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Abstract—The fast progress of Three-Dimensional (3D)
reconstruction has led to the emergence of advanced Deep
Learning (DL) approaches and techniques. Leveraging the
technology of computers to produce realistic
three-dimensional representations of objects has grown into
an essential component of extensive study in a variety of
domains. This review article investigates the cutting-edge
methodologies, difficulties, and potential in this research
field. The state-of-art study follows the development of Deep
learning techniques with graphics expertise, which
strengthens the requirement for good efficacy with better
performance of 3D reconstruction. The research work begins
by discussing classic strategies for 3D reconstruction with
active and passive techniques that emphasizes their
limitations with the need for cutting-edge practices. The
various types of neural network architectures employed, like
Convolutional Neural Networks (CNNs), autoencoders, and
Generative Adversarial Networks (GANs) are explored with
auxiliary information. This review aims to provide
researchers and practitioners with a thorough understanding
of the advancements, problems, and prospects in
image-based 3D reconstruction while opting for the
progressions in Deep Learning. Further, this research study
presents the development in Neural Radiance Fields (NeRF)
which is revolutionizing image-based rendering for efficient
3D reconstructions.

Keywords—Three-Dimensional (3D) reconstruction, Deep
Learning (DL), Convolutional Neural Network (CNN),
Generative Adversarial Network (GAN), Neural Radiance
Fields (NeRF)

1. INTRODUCTION

Image-based Three-Dimensional (3D) reconstruction
aims to create 3D model by operating the
Two-Dimensional (2D) images, a process that has been
revolutionized by deep learning techniques. The research
trends explore the application of deep learning techniques
which enables more accurate and efficient reconstruction
of 3D models from 2D images. This has significant
potential for numerous industrial applications, especially
in design, manufacturing and maintenance. This review
focuses on leveraging deep learning techniques to improve
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the 3D reconstruction process than the traditional
approaches. Deep learning research has made considerable
progress in the area of image-based 3D reconstruction,
addressing many limitations presented by previous
approaches [1]. 3D reconstruction from images has been a
long-standing goal in computer vision, with wide-ranging
applications from industrial revolutions. 3D reconstruction
technological advances help to build exact digital
representations by collecting the 3D geometrical
information of authentic objects. It may record and store
the geometry along with the design of physical equipment
or mechanical parts, leading to the digital foundation for
equipment maintenance.

Unlike typical manual 3D modelling, utilizing
Computer-Aided Design (CAD) or Digital Content
Creation (DCC) applications, the 3D reconstruction
methodology starts with sensor input, such as images,
point clouds, and additional data [2]. 3D reconstruction is
categorized into both implicit and explicit representation
strategies based on distinct methodologies, which provide
a variety of viewpoints and processing methods to analyze
real-world data. The term, explicit expression states to a
representation method that uses explicitly defined
geometric shapes and frameworks to express an object’s
exterior or interior geometry. The object’s topology is
implicitly specified by an appropriate function or
mathematical equation, which is then utilized to solve the
issue, where the values may be collected from spots on the
surface. Training along with representing 3D models has
grown into a standard survey procedure in 3D plane survey
analysis.  Analysing several images and then
reconstructing the form and structure in three dimensions
is a key goal in computer vision. Conventional multiview
3D reconstruction methods use established camera settings
to extract and match important elements from images.
Nevertheless, these methods are ineffective and does not
completely utilize the benefits of multiview data. In the
past few years, deep learning-based approaches for 3D
reconstruction have grabbed the curiosity of several
researchers worldwide [3]. These unique algorithms may
estimate an object’s or scene’s 3D form intuitively through
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start to finish, avoiding the requirement for various steps
including key-point detection and a successful match.
Furthermore, these distinctive strategies can rebuild
objects’ forms given a single input view [4]. Using one or
more RGB photos, Han et al. [5] have concentrated on
deep learning approaches to estimate the 3D geometry of
common items. According to their research study, the 3D
geometrical structure of the multiple 2D images was
determined using 3D image reconstruction [6]. Deep
learning breakthroughs have transformed multiview 3D
reconstruction by making end-to-end 3D shapes [7, 8]. To
increase reconstruction quality and decrease processing

efficiency, several representations, including volumetric,
surface-based, and intermediary representations, were
described. The state-of-art study helps to understand
various  techniques and methodology for 3D
reconstruction. This paper presents a comprehensive
summary of current advances in image-based 3D
reconstruction. The explored approaches are analyzed
from a variety of perspectives, including input kinds,
model architectures, output representations, and learning
strategies. The objectives of the research study are enlisted
in Table I.

TABLE 1. OBJECTIVES OF THE RESEARCH STUDY

Objectives No Description
. . . (1) Study traditional and deep learning-based methods for 3D reconstruction.
Investigate Existing Techniques for - - -
. 2) Explore different deep learning approaches used for 3D reconstruction.
3D Reconstruction - - ; -
3) Analyze evolution of deep learning techniques and approaches for 3D reconstruction.
Analyze Strengths and Limitations of (1) Assess the accuracy, robustness, and efficiency of different Deep Learning (DL) models.
Deep Learning Techniques (2) Discover common challenges and limitations of DL techniques and approaches for 3D reconstruction.
1 Identif i h ial for i .
Explore the Future Research Trends (@)) . c!entl y gaps in current researc apd potential areas for 1mpr9vement __
Examine emerging trends, self-supervised learning, transformer-based architectures, and diffusion
and Enhancements 2)

models for 3D generation.

The research work is presented into various sections,
where Section II gives an overview of image-based
conventional 3D  reconstruction approaches and
techniques. Section III outlines the deep learning
techniques for 3D reconstruction. Section IV entails the
state of art key studies and Section V summarizes
discussion and future direction. Finally, Section VI
concludes the research work.

II. IMAGE BASED 3D RECONSTRUCTION

The field of image-based 3D reconstruction involves
creating three-dimensional models from two-dimensional
images. It includes rebuilding and comprehending the 3D
structure of objects and situations using two-dimensional
images data. 3D visualization methods employ data from
cameras or sensors to create a digital representation of the
forms, structures, and attributes of objects in a scene. This
technology has broad applications in areas such as
Computer Vision, Robotics, Virtual Reality (VR), and
Augmented Reality (AR). The 3D reconstructions create
respective 3D models by extracting, processing, and
analyzing 2D visual input. While performing 3D
reconstructions, as shown in Fig. 1, it utilizes several
algorithms and data collecting approaches that allow
automated 3D vision models to rebuild the dimensions,
outlines, and spatial coordinates of the objects in each
visual environment.

In 3D reconstruction, explicit formulations are clearer
and more accurate, while implicit formulations provide
flexibility and efficient storage. Choosing the right
representation depends on the specific application needs
for 3D reconstruction in computer vision [9, 10]. The 3D
models are extracted & built either by using the input from
special sensors, which is referred as active data capture or
by using the input from the regular cameras called as
passive technique. The initial processes, like the Structure
from Motion (SfM) and Multiview Stereo (MVS), rely
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heavily on feature matching and geometric constraints,
which often result in limitations regarding robustness in
complex environments.
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Fig. 1. Conventional image-based 3D reconstruction.
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A. Passive Techniques

Passive  visualization  approaches for image
reconstruction entail gathering detailed information from
the environmental surroundings without actively
transmitting any signal or light. These strategies depend
upon ambient light or natural radiation. It seamlessly
analyzes images or videos captured using currently
available light sources. Few of the traditional passive
methods which are commonly used in 3D reconstruction
are:

1)  Depth from Defocus (DfD)
DfD evaluates the depth or 3D structure of an object by
determining the amount of blur or defocus in certain

sections of an image. It operates on the concept that objects
at different distances from the camera lens will display
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varied degrees of defocus blur. Pentland [11] suggested a
technique for detecting depth of scenes by determining the
degree of defocus functions in the image being examined.
The method is intriguing since it involves no
correspondence [12]. The challenges with DfD include
requiring multiple images with different focus settings,
making it time-consuming, and difficulty in texture-less
regions, increasing computational cost.

2)  Shape from Shading (SfS)

SfS reconstructs an object’s 3D shape from a single 2D
image. This approach examines how light strikes an object
with its shading patterns and how bright various parts seem
with the intensity variations. It depends on the direction of
the light source and the reflectance properties of the
surface. It works better for reconstructing smooth surfaces.
The visual data derived from a particular object’s coloring
can be utilized to reconstruct the contour for the observed
surface [13].

3) Structure from Motion (SfM)

StfM collects the set of images of a scene from different
perspectives with a single camera. The initial stage is to
identify elements that are common among these images,
such as corners, edges, or particular patterns. SfM then
computes the location of cameras with its orientation for
every image depending on the recognized features and
their appearance from various perspectives as depicted in
Fig. 2. Triangulation is used to establish the 3D position of
the characteristics in the scene by contrasting matching
features across multiple images.

Identify the Match the Track im‘}\i’:lodg
Features Features Generation Surding

Fig. 2. Various stages of SfM technique.

4) Stereo vision

Stereo vision implements the varied perception with
more than two cameras placed at distinct viewpoints to
capture images of the same scene. This approach works by
identifying comparable spots in both images and
determining their 3D coordinates using the specified
camera geometry. Stereo vision techniques use
inequalities, or the difference in the locations of
comparable points, to determine the depth of locations
throughout a scene [14]. This depth data enables precise
reconstruction of complex 3D models. It mimics human
binocular vision to perceive depth. Overcoming the
correspondence issue associated with image pairings
represents one of the key problems of stereo vision.
Another problem with stereo vision is facing
computational complexity and latency mostly for
real-world applications.

5)  Photometric stereo

Photometric stereo seizes several images of an object
under divergent lighting conditions; this was presented by
Robert Woodham [15]. The word “photometric” relates to
the measurement of light, whereas “stereo” means the
utilization of multiple images. The variations in shading
are used to infer the surface normals and reconstruct the
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3D shape of the object. Consider the light rays falling on a
surface where, N is surface normal, L is the input light
direction and V is the output light direction. Both, L and V'
make the respective angles with the normal N referred to
as Radiance along direction L and Radiance along
direction ¥, computed using Eq. (1).

Radiance along V' = Bi-directional reflectance function
(-) Radiance along L

L, = p(6;6,) L; cosb; (1)

6) Multiview Stereo (MVS)

Multiview Stereo (MVS) extends stereo vision to
multiple viewpoints for 3D reconstruction. It represents
3D shapes using dense point clouds or surface meshes,
aiding photorealistic rendering. MVS generates cohesive
models using depth maps and 3D fusion while aligning
images based on geometry and camera settings [16].
Advances in processing power and algorithms have
improved MVS, with key contributions from
Delaunoy et al. [17] and Seitz et al [18]. The main
challenge is accurately computing dense pixel
correlations, as matching pixels across views remains
difficult [19].

