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Abstract— A reliable and accurate tumor classification is 

crucial for successful diagnosis and treatment of cancer 

diseases. With the recent advances in molecular genetics, it 

is possible to measure the expression levels of thousands of 

genes simultaneously. Thus, it is feasible to have a complete 

understanding the molecular markers among tumors and 

make a more successful and accurate diagnosis. A common 

approach in statistics for classification is linear and 

quadratic discriminant analysis. However, the number of 

genes (p) is much more than the number of tissue samples (n) 

in gene expression datasets. This leads to data having 

singular covariance matrices and limits the use of these 

methods. Diagonal linear and diagonal quadratic 

discriminant analyses are more recent approaches that 

ignore the correlation among genes and allow high-

dimensional classification. Nearest shrunken centroids 

algorithm is an updated version of diagonal discriminant 

analysis, which also selects the genes that mostly contributed 

in class prediction. In this study we will discuss these 

algorithms and demonstrate their use both in microarray 

and RNA sequencing datasets. 

 

Index Terms—classification, discriminant analysis, gene 

expression, RNA sequencing, tumor classification 

 

I. INTRODUCTION 

Gene expression is a measure that used for a gene in 

the synthesis of a functional gene product. It is very 

important to understand the function of many biological 

systems. Currently, microarrays and RNA-Sequencing 

(RNA-Seq) are the most capable technologies to extract 

gene expression. Due to some advantages as producing 

less noisy data and detecting novel transcripts and 

isoforms, RNA-Seq is accepted as a more efficient 

technique and more widely used at this moment. Using 

any of these two technologies, it is possible to obtain the 

expression values of thousands of genes simultaneously. 

After some bioinformatics data pre-processing, we obtain 
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a dimensional gene expression matrix (p: number of 

genes, n: number of tissue samples) from both microarray 

and RNA-Seq data [1]-[4]. 

One major task using gene expression data is tumor 

classification. Conventional methods are subjective and 

classify tumors with examining morphological images 

under microscope. The success of tumor classification is 

directly correlated with the experience of pathologists. 

Microarray and RNA-Seq technologies make this process 

objective and produce reliable and accurate results based 

on the used statistical methods for the successful 

diagnosis and treatment of cancer diseases. Gene-

expression data have become a standard tool for 

biomedical studies and currently, it is widely collected 

from patients in clinical trials. Successful classifications 

can assist physicians for accurate diagnosis and identify 

the right treatment for patients [5], [6]. 

The problem here is the high-dimension of gene 

expression data. If we were interested with only one gene, 

we could simply apply ROC analysis and define a cut-off 

value to classify tumors. If we had a low-dimensional 

data, we could apply discriminant analysis, logistic 

regression or other statistical algorithms. The data 

become more and more complex when the number of 

dimension increases, and we cannot directly use these 

statistical methods in order to classify our data. Number 

of genes is much more than the number of tissue samples 

in gene-expression data and this leads to the 'curse of 

dimensionality' problem. Here, we meet with singular 

matrices and cannot calculate the inverses of matrices. 

Thus, we cannot assign samples to their correct classes 

[7]. 

In this study we will discuss diagonal discriminant 

analysis and nearest shrunken centroids algorithms which 

are extensions of Fisher's discriminant analysis and 

developed for microarray based gene-expression 

classification. We will also demonstrate the use of these 

methods for RNA-Seq data for the purpose of tumor 
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classification. We will demonstrate the use of these 

methods on publicly available real datasets. 

II. DIAGONAL DISCRIMINANT ANALYSIS 

In statistical decision theory, we need the posterior 

tumor class probabilities 𝑃(𝐶|𝑋)  for optimal 

classification. Let 𝑓𝑘(𝑥) the class conditional density of X 

and 𝜋𝑘
 the prior probability (mostly �̂�𝑘 = 𝑛𝑘/𝑛) for class 

𝐶 = 𝑘 , where ∑ 𝜋𝑘 = 1𝐾
𝑘=1 . Using Bayes theorem, we 

can obtain 𝑃(𝐶|𝑋)
 
as follows:

 

𝑃(𝐶 = 𝑘|𝑋 = 𝑥) =
𝑓𝑘(𝑥)𝜋𝑘

∑ 𝑓𝑙(𝑥)𝜋𝑙
𝐾
𝑙=1

              (1)
 

Various
 
solutions are available to model

 
𝑓𝑘(𝑥):

 


 

Gaussian densities for linear and quadratic 

discriminant
 
analysis,

 


 

Flexible
 
mixture Gaussian densities for nonlinear 

classification,
 


 

Nonparametric
 
density estimates for each class for 

the most flexibility,
 


 

Naïve Bayes models where the class densities are 

the products of marginal densities.
 

