

278.9

0.980 

325.5

0.979 

385.7

0.973 

410.6

0.962 

497.0

0.931 

A4 
0.025

0.987 

0.149

0.999 

0.148

0.999 

0.148

0.999 

0.151

0.999 

0.156

0.999 

304.2

0.928 

293.3

0.941 

381.3

0.898 

422.7

0.884 

510.6

0.866 

A5 
0.025
0.987 

0.150
0.999 

0.148
0.999 

0.148
0.999 

0.154
0.999 

0.154
0.999 

291.7
0.935 

300.2
0.942 

374.9
0.904 

438.2
0.871 

516.8
0.861 

 
B1 

0.023

0.991 

0.153

0.998 

0.118

0.999 

0.096

0.999 

0.106

0.999 

0.120

0.999 
245.9 

0.962 

279.5

0.956 

352.5

0.933 

452.8

0.878 

550.8

0.862 

B2 
0.023

0.991 

0.148

0.998 

0.117

0.999 

0.096

0.999 

0.105

0.999 

0.122

0.999 

266.9

0.961 

277.1

0.961 

362.2

0.933 

457.1

0.873 

521.7

0.874 

B3 
0.019

0.994 

0.143

0.998 
0.115

0.999 

0.095

0.999 

0.105

0.999 

0.122

0.999 

297.3

0.967 
272.0

0.979 
303.9

0.972 
323.5

0.967 

341.1

0.962 

B4 
0.022
0.992 

0.150
0.998 

0.120
0.999 

0.097
0.999 

0.104

0.999 

0.119

0.999 

281.5
0.939 

313.3
0.941 

371.5
0.917 

394.5
0.901 

435.0
0.911 

B5 
0.022

0.992 

0.149

0.998 

0.119

0.999 

0.095

0.999 

0.104

0.999 

0.120

0.999 

267.0

0.942 

294.1

0.945 

353.1

0.924 

389.5

0.904 

442.5

0.910 

 
C1 

0.027
0.986 

0.130
0.999 

0.122
0.999 

0.125
0.999 

0.132
0.999 

0.140
0.999 

299.5
0.955 

307.4
0.955 

364.0
0.945 

449.4
0.920 

500.4
0.909 

C2 
0.027

0.986 

0.130

0.999 

0.122

0.999 

0.126

0.999 

0.133

0.999 

0.138

0.999 

286.4

0.958 

309.5

0.951 

396.2

0.940 

460.6

0.921 

506.9

0.914 

C3 
0.022
0.989 

0.126

0.999 

0.120
0.999 

0.125
0.999 

0.129
0.999 

0.140
0.999 

321.3
0.975 

278.1

0.980 

343.6
0.973 

397.1
0.966 

484.7
0.941 

C4 
0.026

0.987 

0.129

0.999 

0.121

0.999 

0.122

0.999 

0.131

0.999 

0.137

0.999 

305.0

0.921 

319.5

0.912 

347.1

0.901 

398.2

0.888 

514.0

0.858 

C5 
0.026

0.987 

0.130

0.999 

0.119

0.999 

0.124

0.999 

0.129

0.999 

0.141

0.999 

308.7

0.917 

306.0

0.922 

346.3

0.901 

420.2

0.880 

506.2

0.854 

 
Ø 

0.024

0.988 

0.143

0.999 

0.129

0.999 

0.123

0.999 

0.130

0.999 

0.138

0.999 

270.6 

0.892 

299.8 

0.893 

358.8 

0.875 

415.9 

0.856 

485.2 

0.901 
 

The average 𝑚𝑎𝑒  for 𝑝fire  is 0.024 or 2.4%, The 

average correlation between true and predicted values of 

𝑝fireis 0.988. The values for vrel,t0  in 𝓛 range from 0 to 

25.45m/s, with a mean of 6.55m/s. Thus, the average 

𝑚𝑎𝑒 of 0.13 m/s is equivalent to an error of 2%. The 

average correlation is 0.99. For the prototypical crash 

severity pcs  the values in 𝓛pcs  range from 0 to forces 

beyond 40,000N. 

These values should be understood as relative 

comparison of different accidents rather than absolute 

forces, because the parameters for the mass-spring-model, 

like the deceleration streak loi, are chosen on a best guess 

basis to produce plausible results but are not validated yet. 

The average minimum pcs  in 𝓛pcs  is 1830N and the 

average maximum pcs  is 3308N. In relation to these 

values, the average 𝑚𝑎𝑒(min) of 280N and 

𝑚𝑎𝑒(max) of 500N are equivalent to an error of 15.1%. 