B. Active Techniques

Active 3D reconstruction techniques use any type of
radiation, like sound, radio waves or light illuminating an
object. It then examines the reflected light, reverberates
and deformation to recreate the 3D structure of the item.
These approaches use the reflection, dispersion, or
absorption of the transmitted signal to obtain data
regarding the surroundings. The active techniques provide
better management for the imaging conditions with
reliable environmental situations and applications.
Typically used active strategies are as below:

1)  Light Detection and Ranging (LiDAR)

Single-photon LiDAR is emerging as an effective
solution for distance imaging in challenging environments.
It works by emitting laser pulses and measuring the time it
takes for the light to reflect off objects, generating a point
cloud, which is a collection of data points used to create
3D representations of surfaces, shapes, and objects.
LiDAR is capable of detecting a wide range of elements,
such as physical objects, chemical substances, and even
clouds. It is widely used in fields like aviation, topographic
mapping, and autonomous navigation. It represents a result
of extensive advancements in laser technology, optics, and
remote sensing. However, LIDAR faces limitations under
certain environmental conditions, like rain, fog, snow, or
humidity, which can distort data. It also struggles with
accurate measurements on specular surfaces, such as
mirrors or glass. Despite these challenges, LiDAR
continues to be crucial in sectors like self-driving vehicles,
archaeology, and environmental research [20, 21].

2)  Structured light scanning

This technique projects a well-planned pattern of light
onto a visual scene. Grids, horizontal stripes, and more
intricate designs are just a few of the various shapes that
this light pattern may take. The light beams become
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warped when the light pattern affects objects of various
shapes and levels. To determine the 3D shape, a camera
records the distorted pattern. The capacity to quickly
produce accurate and high-resolution 3D models is one of
the technique’s main benefits. Reverse engineering, 3D
printing, and CAD modeling are just a few of the uses for
it.
3)  Structured light with multiple patterns light scanning

Conventional 3D capture methods run a single scanning
laser stripe across a target object’s surface in a sequential
manner. In order to acquire data using this approach, the
object must stay still while many stripe photos are taken.
A variety of light patterns with different spatial
frequencies are projected onto the object to overcome
issues like ambiguity and albedo (surface reflectivity). By
analyzing the updates or highlights in the collected photos,
these patterns make it possible to recreate a 3D geometry
with greater accuracy [22]. This method is frequently used
in industrial inspections and 3D scanning, which requires
high precision. It is the outcome of years of computer
vision and 3D scanning research and development by
several research groups (1995-2010).
4) Time-of-Flight (ToF) cameras

Time-of-Flight (ToF) technique measures the time
taken for a light pulse to travel to an object and return. Here
the distance estimation is based on the reflected light
time-of-flight [23]. For each pixel in the sensor array data
is captured, producing a 3D depth representation of the
scene. ToF sensors give depth information for every point
as compared to conventional cameras that just record color
or brightness. This enables to create reconstructions of the

surroundings. Common applications of ToF includes
gesture recognition, industrial automation, and augmented
reality. The technology development from 1930 to 2000
has focused on accurately measuring ranges by timing
light signals. A significant challenge for multi-camera ToF
setups is Multiple Camera Interference (MCI), requiring
measures to prevent electromagnetic interference between
cameras.
5) Active infrared imaging

It makes use of infrared light sources for illuminating
the scene and collecting the reflected infrared light.
Maiman [24] and Military-Defense Research Laboratories
are significant personalities as well as organizations in the
evolution of infrared technology. Active infrared imaging
is the use of infrared light sources to illuminate a scene and
capture the reflected light to form an image. The working
of active infrared imaging yields better results in low-light
or nighttime conditions; thus, it is more useful for night
vision, surveillance, inspection of industry, etc.
6) Acoustic imaging

An acoustic imager uses sound like a camera uses light,
detecting echoes to create images. It maps loudness with
colors and is used in sonar and ultrasound imaging. Key
contributors include Paul Langevin and Lewis Fry
Richardson, with major advances in signal processing

since 1970s. Challenges include precise geometry
measurement, channel response estimation, and time
synchronization.

As depicted in Fig. 3, the conventional 3D

reconstruction methods are timelind with the active and
passive techniques.
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Fig. 3. Active and passive techniques for conventional 3D reconstruction methods.

III. DEEP LEARNING TECHNIQUES FOR 3D

RECONSTRUCTION

While the classical methods covering active and passive
techniques for image-based 3D reconstruction have been
effective, they often require meticulous calibration of
camera pose and are highly sensitive to noise and
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occlusions. The emergence of deep learning introduced
data-driven approaches that can learn complex mappings
from images to 3D structures, offering improved robust 3D
reconstruction. Deep learning techniques have
significantly advanced image-based 3D reconstruction,
leading to notable improvements in both reconstruction
quality and robustness.
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Deep Learning Methods for Image-
Based 3D Reconstruction
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Fig. 4. Deep learning techniques for 3D reconstruction.

Autoencoders and Variational
Autoencoders (VAEs)

New horizons in Artificial Intelligence are being opened
by expanding deep learning techniques. This is possible
through the use of deep learning techniques, sensor
emancipation and the acceptance of concurrent active and
passive methodologies [25]. Conventional techniques for
reconstructing a single image in three dimensions rely on

specific lighting and reflectance presumptions, making
them extremely vulnerable to changes in the input’s
reflective power, illumination, and texture. 3-dimensional
forms of the objects are rebuilt with approaches
using mathematical characteristics as contours,
vertical-horizontal lines, and points. Other approaches use
shading and repeating texture elements [26]. An overview
of artificial intelligence-based techniques for 3D geometry
reconstruction from a single image is presented in many
studies, which investigates the possibilities of Variational
Autoencoders (VA), Generative Adversarial Networks
(GAN), Convolutional Neural Networks (CNN), and
Zero-Shot techniques [27]. Deep learning techniques have
evolved in recent past few years due to the quick growth
of neural networks and the introduction of fully
decentralized 3D model datasets. ShapeNet became the
benchmark dataset, commonly used for evaluating 3D
generative models like 3D-GAN, Occupancy networks,
and DeepSDF [28]. In 3D planar survey interpreting, the
training and representation of 3D models has grown into
standard procedure. With the advancement of deep
learning techniques since 2015, image-based 3D
reconstruction using CNN has gained interest of
researchers because of the impressive performance of the
deep learning algorithms. Fig. 4 represents the deep
learning techniques, which are classified in three
categories as: (1) Supervised Learning, (2) Unsupervised
Learning and (3) Self-Supervised Learning.

Network Architecture

a

Encoder-Decoder Network

E3 -
‘ . -
- Point Cloud
‘ =t et

3D

%

Depth Estimation Network

Reconstruction
Output

S =)

b

Input Image

Implicit Neural Representation ‘

|
A\

4

ITransfer Learning

Fig. 5. Framework for 3D reconstruction using deep learning.

A. 3D Reconstruction Using Deep Learning

The various research studies are trying to solve the
problem of 3D reconstruction. Convolutional neural
network is one of the widely used technique for
image-based 3D reconstruction for decades, and it’s
efficacy has been outstanding and has drawn growing
attention. The three phases of the 3D reconstruction
approach are as follows: first, a CNN is trained using a
input image dataset to anticipate and recognize the object’s
features and to reliably estimate the locations from one
representation in the image space. Creating the object’s
geometric form (mesh) is the second phase. In order to
identify the surface referrals which, relate to each object
polygon the third and final step of the method involves
automatically translating the 3D space of the object into
the 2D image space. This process yields better visual
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output, with respect to given inputs, including structure,
expression, reflectance, and illumination [29]. As shown
in Fig. 5 the framework for 3D reconstruction using deep
learning consists of components as:
(1) Input Image Data;
(2) Output 3D Representations;
(3) Network Architectures;
(4) Transfer Learning.

A deep learning architecture uses an image as input and
creates a 3D model output in the form of a mesh, voxel
grid, and point cloud.

1)  Input image data

A dataset is a group of data with information unique to
its category. The various types of datasets are real dataset,
generated dataset, synthetic dataset, etc. with single
image [30] or multiple images as data input. Typical data
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inputs include subsurface depth data, LiDAR imaging
point-cloud details, camera pictures, and inertial
observations. RGB channel analysis is performed on
camera pictures & creation of dense depth maps is
facilitated by LiDAR data.

The most popular method for deep learning-based 3D
reconstruction makes use of both synthetic and real-world
data. ShapeNet is a vast collection of synthetic CAD
models with extensive annotations. It was widely used to
train, evaluate, and compare approaches, allowing for
consistent assessment across algorithms, and it became a
common benchmark in the literature on deep 3D
reconstruction [31]. ScanNet, Matterport3D, and TUM
RGB-D/S3DIS offer extensive real-world RGB-D data
with semantic labelling and dense geometry for
scene-level reconstruction. Usually, the parametric CAD
models from the ABC-Dataset, CC3D, Fusion360 Gallery
and 3D CAD model dataset are used in geometric deep
learning research [32]. Emerging datasets such as
Objaverse-XL push boundaries, offering millions of the
annotated meshes and implicit-field representations
tailored for generative and neural rendering
techniques [33].

2)  Output representations

Output representation is important in the selection of
network architecture, it also has the impact on the quality
of reconstruction and the computational efficiency. Fig. 6
depicts the commonly used representations in 3D deep
learning, such as Voxel, Point Cloud, Meshes, Sign
Distance Function (SDF) and Occupancy Grid.

O|O|F|FIF]
O[F[FIOIF]
FIF]O|F|F]|
FIOIFIF|O|
FIFIFIO]O]

(a) (b) (©) (e)

Fig. 6. Data representation methods in 3D deep learning. (a) Voxel;
(b) Point Cloud; (c) Mesh; (d) SDF; (e) Occupancy Grid.