Due to the curse of dimensionality problem in high 

dimensional
 
gene expression data, Naïve Bayes models 

can be used to estimate conditional densities of tumor 

classes and covariates can be assumed as independent. 

This can be provided by using diagonal covariance 

matrices Σ̂𝐶=𝑘 = 𝑑𝑖𝑎𝑔(𝜎1𝑘
2 , 𝜎2𝑘

2 , … , 𝜎𝑝𝑘
2 ) , where all off-

diagonal elements are set to be zero [6,8]. This is also 

called as ‘independence rule’ and Bicken et al.
 

[9] 

showed theoretically that diagonal discriminant analysis 

performs better than traditional discriminant analysis in 

high-dimensional classification analysis. Using diagonal 

covariance matrices, we obtain the following discriminant 

rule for class k:
 

𝛿𝑘
𝑄(𝑥∗) = − ∑

(𝑥𝑗
∗−�̅�𝑘𝑗)

2

𝑠𝑘𝑗
2

𝑝
𝑗=1 − ∑ log (𝑠𝑘𝑗

2 )
𝑝
𝑗=1 + 2log(𝜋𝑘)      

 

(2)
 

here, this rule is called as diagonal quadratic discriminant 

analysis (DQDA). 𝑥𝑗
∗ refers to a vector of test 

observations
 

values. �̅�𝑘𝑗

 
and 𝑠𝑘𝑗

2
 
are the mean and 

variance statistics of j
th

 
feature

 
(gene or transcript in gene 

expression data) in class k, respectively. A new test object 

will be assigned to the class which maximizes the 𝛿𝑘(𝑥∗)
 

discriminating function.
 

The second rule, diagonal linear discriminant analysis 

(DLDA) assumes that covariance matrices are equal 

across groups. Again, a test observation is assigned to a 

class which maximizes the following discriminating 

function:
 

𝛿𝑘
𝐿(𝑥∗) = − ∑

(𝑥𝑗
∗−�̅�𝑘𝑗)

2

𝑠𝑗
2

𝑝
𝑗=1 + 2log(𝜋𝑘) 

 
    (3)

 

here, 𝑠𝑗
2
 
within-class variances are used instead of 𝑠𝑘𝑗

2 .
 

 

III. NEAREST SHRUNKEN CENTROIDS 

Both DLDA and DQDA algorithms are capable for 

classification in n<p setting. However, one problem is to 

obtain very complex models for high-dimensional data. It 

is also crucial to determine the genes which contribute 

most to class prediction. For this purpose, Tibshirani et al. 

[5] proposed nearest shrunken centroids (NSC) sparse 

classification algorithm. NSC basically selects the most 

significant gene subsets for more simple and interpretable 

results and uses them for class prediction. 

NSC approximates the standardized class gene 

expression means to the standardized overall gene 

expression means, then eliminates the approximated 

genes and builds a classification model with the 

remaining genes. Let 𝑑𝑘𝑗 the difference scores, which can 

also be considered as the t statistic as a difference 

between a classes mean expression and overall mean 

expression: 

𝑑𝑘𝑗 =
�̅�𝑘𝑗−�̅�𝑗

𝑚𝑘(𝑠𝑗+𝑠0)
                             (4) 

We can simply call mean gene expressions as centroids. 