Fig. 7 shows visualizations of the accumulated 

prediction performances of all three predictor types. For 

𝑝fire , the plot shows the accumulated results of the 15 

models for the 15 different Ego-maneuvers A1, …, C5. 

The other two plots contain the results of 75 models each, 

containing the predictions of min, p25, med, p75 and max 

for the 15 Ego-maneuvers. While the regression plot of 

vrel,t0 appears clean, it is noticeable that the plots of pcs 

and 𝑝fire  have a more heterogeneous appearance. In the 

case of pcs, this comes from the result of the different 

models being accumulated, whereas in the case of 𝑝fire it 

seems that a small percentage of the 15 ×  𝑆𝒯 =
1,118,250 test instances with incorrect values is causing 

this visual result. On the right side of the figure, it can be 

seen, that the number of instances with an absolute error 

larger than 20% is almost invisible on the given scale. In 

absolute figures, it can be stated, that only 34,714 

instances or 3.1% of 𝓣 result in a 𝑚𝑎𝑒 larger than 20%. 
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Figure 7.  Regression plots and absolute error for 𝑝fire, vrel,t0 and pcs 

C. System Behaviour on Real-World Data 

Fig. 8 shows the results of the CSP for the real-world 

scenario from Fig. 1 with the test vehicle (red) crashing 

into the right side of a dummy vehicle (green). The 

Random Jungle is trained with data generated using the 

AHF. The trained models are then tested against data 

from the real world scenario. The different parameters 

like maximum or minimum crash severity are obtained by 

the CSP composed of 90 Random Forest models. The 

positions and yaw-angles of both cars are recorded using 

a Local Positioning Measurement System (LPM) with 

two transponders per vehicle. The data is synchronized 

and low-pass filtered before the velocity is obtained by 

deriving the position data. The vehicle shapes, masses, 

and stiffnesses (see Section IV.C) are taken from the set 

of available AHF-models, which match the real vehicles 

best. 
 

 

Figure 8.  CSP with 90 RF-models applied on real world data 

To illustrate how the chosen pre-crash situation 

evolves, the two time instances at a TTC of 524ms (left) 

and a TTC of 285ms (right) are presented in Fig. 8. The 

three depicted rows [A]ccelerate, [B]rake and [C]ontinue 

show the prediction of the crash severity measure vrel,t0 

for the possible Ego-maneuvers A1, …, C5. The colored 

numbers ranging from 0.00 to 1.00 represent the 

predicted results for 𝑝fire. 

It can be seen that between the worst Ego-maneuver 

A2 and the best maneuver B5 a difference of 6.5m/s or 

23.4km/h is possible. Compared to the no-change case C3, 

still, a reduction in the range of 1-4m/s is possible. It is 

also shown that no airbag will be fired if the Ego-vehicle 

brakes, while in all the other cases the probability for an 

airbag activation is almost always 100%. Only for the 

maneuvers 4 and 5 (steer right) a 𝑝fire of less than 100 % 

is possible. Steering right in general leads to a smaller 

crash severity according to the CSP. This makes sense, as 

steering right further decreases the relative velocity of 

both cars, now driving in a more similar direction. Thus, 

the predicted vrel,t0  as well as the predicted 𝑝fire  seem 

plausible. 

If no action is taken at TTC=524ms, it is apparent from 

Fig. 8 that the number of opportunities decreases over 

time. Good options available 524ms ahead of a crash 

might be lost 250ms later. This expectation is also 

confirmed by the results of the real-world experiment 

where both crash severity measures, vrel,t0, and 𝑃fire, are 

worse at a TTC of 285ms compared to a TTC of 524ms.  
 

D. Delays 

Delays arise at multiple points in the processing chain, 

like the sensors, data transmission or processing, and the 

actuators. It can be seen from Fig. 8 that delays have a 

huge impact on the effectivity of the CSP. A delay of 

250ms is equivalent to the time difference between the 

left and the right side in the figure. This means that at a 

TTC of 524ms (left) the lowest crash severity the CSP 

could achieve by [B]raking is a collision with 3m/s, 

whereas 250ms later (right) only 5.8m/s can be achieved 

and thus a 10km/h or 43% faster accident occurs, based 

on the initial velocity of 6.5m/s. This means, that when 

the whole system, consisting of the vehicle, sensors, 

algorithms, and actuators from the moment it faces the 

left situation takes 250ms to react, the possible safety 

gain reduces to approximately 0.5m/s (right) rather than 

3m/s (left) compared to the [C]ontinue case. Thus, it can 

be stated, that reducing the delays also has a beneficial 

impact on the effectivity of predicting systems in general 

and the CSP in particular.  