(d)

a) Voxel grid

Voxel grids are a fundamental method for representing
3D data in Deep Learning, extending the concept of 2D
pixels to 3D voxels. Each voxel, or volumetric pixel, stores
information such as occupancy, probability, or material
properties, and forms a grid that divides 3D space into
cubic cells. Voxel grids offer a structured, regular
representation of 3D space, making it easier to process
with 3D convolutional neural networks, which can capture
spatial patterns in the data. However, at high resolutions,
voxel grids require significant memory and computational
power, as the number of voxels increases cubically with
resolution. At low resolutions, they may lose fine details
of objects, and real-world 3D data is often sparse [34],
requiring specialized data structures like octrees for
efficiency.
b)  Point cloud

Point clouds are the fundamental 3D representation

method, which is used for efficiently representing 3D data
for deep learning. It consists of (x, y, z) points with
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optional attributes like color or intensity. As point clouds
are memory efficient compared to voxel grids, they are
used in the applications like 3D object recognition,
segmentation, and reconstruction. However, because of
the unordered nature and sensitivity to noise it is
challenging to use in the applications which requires dense
information. Deep learning models like PointNet,
PointNet++ [35, 36], and Dynamic Graph CNNs
(DGCNN) solve these challenges with specialized
architecture. PointNet gathers global features and
independently processes points using Multi-Layer
Perceptron (MLP). PointNet++ introduces a hierarchical
structure which captures both local and global features.
With edge convolution and dynamic graphs DGCNN
analyzes local geometry. The needs of particular activities,
such as the level of feature extraction and the handling of
point density, determine which design is best. Reducing
noise in the point clouds, which is particularly valuable for
the condition assessment and 3D reconstruction,
Emadi and Limongiello [37] presents a novel approach by
integrating deep learning and clustering models to improve
the quality of point clouds. Point cloud completion is a
significant challenge due to incomplete or sparse data [38].
It is the task of generating a complete 3D representation of
an object from a partial or incomplete point cloud input.
Completing point clouds is usually not easy since they are
naturally chaotic and unstructured, Point Cloud Network
(PCN), Unpaired scan completion network, Morphing and

sampling-based  network, = PF-Net, GRNet and
SnowflakeNet are models wused in Point Cloud
completion [39].

¢) Meshes

Meshes are a fundamental 3D representation used in
graphics, computer vision, and deep learning. It is
composed of vertices, edges, and faces which makes them
ideal for high-fidelity modelling. Compared to voxel grids
and point clouds, meshes are more precise but complexity
and high computational demands is a challenge in using
meshes [40]. These problems are addressed by specialized
deep learning models, MeshCNN that uses convolutions to
mesh edges, GCNs which treat meshes as graphs to capture
vertex interactions, and mesh autoencoders learn compact
representations for unsupervised tasks.

d) Signed Distance Functions (SDFs)

In Signed Distance Functions (SDF), 3D shapes are
represented by defining a scalar field over 3D space. Value
of each point indicates the shortest distance to the shape’s
surface. The sign of the distance shows whether the point
is inside or outside the shape with negative or positive sign
respectively. It provides a continuous and smooth
representation, captures fine details and complex
geometries. This makes SDF suitable for tasks like shape
reconstruction and rendering which require high precision.
They are differentiable due to their continuous nature,
which helps neural network learning and optimization
tasks [41]. However, because SDFs require dense grids
and use a lot of memory, at high resolution its creation and
processing are computationally demanding. Converting
other representation, such as meshes or point cloud to
SDFs can be complex and error-prone.
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e)  Occupancy grids

An occupancy grid is a discrete representation of 3D
space, that divides it into a regular grid of cells (voxels)
and labels each one as either free (empty space) or
occupied (within an object). It can be probabilistic, storing
the probability that a voxel will be occupied. Occupancy
grids are simple, intuitive, and compatible with 3D
convolutional neural networks. However, high-resolution
grids require significant memory and computational
resources, limiting scalability, while low-resolution grids
may miss fine details. In large grids, processing sparse data
effectively can be difficult and frequently calls for
specialized data structures [42]. The decision between
SDFs and occupancy grids depends on the particular
requirements of detail, resources, and task type.
Occupancy grids are well suited for applications such as
robotics and 3D object detection.

D

Volumetric representations

In 3D deep learning, volumetric representation is a key
approach in which 3D space is divided into a regular grid
of voxels (3D pixels). A value corresponding to a 3D space
attribute, like occupancy, density, or color, is stored in
each voxel. As voxel is compatible with 3D convolutional

neural networks, it can be used for jobs requiring in-depth
3D analysis. This allows the capture of spatial
relationships and structural features. But scalability is
limited by high computing resources which demand to
represent high-resolution data with voxels. Accuracy may
be impacted by low-resolution grids to capture minute
details [31].

Techniques like 3D CNNs, VoxelNet, and 3D U-Net
leverage voxel grids for various 3D tasks. 3D CNNs
extend 2D convolutions to three dimensions, capturing
spatial hierarchies across the grid. VoxelNet combines
feature learning and 3D object detection by processing raw
point clouds divided into voxels. 3D U-Net, an extension
of 2D U-Net, uses an encoder-decoder structure with skip
connections to capture detailed spatial information and
context, making it effective for tasks like object detection,
shape reconstruction, and segmentation.
PointNet/PointNet++, DGCNN, CurveNet uses point
cloud. Deep learning for meshes applies mesh-aware
convolution and graph-based neural models. Table II
shows the comparative analysis of different 3D data
representation methods and suitability for practical
applications.

TABLE II. COMPARISON OF 3D REPRESENTATION TECHNIQUES

Representation Techniques Pros Cons Applications
Represents 3D shapes of Easy to use with 3D . . 3D CNN tasks: segmentation,
. : Convolutional Neural High memory/computation, - . : .
Voxel/Volumetric  regular cubes, 3D grid of . . object analysis, object detection
Networks (CNNs), can loses detail at low resolutions.
voxel. . [31, 43, 44]
handle any spatial structure.
Unordered point sets Memory-efficient, directly . . Recogmtlgn, clasmﬁcatl_on,
. . L Requires special networks, segmentation, and real-time
Point Cloud representation of points in  represent the 3D shape from o . .
3D space sensor output sensitive to noise. scene understanding.
) ) [35-39,45-51]
Represents combinations . . Complex graphs, heavy Graphics, surface reconstruction,
Mesh of structured vertices, High fidelity, compact computation, and Difficult for high-detail modeling.

edges and faces.

surface representation.

the network to learn. [40, 52, 53]

3D shape representation

ign Di )
Sign Distance through a set of continuous

Smooth, detailed, Strong

Difficulty in handling complex
shapes, conversion overhead

High-precision reconstruction,
implicit surface modeling.

Function (SDF) signed distance fields. representation ability. issue. [41, 54, 55]
Discrete representation of . Scaling issue, difficult to Robotics, 3D detection, semantic
. . Simple, CNN-ready, supports . .
Occupancy Grid 3D space with voxel obabilistic reasonin represent small objects or fine mapping.
occupancy probability. P & details. [42, 56-58]

3)  Network architecture

The physical as well as logical layout of the technology,
software, standards, along with the medium used in
transmitting information forms a network architecture. It
determines the efficiency and accuracy of the
reconstruction process, influence scalability, adaptability,
and computational resource requirements. A clear
understanding of these frameworks helps in selecting the
most suitable model for specific applications. The different
architectural structures used in 3D reconstruction using
Deep Learning techniques are as discussed below:

a) Convolutional Neural Networks (CNNs)

CNNss play a crucial role in 3D reconstruction tasks by
processing volumetric data, point clouds, or multi-view
images to extract features, learn representations, and
generate accurate and detailed reconstructions of 3D
shapes. These CNN architectures as represnted in Fig. 7
have significantly advanced the field of 3D reconstruction
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and are widely used in various applications, including
computer  vision, robotics, augmented reality,
manufacturing industries, etc. Unlike conventional CNN
methods that handle 2D data, 3D CNNs use special filters
to immediately extract important characteristics from
geometric data, including three-dimensional
representations of objects or medical scans. This learning
technique is able to interpret temporal characteristics and
spatial connections as it can analyze data in three
dimensions.

Consequently, 3D CNNs work well for applications
such as precise segmentation of medical visuals for
diagnosis, video analysis, and 3D object identification.
Convolutional neural networks are widely used for feature
extraction from images, which is a crucial step in
image-based 3D reconstruction. CNN architectures such
as ResNet, VGG, and MobileNet are commonly employed
for their ability to extract hierarchical features from input
images. CNNs have been instrumental in advancing 3D
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reconstruction tasks, particularly in handling volumetric
data and processing point clouds. CNNs include deep
neural networks which employ convolution rather than
matrix multiplication and train various types of layers.

ENCODER
2D
Network
Probability

e0 0

Image
X |

Input

Encoder Fully Connected Layer

Reshape

3D Representation

DECODER
3D
Network
Probability

Decoder

Reconstruction

Fig. 7. CNN model for 3D image reconstruction.

b)  Graph Neural Networks (GNNs)

GNNs are neural network architectures designed for
processing graph-structured data, which can represent
relationships between 3D points or voxels. Initially, they
were used to organize building units into conventional and
irregular structures through unsupervised learning. A
graph G is non-Euclidean organization composed up of a
collection of edges £ and set of vertices V. An edge in a
graph is represented by its nodes as e; = (vivj) € E, where
viand v; € V. A graph is written as stated in Eq. (2).

G =VE ©)

A graph can alternatively be represented like an
adjacency matrix (4), as shown in Eq. (3).

_ {lfel] € E then AU = 1}

Additional data could be contained in the characteristics
of any node, edge, or entire graph by representing them as
vectors. GNNs are increasingly being applied to 3D
reconstruction tasks to exploit geometric relationships
between points and improve reconstruction accuracy. A
key challenge in graph development is the manual
conversion of geometric primitives, meshes, floor plans,
and Building Information Modeling (BIM) models into
graphs or point clouds.

¢) Variational Autoencoders (VAEs)

VAE models are probabilistic generative methods
which facilitate latent representations of data to generate
intelligent information from the learned latent space. They
are crucial for generating high-dimensional data due to
their capacity to integrate stochastic data representation
with the efficacy of deep learning techniques [59]. In 3D
shape generation, VAEs can optimise the geometry of 3D
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shapes to build innovative shapes by applying learned
latent space knowledge. VAEs are taught to rebuild input
3D forms while minimising the disparity among the learnt
latent probability and previous distribution, such as the
typical normal distribution.

Probability

SHmaeqord
MI0MIN

¥AA00aa

ENCODER
Network

Latent
Variables

Input Output

Recognition Reconstruction

Fig. 8. VAE model for 3D image reconstruction.

It reconstructs the original data, and the metric
employed assesses the disparity between the input data and
the output data, as represented in Fig. 8, by calculating the
Reconstruction Loss, which, in most cases, is Mean
Squared Error (MSE) as depicted in Egs. (4) and (5).