Here, 𝑠0 is a positive constant, mostly the median value 

of 𝑠𝑗  over the set of genes. 𝑚𝑘 is a standard error 

correction term set as √1/𝑛𝑘 + 1/𝑛 .We can rewrite (4) 

as: 

�̅�𝑘𝑗 = �̅�𝑗 + 𝑚𝑘(𝑠𝑗 + 𝑠0)𝑑𝑘𝑗             (5) 

Next, each 𝑑𝑘𝑗  is shrunk to zero and shrunken 

centroids can be written as follows: 

�̅�𝑘𝑗
′ = �̅�𝑗 + 𝑚𝑘(𝑠𝑗 + 𝑠0)𝑑𝑘𝑗

′             (6) 

Due to its more reliable mean estimates, the commonly 

used shrinkage here is soft-thresholding. An alternative 

method here is the hard-thresholding, however it is less 

widely used due to its less reliable mean estimates 

[10,11]. Each 𝑑𝑘𝑗  is shrank by an amount λ(shrinkage 

parameter) and set to zero if its absolute value is negative: 

𝑑𝑘𝑗
′ = 𝑠𝑖𝑔𝑛(𝑑𝑘𝑗)𝑚𝑎𝑥(|𝑑𝑘𝑗| − λ, 0)           (7) 

Genes with zero shrunken differences for all classes k 

are eliminated and the classification is made with the 

remaining genes. Cross-validation is used to identify the 

optimal shrinkage parameter λ. For a range of λ values, 

optimal λ is the one that gives the minimum classification 

error. For each λ, DLDA is used as a classification 

algorithm and the active genes that mostly contributed to 

the class prediction can be identified based on the optimal 

classification model. A very important point here is the 

usage of shrunken centroids rather than the simple 

centroids in classification. 

A test observation is assigned to the class that 

maximizes the following NSC discriminating function: 

𝛿𝑘
𝑁(𝑥∗) = −

1

2
∑

(𝑥𝑗
∗−�̅�𝑘𝑗)2

(𝑠𝑗+𝑠0)2

𝑝
𝑗=1 + log(𝜋𝑘)     (8) 

Posterior tumor class probabilities 𝑃(𝐶|𝑋)  for both 

diagonal discriminant analysis and nearest shrunken 

centroids can be obtained as follows: 
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�̂�𝑘(𝑥∗) =
𝑒𝛿𝑘(𝑥∗)/2

∑ 𝑒𝛿𝑙(𝑥∗)/2𝐾
𝑙=1

                      (9) 

IV. EXPERIMENTS 

Experimental Datasets: We used two real datasets to 

demonstrate the use of these algorithms in microarray and 

RNA-Seq data classification. The first data is the small 

round blue cell tumor of childhood (SRBCT) [12]. Gene 

expressions were obtained with cDNA microarray 

experiment. Probe labeling, hybridization and image 

acquisition were conducted based on the National Human 

Genome Research Institute protocol. The data consists of 

the expression values of 2,308 genes belonging to 83 

tissue samples.Khan et al. [12] provided 63 training and 

25 test samples, in which 5 of the samples are non-

SRBCT and not considered here. Training samples 

contain 23 Ewing family of tumors (EWS), 20 

rhabdomyosarcoma (RMS), 12 neuroblastoma (NB) and 

8Burkitt lymphomas (BL).Test samples contain 6 EWS, 5 

RMS, 6 NB and 3BL. 

Second data is the cervical cancer miRNAdata [13]. 

This is an RNA-Seq dataset that contains the expression 

values of miRNAs in tumor and non-tumor human 

cervical tissue samples. Cervical data includes 714 

mapped miRNA read counts to human reference genome. 

It contains 58 samples, where 29 of them are tumor and 

the remaining 29 are non-tumor. In tumor samples, 6 of 

them are adenocarcinomas (ADC), 21 are squamus cell 

carcinomas (SCC) and 2 are unclassified. We considered 

the data as a two-class problem and 20 samples in each 

class were randomly defined as training samples, where 

the remaining 9 samples were defined as test samples. 

Model Building: We applied some pre-processing 

analysis to cervical data to get a continuous gene 

expression data required by the used classifiers. Firstly, 

we filtered the miRNA's, which 10% or fewer training 

observations have non-zero counts. We also selected 500 

miRNA's with highest variance to get more reliable 

results. After, we applied deseq normalization [14] to 

adjust the read counts to sample specific differences. 