E. Feature Importance 

Each pre-crash situation s generated with the AHF is 

described by a feature vector d𝑠 composed of over 150 

elements. The whole feature vector was saved during 

simulation and analyzed afterwards regarding the 

importance of individual features. In order to determine 

the importance of a feature d𝑖 ∈ d, with i=1, 2, … L, the 

values of the feature under test are randomly permuted, 

and the impact on the prediction accuracy is recorded. Fig. 
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9 shows the ten most important features by crash severity 

type.  

 

 

 

Figure 9.  Most important features 

Results are normalized by the most important feature. 

Features starting with “pred_” and/or ending on “_mh” 

describe the anticipated crash as explained for anticipate
𝑠
 

in Section III.C. The abbreviations v, m, a, cog, hz, and 

dist stand for velocity, mass, area, center of gravity offset, 

hitzone, and distance. An anticipated mass pred_m results 

from the 50ms anticipation overlap percentage multiplied 

by the mass of the affected vehicle. The x- and y-axis 

point to the front and left of the Ego-vehicle. Arat means 

the ratio of overlap percentages and aabs is the absolute 

overlap in [m²].  

As a result, it can be summarized, that vrel,t0 and pcs 

mainly depend on velocity based features, whereas the 

prediction of 𝑝fire  relies on geometrical properties and 

more than the others on the vehicle masses. This makes 

sense as the CSP has learned the decision pattern of the 

Labeler and thus the three most important features 

perfectly represent the two-dimensional space introduced 

with the Equations (15) and (16). 

F. Times 

Training one Random Forest Model on 𝑆ℒ =  201,044 

instances takes approximately 64.34 seconds on an Intel 

i7 2.3GHz computer with 16 GB RAM. Thus, the 

Random Jungle with its 90 models takes around 96 

minutes to train. As the models are independent, the work 

can be split to several machines to reduce the training 

time. Testing the Random Jungle against 𝑆𝒯 =  74,550 

test instances takes 11.17 seconds or 150 µs per instance. 

Random Forest prediction can be parallelized with 

moderate hardware requirements. This theoretically 

allows predicting all 90 results of the CSP in parallel 

within 150µs. Even if the prediction has to be performed 

on a single-core CPU and thus, the 90 predictions must be 

processed sequentially, a whole run takes only 13.5ms. 

This is still less than the 20ms cycle time of most sensors. 

So even without parallelization, the CSP can run in real-

time in a usual vehicle environment. Simulating 225 

trajectory pairs with the AHF, in contrast, takes 9.45 

seconds and thus 63 ⋅ 103 times longer. While the time the 

Random Jungle takes for prediction remains constant 

independent on how many trajectory pairs are used for 

training and how complex their simulation is (e.g. FEM 

simulations), the time for the simulations linearly 

increases with the number of trajectory pairs and 

depending on the complexity of the used models (mass-

spring-model vs. FEM).  

VII. CONCLUSIONS AND FUTURE WORK 

Ahead of an unavoidable collision, taking the right 

actions decides about whether the crash severity will be 

high or low. A driver assistance system, which aims to 

react in order to mitigate the crash consequences, has to 

be fast and reliable at the same time. Two goals, which 

are hard to bring together, as usually a tradeoff between 

speed and precision has to be made. 

This paper presents a machine learning driven 

approach, which makes the results of even highly 

complex crash severity simulations available within less 

than one millisecond. A system is presented, that allows 

to predict the crash severity distributions, derived from a 

large number of simulations. Their results are made 

available in critical situations through a Random Jungle 

composed of 90 individual Random Forest models. The 

Jungle is trained with data generated using a self-

developed simulation framework. A combination of a 

two-track dynamics model and a mass-spring model is 

used to simulate the future vehicle movements and 

evaluate the crash severity for many driving maneuvers. 

This is where the crash severity distribution, the Random 

Jungle is trained with, stems from.   

It is shown for three different crash severity types that 

the Jungle is able to learn distribution characteristics such 

as the 25
th

 and 75
th

 percentiles. Trained with a dataset of 

201,044 and tested against 74,550  distinct instances, a 

prediction accuracy of 85 – 98% is achieved. Finally, the 

Jungle is tested with data of a real dummy vehicle crash 

to check whether the system behavior is plausible.  

Future work includes the search for solutions regarding 

the negative impact of delays on predictive vehicle safety 

systems. A further application of the CSP less prone to 

delays might be to estimate the crash severity for 

different position ns in the vehicle and use this 

information to relocate the passengers with the help of 
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highly responsive actuators. Another goal is to keep 

growing the FEM database to improve depending 

modules like the Labeler.  
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