5 X
Loss=|IX = RI2= IX=Ps (31> ¥

Loss = ||X — Pa(Py (3 )II? 5)

d) Generative Adversarial Networks (GANs)

GANs are made up of two distinct artificial neural
relationships: a generator and a discriminator, which are
programmed to create authentic patterns. In 3D shape
generation, GANs can generate new 3D shapes by training
the generator to create shapes that are identical from real
shapes, as determined by the discriminator. 3D-GANs and
various conditional GAN architectures, as displayed in
Fig. 9, have been developed for generating 3D shapes with
specific properties. Generally, GANs generate better
photorealistic pictures compared to VAEs. After
pretraining the generator using L2 regularization, it uses
phase difference as input and modifies the network design
to do basic imaging tasks.
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Fig. 9. GAN model for 3D image reconstruction.

Then it links it to a discriminator to create a counter
network, and adds a cross verification set to track its
convergence.

3D-GANs and various conditional GAN architectures
as displayed in Fig. 9, have been developed for generating
3D shapes with specific properties. The primary aspect of
this generator model is a maximum likelihood estimate,
that enhances the possibility that the generator would
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recreate conductivity using the actual distribution as
implemented adapting the Eq. (6).

L(G,V,0) = TI{Li Poy(a®; 6,) (6)

In recent advancement of 3D deep learning, 3D CNNs
are remarkably enhanced by hybrid architectures like
Point-Voxel CNN (PVCNN), which has tackled the
memory and computation essential to full-resolution
volumetric  processing. PVCNN combined with
point-based sparsity with voxel-based locality has
achieved up to 10X memory reduction and much higher
conversion speed. GNNs provides fascinating alternative
for unstructured and irregular 3D data. However,
complexity and memory demands scale with graph size,
transformer-based graph architectures help manage
large-scale graphs efficiently. Using compact latent
representations, VAEs achieve a modest balance between
strong generalization through probabilistic modeling, a
smaller memory footprint, and less computational load

than GANs. The maximum visual realism is achieved by
GAN:Ss, but at very high computational and memory costs.
Hierarchical and hybrid techniques, including VAE GAN
variations, assist reduce mode collapse and enhance
variety.

These architectures collectively provide a complex set
of trade-offs, although they need more resources, GANs
push realism and quality, VAEs provide effective and
generic reconstructions. CNN-based techniques can be
fine-tuned for speed and resource utilization, and GNNs
performs much better in flexible network topology
modeling. In 3D reconstruction deep learning applications,
this comparative research emphasizes the trade-offs
between various neural network topologies in terms of
computing demands, memory needs, and generalization
capabilities. Table III depicts the key insights on the trade-
offs between various network architectural methods on
computational complexity, memory footprint,
generalization ability, and suitability for real-world
deployment.

TABLE III. TRADE-OFF BETWEEN VARIOUS NETWORK ARCHITECTURES

Network Computational Memory Generalization Accuracy Suitability for
. . . - . Real-World
Architecture Complexity Footprint Ability Indicators
Deployment
Large memory use for Effective on . Mature tech with real-
High: 3D CNNs are full-resolution 3D structured data, but CNN models psually achléve time capabilities;
: . . S . high Intersection-over-Union .
computationally intensive grids; hybrid performance drops optimized 3D CNNs used
. . (IoU) but only moderate . . .
CNNs due to 3D convolutions, and point-voxel on unstructured or . A in robotics, medical
. L . Chamfer Distance, yielding . .
requires optimizations to approaches lower irregular scenes; . . imaging, AR/VR
. decent reconstruction quality .2
reduce latency. GPU demand by multiview CNNs but limited surface detail pipelines.
~10x. help. ) [5, 39, 60-62]
rI;argifeﬁzr:lltOfryr Adept at handling Ac(h Cl:g)e ICO\;/ﬁCHIEII?fzruD;;?)IrICC Emerging field; used in
Moderate to high: quiren N unstructured data, » €O & superior 3D face and mesh
. . storing adjacency or . . surface accuracy and detail . .
Graph Neural —complexity increases with suitable for diverse . reconstruction with
. edge features. . preservation compared to voxel S
Networks graph size; graph- o . 3D reconstruction . promising results, though
- Optimizations in CNNs and VAEs. Against A
(GNNs) transformer models improve . . tasks. Strong . . deployment is still
efficiency learning techniques generalization Generative Adversarial limited
’ handle large-scale i Networks (GANs), GNNs often )
. capabilities. . [39, 60-62]
graphs efficiently. win on CD.
Moderate: VAEs are Good generalization Produce smoother Stabl; e.md mter;.)ret.able
Moderate memory - o Lo . training; applied in
. generally less . via probabilistic reconstructions; fidelity may . .
Variational . . footprint; latent . . robotics, compression,
computationally demanding latent modelling; lag behind CNNs or GANS. .
Autoencoders bottleneck ensures . > . scene completion—
than GANS, as encoder— Reconstructing  Achieve decent IoU but higher .
(VAEs) . . compressed R well-suited for real-
decoder pairs are optimized . diverse 3D CD (worse) due to smoothness
for reconstruction tasks representations. structures and less sharp features world
) ) ) [59, 63, 64]
Very high: Training GANs High memory due to Powerful results; training
is computationally intensive dual networks; High visual realism GAN-based models yield instability and resource
Generative  because of the adversarial approaches like but prone to mode improved visual detail and demand limit
Adversarial nature of the model; 3D Hierarchical collapse; blending perceptual realism and can deployment. Advance
Networks GAN:Ss are resource-heavy ~ Amortized Training with VAE (e.g.,  achieve low Chamfer Distance, training strategies enable
(GANs) but hierarchical training reduce demand for VAE-GAN) but IoU is competitive but not  usage in medical and

industrial contexts.
[62-68]

addresses the resource-
intensive issue.

high-resolution
volumes.

improves diversity. consistently higher than CNNs.

Here, S; is the Predicted point set with reference to
11,000-55,000 sampled points from reconstructed object
surface and S, is the Ground-truth point set for the given
samples. |S; | depicts the cardinality of predicted set and
|S,| depicts the cardinality of ground-truth set. The 3D
points of the two sets are stated as 's’ € {S;} and 't’ € {S,}
respectively which implements the minimization objective
function using Squared Euclidean distance measure. CD is
calculated using Eq. (7).

4)  Performance metrics for 3D reconstruction

The efficacy of 3D reconstruction method was
statistically assessed utilizing various established
performance metrics with State-of-Art-Analysis (STOA)
as discussed below:

a) Chamfer Distance (CD)

Chamfer Distance (CD) quantifies the arithmetic mean
of the nearest-neighbour distance calculations between
two-point sets { S; € R® } and { S, € R }.
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1 . 2
CD(51,57) = |5—1|Zse51 Mingesy|ls — tl| @

1 . 2
+ |S—2|Ztesz minges, ||t — sl|

Lower is the evaluated measure of CD(S,, S,), better is
the geometric fidelity with closer match between the
surfaces and improved performance.

b) Intersection-over-Union (loU)

Intersection-over-Union (IoU) measures the volume
overlap metric for evaluation of voxels/meshes. Here,
Viprea) is the Predicted voxel grid set for occupied voxels
and V(g is the Ground-truth voxel grid set for occupied
voxels. |V(pred) N V(gt)| depicts the cardinality of voxels
that are occupied in intersection set of prediction and
ground-truth. |V(pred) U V(gt)| depicts the cardinality of
voxels that are occupied in union set of prediction and
ground-truth. IoU is computed using Eq. (8).
VrenWigo|

IoU = ®)

|V(pred)UV<gt)|

The IoU ratio score € [0, 1] where,
e Perfect reconstruction for [oU = 1.
e No overlap between S; as Predicted 3D
reconstruction and S, as the Ground-truth surfaces
for IoU = 0.
e Otherwise, Partial Overlap ={0 <IoU < 1}.
¢)  Earth Mover’s Distance (EMD)

Earth Mover’s Distance (EMD) is the minimum “work”
to morph one point set into the other under a bijection ¢:
S1— Ss.

d) Normal Consistency (NC)

Normal Consistency (NC) is the average cosine
similarity between the normals of the Predicted surface
and the Ground-truth surface that computes the
smoothness and local geometric consistency. n?"? s the

i
normal vector at predicted surface whereas ngg Y is the
normal vector at ground-truth surface. NC is computed
using Eq. (9).
1 a (gt
NC = ~Sien [n{P"*? - nff ©)
Higher is the NC score, better is the similarity alignment
amongst the predicted and true surface normals.

e) F-Score

F-Score is the harmonic mean at various distance
thresholds which captures the precision and recall of
reconstruction. It is the statistic measure that offers a
comprehensive assessment of the completeness and
precision of the reconstructed surfaces. It evaluates the
accuracy of a reconstructed 3D model (predicted) against
the ground-truth model.

f)  Peak Signal-to-Noise Ratio (PSNR)

Peak Signal-to-Noise Ratio (PSNR) quantifies image
reconstruction fidelity by comparing a Predicted image
against Ground-truth image. It uses the Mean Squared
Error (MSE) and the maximum possible intensity as shown
in Eq. (10) while evaluating the rendered view quality
(e.g., NeRF outputs).

(10)

Higher PSNR is interpreted as the better reconstruction
quality which is more similar to ground truth. Whereas, the
low value of PSNR includes the noisy or inaccurate
reconstruction.

g) Mean Squared Error (MSE)

MSE is a fundamental metric which evaluates the
average squared difference between predicted 3D
representation and its ground-truth for the N data points as
shown in Eq. (11).

2
PSNR = 10logy, (%)

(11

Lower MSE relates the closes of reconstructed 3D
model to the ground truth. Whereas, higher MSE value
fails to approximate the shape, large deviations, etc.

2
MSE = NLzévzl(lipred _ I{gt)

h)  Accuracy

Accuracy computes the amount of correctly predicted
elements such as voxels, points, or mesh vertices, as
compared to the total number of elements.

i)  Completeness

Completeness is the percentage of ground-truth points
that are successfully reconstructed, or the percentage of
ground-truth points that are located within a given distance
threshold from any point in the reconstructed output. This
is frequently used in conjunction with Accuracy. These
two together make up the F-Score.

Table IV depicts the most commonly used performance
metrics which evaluates the various 3D reconstruction
models.