Then, we applied regularized logarithmic transformation 

(rlog) to estimate the mean and variance relationship of 

the data and transform it based on this relationship to 

obtain expression data that is hierarchically closer to 

microarrays [15]. For SRBCT data, we selected the 2,000 

genes that have the highest variances. Finally, we 

obtained 2,000x63 training, 2,000x20 test SRBCT gene 

expression data, and 500x40 training, 500x18 test 

cervical cancer gene expression data. 

In order to avoid over-fitting, we made a grid search 

for the tuning parameters and used 5-fold cross validation 

to identify the optimal parameters of each model. All 

classifiers were fit with these optimal parameters. As an 

evaluation criterion, we considered the model accuracy. 

For this purpose, we calculated misclassification errors of 

test datasets for each model. Since, both data have very 

small sample size and model accuracies may vary based 

on the selected training and test sets; we fit the process 

ten times and averaged the misclassification errors. For 

comparison, support vector machines (SVM) and random 

forests (RF) were also considered and the same model 

building process was also applied for them. Number of 

trees in RF algorithm was set as 500. Radial-based kernel 

function was used in SVM modeling. Parameter 

optimization for SVM and RF was conducted in caret 

package [16] of R. 

V. RESULTS 

Results are given in Table I. NSC identified 43 genes 

and 12 miRNA’s with optimal parameters 3.859 and 

3.416 for SRBCT and cervical datasets, respectively 

(Fig.1).For RF algorithm, number of genes sampled at 

each split was 67 and 206; for SVM algorithm 

complexity parameter was 1, sigma parameter was 

0.00023 and 0.0016, for SRBCT and cervical datasets, 

respectively. 

TABLE I.  PERFORMANCE OF CLASSIFIERS IN REAL GENE 

EXPRESSION DATASETS 

Classifier Misclassification error 

SRBCT dataset  

DLDA 4.87 
DQDA 8.36 

NSC 1.54 

SVM 5.15 
RF 1.67 

Cervical dataset  

DLDA 10.30 
DQDA 8.64 

NSC 6.97 

SVM 13.79 
RF 7.12 

DLDA: Diagonal linear discriminant analysis, DQDA: Diagonal 

quadratic discriminant analysis, NSC: Nearest shrunken centroids, SVM: 

Support vector machines, RF: Random forests. 

NSC algorithm outperformed other algorithms in both 

datasets. Performances of diagonal discriminant analysis 

were compatible with SVM algorithm, but less than RF 

algorithm. When compared to each other, DLDA 

performed better in SRBCT dataset, while DQDA 

performed better in cervical dataset.  

 

Figure 1.  Identification of shrinkage parameters for NSC algorithm 

VI. CONCLUSIONS 

Diagonal discriminant analyses performed remarkably 
well in two gene expression applications. Their results 
were compatible with the more sophisticated classifiers 
SVM and RF. In fact, NSC gave the highest accuracy in 
both datasets. These algorithms are very easy to 
implement, give accurate results and unlock the use of 
discriminant analysis classifiers in high-dimensional 
settings. Thus, they should be considered as a method of 
choice in high-dimensional tumor classification problems. 
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As an advantage, NSC algorithm selects the most 

significant gene subset on class prediction. Identifying 

the most informative genes may provide potential 

molecular markers for tumor classification. Instead of 

classification, this algorithm can also be used in 

biomarker discovery problems. Another advantage of this 

algorithm is to use for clustering purpose as shown in [5]. 

After gene selection, one can use the shrunken 

differences 𝑑𝑘𝑗
′ and detect the co-regulated gene clusters 

that are significant on class prediction. 

We implemented these algorithms for RNA-Seq based 

gene-expression classification for the first time. With 

some data pre-processing, one can transform the data and 

make it hierarchically closer to microarrays. In this 

setting, normalization and transformation may have 

significant effect on classification of RNA-Seq data. 

Since this study aimed to demonstrate the application of 

these algorithms rather than aiming to compare their 

performances, we simply applied deseq normalization 

and rlog transformation. A comprehensive study is 

required to compare the performances of these algorithms 

under different scenarios. 

Users can easily implement DLDA and DQDA in 

sfsmisc package [17], NSC in pamr package [18] of R 

software (www.r-project.org ). 
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