TABLE IV. COMMONLY USED PERFORMANCE METRICS

Model Type Models Performance Metrics
Voxel-based Pix2Vox, 3D-R2N2 IoU, F-Score
Point Cloud-based PCN, P01ntNeéI\P]’]c\)Ilsnggar\h\]]))ynamlc Graph CD, Earth Mover’s Distance (EMD), F-Score
Mesh-based Pixel2Mesh, Pixel2Mesh++, MeshCNN CD, EMD, Normal Consistency (NC)
Multi-View Stereo (MVS) MVSNet, DeepMVS Accuracy, Completeness
Implicit SDF DeepSDF CD, EMD

Neural Rendering Neural Radiance Fields (NeRF)

Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM), Root Mean Square Error (RMSE)
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5)  Transfer learning for 3D reconstruction

Compatible  conversion  computation, implicit
representation synthesis from raw 3D data, and data-driven
training for spatial coherence learning are some of the
processes involved in 3D reconstruction. The pre-trained
learning techniques can be used to train deep networks for
3D reconstruction without requiring explicit supervision.
By leveraging geometric constraints or image
correspondences, the training methods can learn to
reconstruct 3D geometry directly from unlabelled or
weakly labelled data. These DL techniques have
remarkably improved image-based 3D reconstruction,
permitting more accurate, scalable, and versatile
approaches for producing 3D models. With the influence
of deep learning, researchers are discovering various 3D
reconstruction approaches in various domains such as
robotics, augmented reality, virtual reality, etc [30].

3D multimedia relies on photorealistic models, but
creating high-quality 3D designs is time-consuming and
costly. This drives research into automated methods for
generating textured 3D models from multiple viewpoints.
Transfer learning and fine-tuning strategies can
significantly enhance the performance of image-based 3D
reconstruction. These techniques are as follows:

a) Transfer learning

Transfer learning starts with a pre-trained CNN model
which is trained using an appropriate dataset, such as
ImageNet. They learn to have knowledge with generic
features that can be beneficial for multiple imaging tasks.

Transformers
2024

Graph Neural Networks (GNNs)

J

Generative models (GANs), VAE, PointNet++

Hybrid models (CNN + CAD tools)

]

Dynamic Graph CNNs (DGCNN)

()

Neural Radiance Fields (NeRF)

DeepMVS, CNN-based depth estimation

CNNs, Voxel grids, Mesh generation —
PointNet, Point Cloud-based learning

3D U-Net

3D Convolutional Neural Networks (CNNs)

i

b)  Feature extraction

The pre-trained CNN is utilised as a feature extractor.
Remove the fully connected layers of the CNN and use
result of previous convolutional layers as feature
representations for input images. These features capture
high-level semantic information relevant to 3D
reconstruction tasks.
¢)  Domain adaptation
It includes the fine-tuning of pre-trained CNN on lesser
dataset specific for 3D reconstruction task. This process
adapts the generic features learned from the foundation
sets to the target domain with 3D reconstruction while
improving the model’s performance on the target task.

d)  Model architecture adaptation

It adjusts the architecture of pre-trained CNN to better
suit requirements of the 3D reconstruction task. This may
involve modifying the network’s depth, width, or adding
specialized layers to handle data.

B.  Evolution of DL in 3D Reconstruction

During the last ten years, deep learning algorithms have
advanced significantly in 3D reconstruction which has
revolutionized the creation of 3D models from a variety of
data sources. Starting with traditional 3D object
recognition approaches, the research expedition has
advanced to complex reconstruction techniques driven by
deep learning that incorporate generative models,
multiview learning, and point cloud processing.

h | 3D reconstruction for parts with AT |

\\\\| DeepCAD for automated CAD design from 3D models |

\r Advanced part-specific 3D reconstruction |

\\1 Hybrid deep learning for 3D mesh |

20 ) \\| DGCNN: Graph-based 3D reconstruction |

\\*I NeRF (Neural Radiance Fields) for 3D reconstruction

\‘\‘| End-to-end learning for 3D model generation

\\| Multi-view stereo using deep learning

\\| ShapeNet 3D object recognition from images

\\*‘ PointNet: Point Cloud Processing for 3D Objects |

\\1 Depth estimation from 2D images

= ’ Deep learning exploration in 3D reconstruction |

Fig. 10. Evolution of deep learning techniques and approaches for 3D reconstruction.

Early in 2015-2019, ShapeNet for 3D object
recognition and PointNet, which enabled point
cloud-based processing, were introduced, laying the
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foundation of deep learning for 3D reconstruction. These
techniques made it possible to extract features from sparse
3D data points. CNNs based on voxel grids began to
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appear around the same time, processing
three-dimensional data [31]. With the introduction of
DGCNN, the ability to model spatial relationships within
point clouds has enhanced significantly. MVS methods
combined with deep learning has shown significant
improved in depth estimation from 2D images, which
enabled generation of more accurate 3D structures.
Generalizable Reconstruction (GenRe) aimed at
improving single-image 3D shape reconstruction by
making it more class-agnostic [30].

By 2020, with the further development in neural
architectures, deep learning techniques like Neural
Radiance Fields (NeRF) [69] has revolutionized the area.
It offered a novel method of using implicit neural modeling
to create continuous 3D representations from sparse 2D
images. The incorporation of GNNs further refined 3D
shape understanding, capturing geometric dependencies
between points and edges. Hybrid models integrating
CNNs and CAD tools allowed for DeepCAD, enabling
automated design generation from 3D models. Generative
models [70] such as GANs and VAEs were introduced to
reconstruct missing or occluded parts of 3D objects,
greatly enhancing realism in 3D reconstruction [71]. With
latest advancements and focus on transformers for 3D
learning, which leverage self-attention mechanism to
capture long-range dependencies in 3D data. Hybrid deep
learning models, integrating multiple techniques such as
NeRF with GANs and GNN-enhanced depth estimation,
have further pushed the boundaries of 3D reconstruction
accuracy. In 2023-2024, research has moved towards

part-specific 3D reconstruction, Al-assisted automated
CAD modeling, and real-time 3D scene reconstruction
using multi-modal data fusion. Deep learning-based 3D
mesh reconstruction has evolved, improving object surface
generation with minimal artifacts. Fig. 10 shows an
overview of the evolution of deep learning techniques and
approaches for 3D reconstruction. It traces the field’s
journey from early voxel-based CNNs and point-cloud
encoders to Multiview stereo networks like MVSNet and
hybrid point-voxel models, then onto implicit
representation methods such as NeRF and DeepSDF.

IV. STATE-OF-ART ADVANCES AND KEY STUDIES OF 3D
RECONSTRUCTION USING DEEP LEARNING

3D object reconstruction is a fundamental problem in
computer vision and graphics, enabling applications in
augmented reality, robotics, medical imaging, and cultural
heritage preservation. The field has witnessed significant
advancements over the years, with deep learning playing a
crucial role in improving reconstruction accuracy and
efficiency. 3D reconstruction from images has seen
significant advancements due to deep learning techniques,
allowing for more accurate and high-resolution
reconstructions. Traditional approaches such as SfM and
MYVS have been supplemented by CNN, GANs, and GNNs.
This survey explores key contributions in 3D
reconstruction using deep learning which include
approaches, techniques, methodologies, significance and
limitations in this field as portrayed in Table V.

TABLE V. SUMMARY OF KEY STUDIES ON DEEP LEARNING FOR 3D RECONSTRUCTION

Article Approach Technique Significance/ Impact Limitations
(i) Examines GANs and VAEs in improving glr)nbi ﬁ:::ile-vlfg(in re(g)lillsm;%lonsm IZ
Image based 3D Surveys DL 3D shape synthesis. ambIguoLs, g P
. . ey . . information.
Reconstruction techniques for 3D - (ii) Discusses NeRFs for view synthesis and .. .. .
S (ii) Multiview reconstruction depends on
[5] approximation transformer-based models for better global ;
. accurate camera poses; errors reduce
shape understanding. .
quality.
(i) Easy to implement Fesolution hape generaion.
Introduced GAN- (ii) Learns realistic 3D structures without .. pe & ’ .
3D GAN - L. (ii) Struggles to generate fine-grained
based 3D model 3DGAN  explicit supervision. . . .
[72] . . . geometric details, no smooth details.
generation (iii) Improving the sharpness and realism of 2. . .

generated 3D objects. E}l)hll)lgﬁcgit (;0 rnfodel thin structures or

ighly detailed surfaces.

(i) A dataset of 2D images of industrial parts is (i) Single-image Computer-Aided Design
3D Reconstructlon Hybrid network for CAD- c.r‘eated. o (CAD) reconstrgctlon struggles  with
of Industrial Parts . (i) Deep Learning infers 3D shapes from a complex geometries.

- improved 3D ClassNet & °. - . . .
from a Single obiect CAD- single image. (i) Lacks parametric  constraints,
Image ject (iii) Handles occlusions and missing details for requiring manual edits.
reconstruction, ReconNet . .
[32] better accuracy. (iii) Occlusions and ambiguities can cause

(iv) Integrates geometric and semantic features. _errors.

.(1) Learns to predict a 31? mesh frgm a single () A predefined ellipsoid limits

image, efficient for real-time graphics. renresenting complex tonologies

Pixel2Mesh: 3D . (i) GCNs refine mesh vertices and faces, epresenting DIeX (OPOIOBIES.
Graph-based CNNs Pixel2- - . (ii) Limited generalization to unseen or
Mesh Models enabling better 3D shape representation. Lo .
to correct 3D shape Mesh . out-of-distribution objects.
[40] (iii)  Silhouette, perceptual, and shape ... . . .
. . - (iii) Self-occlusions or ambiguous views

consistency losses improve reconstruction . o

. cause errors due to single-point input.
quality.

(i) Ilumination adaptation for appearance (i) Availability of images under different

embedding. illumination conditions.

Asteroid-NeRF: 3D Neural implicit (ii) Enables continuous 3D surface (ii) Computationally expensive due to
Surface representation for ~ SDF with  reconstruction from sparse views. SDF and appearance modeling.
Reconstruction surface modeling ~ Multiview  (iii) Better than Stereo-Photogrammetry (SPG) (iii) May underperform on low-texture or
[50] based on NeRF and Stereo-Photoclinometry (SPC). shadowed surfaces.

(iv) Multiview photometric

optimization.

consistency (iv) Suffers from uncertainties related to
surface reflectance & albedo.
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(i) Lightweight pipeline with depth estimation

DL-Based Monocular RGB, Customized generates reliable 3D reconstruction (i) Less consistent.
Monocular 3D U-Net++ model s . . C e . .
Reconstruction trained on NYU U-Net++ (1}) Outperfo'rms or matches heavier models (ii) Reliability challenges with top-tier
L depth (like GLPN) in both accuracy and speed models.
Pipeline. Depth V2 for depth . . .. . .
[57] prediction network  (iii) Improving Fhe sharpness and realism of (ii) Scope limited by training data.
generated 3D objects.
. . Leverages depth . . . - .
Blggst;nléé\]ﬁésa t\?;tlh priors from a Pseudo- (?oﬁﬁzbtlristll;l igh-quality MV training without (i) Performance may depend on quality of
P foundation model  supervised er ) pretrained depth foundation models.
Models f . (ii) Excels on DTU and Tanks & Temples. i . i
[68] or generating MVS (iil) Error correction (ii) Training stability may vary.
pseudo-labels. )
(i) Pioneered novel view synthesis and 3D (i) NeRF struggles with sparse inputs,
Implicit scene representation. needing multiple views for accuracy.
ne?lral (i) Implicit 3D representation allows infinite (ii) Requires known camera poses; errors
NeRF for representations for resolution rendering. degrade reconstruction quality.
Continuous Scene P confinuous NeRF (iii) NeRF offers a more flexible, detailed 3D (iii) NeRF is limited to static scenes,
Representation [69] volumetric scene representation. failing on moving objects.
renderin (iv) Reducing reliance on explicit modeling (iv) NeRF lacks direct 3D surfaces;
& (v) Overcomes voxel and point cloud extracting meshes is computationally
resolution limitations. costly.
(i) High-fidelity shape completion. . .
(i) Hybrid model improves shape inpainting, (i) Suffer t_’rom .hlgh memory usage and
s s .>> low resolution, limits scalability
Shape Inpainting ~ Uses 3D Encoder- 3D-ED-  GANs generate realistic 3D shapes, while (i) Struggle ;)Vhen laree ortiions of a
using 3D-GAN Decoder GANSs for GAN, RCNes refine the structure. shane arggmissin lea dgin pto unrealistic
[73] shape completion LRCN (iii) Volumetric representation allows better P . & 5 .
feature learning for generating & refining reco IlStI'Ll‘CIIOI’lS and generating ambiguous
3Dshapes or inconsistent structures.
(1) Deep Learning-based depth estimation S)bouggl(;?rflorizp ﬂ;n Szr;lﬂgiier?;:y be
MVSNet: End-to-end outperforms traditional MVS method. (;'il) Flzxe d depth g]neg learzi to subo : timal
Multiview Stereo  learning for depth (ii) Uses a 3D CNN to process cost volumes, pth p P
. . MVSNet . L . depth resolution and accuracy.
Network inference in enhancing depth estimation and generalization. (iii) Lacks domain adaptability, st les
[74] multiview stereo (iii) Outperforms classical MVS methods such _ . p ¥, SUUEE
as COLMAP in certain scenarios with large-scale outdoor scene w/ depth
) variations.
(1) ShapeNet’s synthetic Computer-Aided
ShaneNet: Larce- (i) First large-scale 3D model dataset for DL.  Design (CAD) models lack real-world
Sceﬁe 3D.Mo (i 1 dataset for 3D deep (ii) Enabled diverse 3D learning, advancing variations, limiting generalization.
Dataset learning ShapeNet  3D-GANSs, PointNet, NeRF, and implicit fields. (i) Lacks detailed textures, limits
(75] applications (iii) ShapeNet is the benchmark for 3D usefulness for realistic rendering.
generative model evaluation. (iii) Bias in shape complexity hinders
generalization.
() Deep Learning automates CAD (i) Deep Learning automates CAD but
Encoder—decoder . . struggles with constraints and precision.
DL for CAD Model . Encoder— reconstruction, reducing manual work. . . . .
Reconstruction architecture for decoder  (ii) Structured CAD models outperform raw (ii) Lacks parametric relations, making
76] robust 3D CAD network  meshes P Al-generated CAD less editable.
model generation. ) . .. (iii) High-resolution, large-scale CAD
(iii) Automatically extracts machining features. . .
remains challenging.
MonoLLI: Precise Location-aware D(I:JI/\LIE 4 gli)ngl-ll;gchaﬁr;calslon 3D detection using only a (i) Limitations in diverse real-world
Monocular 3-D atteqtlon (Deep (ii) Superior performance on KITTI BEV and co nditions (e.g. occlusion, weather).
. . mechanism and . (i) Unknown performance on larger
Object Detection . Layer 3D metrics.
[77] 1mportapce-aware Aggregatio (iii) Reweighted feature map. d.e.nasets. .
detection head n) (iv) Lightweight Partial convolutional blocks. (ii) Complex LiDAR based detectors.
Implicit neural (i) Learns geometry and appearance from
Learning a Model surface SDF, posed RGB images without ground-truth 3D. . . .
. . .. . . . . (i) Requires accurate camera positions.
of Shape & reconstruction Gradient- (i) Delivers high-fidelity reconstruction. (ii) Scene-specific, slow ray-marchin
Appearance from a using SDF and based (iii) Foundational for future NeRF-SDF (iii) Limi tetll)scalal;ili Y &
Single View. [78] differentiable normals  hybrids. -
rendering (iv) Differentiable ray marching.
The three-Dimensional  Generative  Adversarial  learning framework. Unlike traditional MVS methods,

Networks (3DGAN) are introduced which are pioneering
the use of GANs for generating 3D models from 2D
images [72]. Wang et al. [73] extended this approach with
Shape Inpainting using 3D-GAN, leveraging a 3D
encoder-decoder GAN to complete missing structures in
partially observed 3D models. This approach effectively
improved shape completion for occluded objects but
struggled with high computational costs and artifacts in
fine structures.

Yao et al. [74] proposed MVSNet, a multiview stereo
approach that integrates depth inference with a deep
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MVSNet optimizes depth maps directly from multiple
views, reducing errors in disparity estimation. The key
challenge with MVSNet is its requirement for high
computational power and limited performance in
textureless or reflective surfaces. Pixel2Mesh introduced a
graph-based CNN that represents 3D meshes as graphs and
progressively deforms an initial ellipsoid into the target
shape [40]. This approach enables efficient mesh-based
reconstruction, preserving fine details compared to
voxel-based methods. However, its primary drawback lies
in handling topological changes, which are crucial for
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reconstructing highly complex objects. The model
demonstrated the ability to synthesize high-quality
volumetric shapes, making it a cornerstone for subsequent
developments. However, the primary limitation was the
difficulty in generating fine-grained details, especially for
complex objects with intricate geometries.

Han et al. [5] provided a state-of-the-art review of deep
learning approaches for 3D reconstruction, analyzing
CNN-based depth estimation, GAN-based shape
synthesis, and hybrid approaches. The paper highlighted
the lack of large, high-quality 3D datasets as a fundamental
bottleneck, limiting generalization across diverse object
categories. Voxel-based methods represent 3D objects as
discrete volumetric grids, making them intuitive for deep
learning models [9]. However, they often suffer from high
memory consumption and computational inefficiency at
higher resolutions. Xie et al. [79] introduced Pix2Vox, a
context-aware approach to single-view and multiview 3D
reconstruction, significantly improving reconstruction
accuracy [8, 80]. The model consists of an
encoder-decoder framework that progressively refines the
3D reconstruction. Key contributions of Pix2Vox include:
(1) Hierarchical feature fusion- integrating features from
different levels of the neural network for improved
reconstruction. (2) Multiview consistency-handling
multiple views to ensure consistency in 3D object
generation. (3) Adaptive merging- reducing redundancy
with  high-quality = voxel-based  reconstructions.
Applications of Pix2Vox include real-time 3D modeling,
augmented reality applications, and object recognition
tasks that require volumetric representation. Neural
implicit representations use continuous functions to
represent 3D structures, allowing for high-resolution
reconstructions without memory constraints.

Mildenhall et al. [69] introduced a novel approach,
NeRF to view synthesis by representing a scene as a fully
connected neural network. Unlike traditional methods,
NeRF optimizes its representation using only a sparse set
of 2D images with known camera poses. Instead of
discretized voxels, NeRF models scenes using a 5D
function that maps spatial locations and viewing directions
to color and density values. The model uses volume
rendering techniques to synthesize novel views by
integrating information along camera rays. NeRF does not
require explicit 3D supervision, making it highly effective
for scenarios where 3D ground truth data is unavailable.
NeRF has found applications in high-fidelity 3D scene
reconstruction, visual effects, and virtual reality,
revolutionizing the way 3D models are generated from 2D
images.

Dataset-driven approaches have played a pivotal role in
advancing 3D reconstruction by leveraging large-scale
labelled datasets for model training and evaluation.
ShapeNet which is a large-scale 3D model repository that
has been instrumental in training deep learning models for
3D object recognition and reconstruction. It provides the
highly annotated 3D models dataset for supervised
learning, that serves as a standardized benchmark 3D
reconstruction. ShapeNet has facilitated numerous
advancements in CAD model reconstruction that
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introduces a method for machining features with a deep
learning-based encoder-decoder network. It generates
features through parametric modelling and converts the
CAD models into voxel representations for deep learning
training [75]. This approach enables multiple machining
features to be reconstructed efficiently, supporting
industrial and mechanical design applications. In CAD
models  without historical data, design history
reconstruction entails determining features, parameters,
and their order. Although earlier methods were not very
successful, new developments in deep learning provide
hopeful answers along with potential research
questions [81].

Xu et al. [32] proposed an image-based approach for
reconstructing 3D industrial parts from 2D images. This
study includes developing algorithms to extract 3D
parameters and pose information from images, enabling
reconstruction of parts such as bolts, gears, and roller
bearings. The use of CAD-ClassNet and CAD-ReconNet
in this study highlights the importance of deep learning in
reconstructing  industrial components  accurately.
Wang et al. [35] suggests a neural implicit 3D
reconstruction technique that uses sparse convolutions and
concentrates calculations solely on grid points close to the
surface in order to increase efficiency and preserve detail.
A 3D residual UNet improves robustness to noise while
maintaining fine features [36]. Zheng et al. [82] study on a
generative machine learning model for 3D reconstruction
of material microstructure, used U-Net architectures and
GANs to recreate material microstructure in three
dimensions. = GAN-based realism and efficient
reconstruction of minute microstructural features are made
possible by U-Net’s encoder-decoder structure with
multiscale feature extraction. Enhancement guarantees
that artificial  structures closely mimic actual
microstructures. These developments highlight the
expanding use of generative models in 3D reconstruction
by enabling precise digital twins for production and
replacement parts.

Asteroid-NeRF is a specific advancement in 3D
reconstruction for planetary research, providing
geometrically  reliable and  illumination-resistant
reconstructions. Its utilization of a global SDF and visual
embeddings distinguishes it from previous local or
volumetric approaches such as Sparse Point Geometry
(SPG) and Sparse Point Clouds (SPC) that rely on local
fusion. However, its computational expense, dependency
on camera postures, and lack of physically oriented
lighting models are opportunities for development. The
study contributes robust and generalizable NeRF
applications in planetary exploration [50].

Pananthula and Sebastian [57] proposed a lightweight
pipeline using monocular RGB images for 3D
reconstruction, in their study used a custom U-Net++
trained on NYU Depth V2 dataset for depth prediction,
followed by Open3D point-cloud generation and Poisson
mesh reconstruction. The model achieves competitive
accuracy with superior efficiency, making it suitable for
real-time and domain-constrained problems. However, it
trails Global-Local Path Networks (GLPN) in consistency



Journal of Advances in Information Technology, Vol. 17, No. 1, 2026

and would benefit from enhanced generalization via
multi-view  training and uncertainty = modeling.
Hong et al. [83] used multiview UAV pictures and the
deep learning-based MVS model to rebuild the 3D model
of the structures after an earthquake to help with the
process of assessing the damage to the buildings. The
study analysed different MVS models for 3D
reconstruction of UAV images and their applicability.

DFM-MVS method leverages the depth foundation
model and offers an intriguing improvement to MVS
learning by substituting depth priors from large foundation
models for supervision. It offers state-of-the-art findings
and a workable solution to dataset-label scarcity, making
it a significant advancement for extensible and label-free
3D scene reconstruction [84, 85]. The transformer model
approach advances the field by enabling multiview
Transformer reconstruction across hundreds of photos at
once, providing significant gains in reconstruction
accuracy and speed [86].

A volumetric scene is 3D depiction and representation
of a physical world that divides the interior of the space
into volume elements, or voxels. These voxels store data
with various attributes such as vibrance, density, surface
geometry, semantic labels, etc. A novel explicit volumetric
rendering technique called LinPrim substitutes linear
primitives, specifically tetrahedra and octahedra, for dense
voxels or neural fields. Differentiable rendering is
achieved by rasterization of primitives on GPU and linear

interpolation of color/opacity inside each cell built on
gradient, allowing the method to be trained like a NeRF.
Volumetric scene includes voxel-based volumetric
reconstructions using multiple calibrated camera views.
Silhouette techniques are implemented for binary images,
whereas voxel coloring uses the volumetric warping tag. It
implements photo-consistency and visibility constraints
across arbitrarily multiple views. Dense 3D reconstruction
enabled without requiring sparse feature matches.
Domain-warping supports large-scale or infinite scene
modeling [87, 88]. The challenges posed during
reconstructions are the computationally intensive
operations wherein, voxel grids scale poorly. Precise
camera calibration and controlled illumination are required
for appropriate processing. The technique struggles in
untextured regions or shadows. Implicit Differentiable
Renderer (IDR) enables surface reconstruction through
differentiable rendering by introducing an implicit neural
representation that can concurrently describe 3D geometry
and appearance from multiview images. The SDF
gradients are used to compute precise surface normals for
shading. Learnable appearance function models the
view-dependent appearance for photorealistic
rendering [77].

In recent years NeRF revolutionized image-based
rendering; Table VI shows the developments in the field of
NeRF.

TABLE VI. DEVELOPMENTS IN THE FIELD OF NERF

Model/Method Methodology Algorithmic Techniques Significance Challenges
Per-scene Multi-Layer Detailed and view-dependent Ex_tremely. slow convergence,
Perceptron (MLP) Positional encoding; hierarchical scene representations without impractical for real-time
Vanilla NeRF  optimized via volume £ P applications; designed for static

sampling; gradient-based

69] optimization.

rendering from
multiview calibrated

images.

explicit geometry; NeRF can be
optimized directly from 2D
images.

scenes and requires retraining for
each new scene, limiting
generalization.

Extensions of NeRF
addressing aliasing,
pose refinement, and
speed (7% faster than
NeRF).

Anti-aliasing via Gaussian
frustums; multiscale positional
encoding.

Mip-NeRF [89]

Scales NeRF to multiscale
sampling using conical frustum
representation; encodes a whole

Gaussian region—preserving
high-frequency details.

While Mip-NeRF improves upon
NeRF, rendering scenes with high
fidelity still requires significant
computational resources. Applying
to diverse, real-world datasets can
be challenging due to variations in
scene complexity.

Bake trained NeRF into
fast lookup structures:
octree or sparse grids.

Octree-based spherical radiance

PlenOctrees / lookup (PlenOctrees); sparse voxe

SNeRG [90, 91]

Enabling real-time rendering 3Kx

1 faster.

grids with residual MLP (SNeRG).

Pre-processing heavy, large
memory; inflexible after baking.

Factorizes radiance Precompute deep radiance maps;
field for extremely

high-fps rendering.

FastNeRF [92]
graphics-inspired factorization.

directional query via lookup tables;

Strong result (~3000x faster than
NeRF); enables Real-Time and
Interactive Applications.

Limited support for dynamic or
unbounded scenes; training dataset
and preprocessing overhead.

Hash-based
multiresolution grid
encoding allowing
minute-scale per-scene
training.

Instant-NGP
[93]

Spatial hash encoding; tiny MLP;
multires grid.

Massive Speed-Up via Compact
Encoding; Instant-NGP sparked
wide adoption across fields like
NeRF acceleration, neural
image/volume representations,
signed-distance functions.

High GPU memory requirements;
needs empirical hyperparameter
tuning.

Single-stage NeRF with

. . ingle-stage | iffusion +
effective generative Single-stage latent diffusion

SSDNeRF [94]

Strong performance under sparse

Diffusion model adds training

modelling NeRF fusion. Input. complexity and runtime.
Feed-forward encoder CNN (ResNet) extracts per-view  Generate plausible novel view Lower fidelity than per-scene
conditioned NeRF features; conditions MLP weights  synthesis from very few input y P

PixelNeRF [95] enabling generalization

across scenes.

or embeddings; no per-scene
optimization.

images without test-time
optimization.

NeRF; blurry in occluded areas,
limited to training distribution.

Dynamic NeRF
modeling motion via
time-conditioned
volume rendering.

Two MLPs: canonical scene +
deformation network; time as
input; joint learning.

D-NeRF [96]

Extends NeRF to dynamic,
non-Rigid scenes.

Requires dense temporal data,
handles only single-object motion.
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Enables large-scale scene

Decomposes large Learned pose refinement; per-  reconstruction by representing the

Block-NeRF / scenes into per-block

Complex pipeline, heavy data and

Mega-NeRF NeRFs with appearance block appearance embedding; environment using multiple computin
[97] . pp exposure control; scene tiling.  compacts NeRFs that each fit into puting.
alignment.
memory.
Hybrid spatial feature s This method improves the
Mixer-NeRF  module before MLP to MLCA feature uXIng; learning of perceptual image Architecturally complex, limited
s squeeze-and-excitation module R .
[98] boost detail in real block similarity by more than real-scene evaluation.
. before MLP.
multiview scenes. 30%.
e:;:ggd t?ri;rgegc?ér Camera-centre input and response Long runtime, designed for
MIS-NeRF [99] . py tmag modeling; specular-aware loss; Novel medical adaptation. specific anatomy; lighting/specular
intraoperative 3D R R
. depth smoothing; ICP alignment. dependency.
reconstruction.
Context-based CNC can significantly compress
Compressed compression of Context models over hash grids; . ent y P Focus on storage, not
. - multi-resolution Instant-NGP- .
Instant-NGP Instant-NGP entropy modeling; hash collisions . reconstruction speed; adds
. . based NeRFs and achieve SOTA . .
(CNC) [100] representation for and occupancy priors. modeling complexity.
. performance.
storage reduction.
Sparse-view 3D
PhysicsNeRF reconstruction Depth ranking, consistency and  Enables reconstruction with just 8  Needs carefully tuned priors,
y[l 01] depending on sparsity priors integrated into input views with ~21.4 dB PSNR performance deteriorates on highly
fundamental physical NeRF. with good generalization. novel scenes.

condition/states.
Pose refinement with
parameter tunning and  Joint photometric + flow-based
mapping in dynamic 3D pose filtering within NeRF.
scenes.

Robust while handling the noisy
or missing data; useful in real-
time environments.

Complex system with real-time

RA-NeRF [102] tasks and computations.

FA-BARF The convergence is . . Speeds up NeRF convergence and Performance degrades in large,
(NeRF L Frequency-adapted spatial filtering . . >
speeded within the pose . enables robust reconstruction wide-area scenes; but works for
Convergence) . replaces coarse-to-fine scheduling. . . - . . .
[103] uncertainty. even with noisy camera inputs. object-centric settings.
Scaling NeRF to . .
Spake—NeRF large/satellite scenes or Out-of-core tiling & sampling with Combines NeRF reconstruction Difficult to handle visual tasks
(Tile and Slide) . . and generation, while effectively .
volumetric GPU-memory-aware scheduling. . between tiles.
[104] . handles the sparse views also.
representations.
Large-scale scene Hierarchical Parent—Child NeRF Enables NeRF on massive Assumes availability of LIDAR;
PC-NeRF [105] reconstruction in using sparse LIDAR + camera topographic data that demands  may not generalize to LIDAR-free
autonomous driving views. more memory requirements. settings.

Since its inception in 2020, NeRF revolutionized  both training complexity and runtime. PixeINeRF learned
image-based rendering by learning a continuous 5D  with the convolutional NeRF that prior conditioned on one
function, mapping spatial coordinates and viewing  or few input images, eliminating the need for per-scene
direction to volume density with emitted radiance, for  optimization and generalizing to unseen scenes [95]. NeRF
multiview photographs [69]. With large computational  introduced time as an additional input and trained
complexities, NeRF exhibits limitations in aliasing and  deformation fields to handle non-rigid temporal motion, to
scale variation handling. Mip-NeRF addressed this issue ~ model dynamic content [96]. Block-NeRF, decomposed
by conical frustums instead of point-based rays while  large scenes into spatial blocks with individual NeRFs,
integrating the positional encoding over these regions, coupled with appearance alignment and pose
reducing rendering artifacts, with faster inferences [89].  refinement [97]. Mixer NeRF proposed a hybrid
Baking NeRF precomputed NeRF content into sparse  spatial-feature mixing architecture to improve 3D
neural voxel grids or light field caches with residual MLPs  reconstruction efficiency by combining features across
to enable very efficient real-time rendering [90].  scales and spatial regions [98]. MIS-NeRF reconstructed
PlenOctrees packed the NeRF style data into octrees with ~ volumetric anatomy from limited visual inputs in complex
precomputed spherical radiance and interpolation,  operative environments [99].
providing interactive frame rates suitable for real-time A compression-focused extension of Instant-NGP
applications [91]. FastNeRF focused on ultra-fast investigated the lossy encodings and pruning strategies to
inference by factoring the network into spatial and reduce model size while retaining reconstruction
directional components while caching intermediate  fidelity [100]. PhysicsNeRF incorporated physical
radiance maps and enabling high-fidelity rendering at over  illumination priors into training, enhancing the
200 FPS [92]. Instant Neural Graphics Primitives  reconstruction accuracy from sparse views under unknown
(Instant-NGP) dramatically shortened training in seconds  lighting by embedding physics-guided constraints [101].
and rendering in milliseconds by using a multiresolution =~ RA-NeRF proposed robust camera pose estimation under
hash encoding of spatial features paired with a small  complex motion trajectories, jointly optimizing pose and
MLP [93]. SSDNeRF [94] is a single-stage NeRF  scene radiance to reconstruct challenging trajectory
framework that fuses latent diffusion with neural radiance = datasets [102]. FA-BARF replaced cyclic frequency
fields to enable strong performance from sparse input  annealing in BARF with spatial frequency adaptation,
views, although the added diffusion component increases  accelerating convergence and improving joint pose-scene
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optimization robustness [103]. Single-stage diffusion
NeRF unified generative diffusion modeling and
NeRF-based reconstruction into a single-stage network for
generation and view synthesis simultaneously [104].
Tile-and-slide extended NeRF representations globally
through tiling and stitching mechanisms, enabling
earth-scale reconstruction by adapting local NeRF blocks
to global scales [105]. Lastly, Difix3D+ improved
reconstruction quality by incorporating diffusion-based
priors to refine geometry and view synthesis from
single-step diffusion models in NVIDIA’s 2025 release.

A critical investigation of NeRFs in image-based 3D
reconstruction is presented by Remondino et al. [106].
Using a variety of criteria, including noise level, geometric
accuracy, and the number of necessary images, this study
impartially assesses the advantages and disadvantages of
NeRFs and offers insights into their suitability for various
real-world situations as well as the caliber of the resulting
3D reconstruction.

V. SUMMARY AND DISCUSSION

The revolution in image-based 3D reconstruction is
marked by 3D GAN deep learning techniques. The current
research emphasizes the hybrid architectures with
self-supervised training which enhances the performance
of model. The industrial applications for real-time
automation includes CAD designing with building
information modeling. 3D GANs impact the CAD
workflows in manufacturing industries. GANs with 3D
deep learning generate the CAD models from images using
voxels, meshes, etc. with varied geometric representations,
which has its description in Table VII. 3D GAN methods,
including voxel-based, point cloud, mesh-based, and
implicit function GANS, enable efficient and high-quality
3D CAD reconstruction. These models, such as 3D-GAN,
pointgrow, and DeepSDF, cater to different reconstruction
scenarios, from basic shape generation to high-resolution
modeling.

TABLE VII. 3D GAN MODELS AND REPRESENTATIONS METHODS

Representation Models Advantages Limitations
Voxel 3D-GAN, VoxGAN Easy to process with CNNs, Structured grid High memory usage, Low resolution
Point Cloud PointGrow, Tree GAN Efficient, Compact, Suitable for sparse data  No surface connectivity, Requires post-processing
Mesh MeshGAN, GraphGAN Explicit surfaces, Suitable for rendering Irregular topology, Difficult optimization
Impli_cit Occupancy Networks, High-resolution details, Memory efficient Requires optimization for sampling, No explicit
Function DeepSDF geometry

Their selection depends on criteria like structured
training, point-based efficiency, and rendering capability.
It is expected that in future, 3D reconstruction innovation
will incorporate the benefits of deep learning and classical
approaches to further investigate and improve the ability
to produce more effective and precise 3D reconstruction.
It might be broadly employed in multimodal information
fusion, modest terminology with good data synthesis,
generative machine learning techniques or algorithms, and
various additional contexts with robust adaptability in
real-time environments.

Fig. 11 dipicts applications of the 3D GAN techniques.
deep learning based 3D reconstruction has evolved with
robust advancements in various research domains and its
real-time applications. Still few challenges need to be
addressed where the recent techniques struggle to stabilize
high geometric and texture reliability at the cost of heavy
computations with less scalability. Techniques such as
NeRF demand large GPU memory for processing
graphical data with long training sessions and yet, lack
generalization across varied conditions. Dynamic scenes
and moving objects pose additional challenges for most
deep learning pipelines. Several approaches of deep
learning implemented for 3D reconstruction, like
volumetric representations, implicit data, point-based
networks, mesh networks, etc. have a persistent problem
since they rely heavily on large, view-diverse, annotated
training sets, limiting their utility across real-time data.
Also, it may be challenging to implement models such as
occupancy networks or DeepSDF in real-world situations
as they need substantial preprocessing and they frequently
lose fine geometric detail because of pooling or global
representations. 3D GANs face problems while dealing
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with 3D object reconstructions from limited views or noisy
depth maps. Recent 3D GANs frequently produce coarse,
low-resolution meshes or voxel grids, that is affected from
training instability due to high-dimensional outputs.

Selection Criteria Method/Models

Basic CAD shape
generation Voxel-based GANs

Potential Application

Arcl 1 CAD model,
Structured 3D CNN 3D-GAN, VoxelGAN, Mechanical component
training VoxelFlow Prototyping

Efficient 3D CAD from
scans Point Cloud GANs

‘ ’ PointGrow, TreeGAN, ‘

PC-GAN
Rendering-ready 3D CAD
models Mesh-based GANs

Reverse engineering of
CAD models, AR/VR

object reconstruction

Efficient point-based
generation

High-quality CAD

Rendering-ready MeshGAN, Pixel2Mesh, modeling for
generation MeshVAE-GAN manufacturing.

High-resolution CAD with
smooth surfaces Implicit Function GANs
DeepSDF, Occupancy
Networks, IF-Net

Fig. 11. Potential applications of 3D GAN techniques.

High-resolution CAD
modeling,
Medical 3D reconstruction

High-resolution implicit
shape modelling

Table VIII shows the comparative analysis of
performance metrics; it helps in understanding the
strengths and limitations of various deep learning methods
for 3D reconstruction. Voxel-based models such as
Pix2Vox/Pix2Vox++ and 3D-R2N2 show improved IoU
and F-Score with multi-view inputs, though they lag
behind point-based methods in fine detail preservation.
Mesh-based approaches like Pixel2Mesh/Pixel2Mesh++
achieve competitive F-Scores and lower CD, indicating
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better geometric fidelity. Point-based architectures
including PointNet, PointCNN, PointNet++, DGCNN, and
PCN consistently demonstrate high IoU values,
underlining their robustness in capturing local and global
structures. Implicit representations such as DeepSDF
achieve very low CD and EMD, signifying superior shape
accuracy. Multi-view stereo methods like MVSNet
balance accuracy and completeness, though performance
depends heavily on input quality. Finally, volumetric
radiance field models like NeRF excel in perceptual
quality with high PSNR and SSIM, making them effective
for photorealistic reconstruction. Overall, the trade-offs
between accuracy, completeness, and perceptual quality

across representations suggest complementary strengths
depending on application requirements.

The future research need focus on the research-gaps
identified by performing the state-of-art study which
includes: (1) Efficient, scalable architectures with hybrid
pipelines that integrate fast depth fusion with selective
high-detail refinement; (2) Data-efficient models that
generalizes with self-supervision, domain adaptation,
few-shot/ meta-learning; (3) Dynamic scene modeling that
handles motion and occlusion jointly with semantic
constraints; (4) Unified training that includes surface
extraction at resolution beyond coarse grids; and (5)
Robust evaluation frameworks and datasets, especially for
complex real-world domains like underwater.

TABLE VIII. PERFORMANCE METRICS

Model Output Dataset Performance Metrics Ref. No.
ToU: ~0.670
. F-Score: ~0.436
P};I(X;\X) ‘;’jri Voxel ShapeNet (Single view) [43]
F-Score: ~0.452-0.462
ToU: ~0.695-0.719 (Multi views)
ToU: ~0.560
F-Score: ~0.351
(Single view)
3D-R2N2 Voxel ShapeNet ToU: ~0.603-0 636 [43]
F-Score: ~0.368-0.383
(Multi views)
CD: ~0.591
Pixel2Mesh Mesh ShapeNet EMD: ~1.380 [40]
F-Score: 0.5972
. CD: ~0.486
Pixel2Mesh++ Mesh ShapeNet F-Score: 0.6648 [52, 53]
ShapeNet ToU: 0.837
PointNet Point Cloud S3DIS IoU: 0.411 [38]
ScanNet v2 IoU: 0.557
ShapeNet ToU: 0.851
PointCNN Point Cloud S3DIS IoU: 0.572 [38,107]
ScanNet v2 IoU: 0.484
PointNet++ Point Cloud ShapeNet IoU: 0.85 [107]
DGCNN Point Cloud ShapeNet ToU: 0.852 [102]
PCN Point Cloud ShapeNet ToU: 0.851 [108]
.. CD: ~0.006
DeepSDF Implicit SDF ShapeNet EMD: ~0.07 [28]
Accuracy: 0.396
Completeness: 0.527
Overall: 0.462
MVSNet Depth volumes DTU Accuracy: 0.375; [74, 84]
Completeness: 0.283;
Overall: 0.329
(Distance metrics)
NeRF Volumetric radiance field Realistic Synthetic 360 PSNR =31.01, SSIM = 0.947 [69]

VI. CONCLUSION

With the developing technology and expanding the
possibilities of connection between the real and virtual
worlds, 3D reconstruction is a highly evolving discipline
for research and practical use. These developments have
the power to completely transform a number of industries,
including manufacturing, medicine, automation and the
protection of historical assets. These advancements will
raise living standards by opening up new avenues for
research and creativity. There is a need to discover how
technological advances are changing the world around us.
This research study seeks to identify the potentials and
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difficulties for enhancing the use of image-based 3D
building through an analysis of the current literature. The
learnings of this research provide insights for various
methods of reconstructing 3D models from images and
highlight the great potential of reconstructing 3D models
for industrial real-world applications. The neural network
architectures such as CNN, GNN, autoencoders, GAN are
investigated with supplementary research understandings.

Thus, the state-of-art research study depicts the most
advanced state of evolution in deep learning for 3D
reconstruction. 3D CAD model produces an improved
cost-effective final quality product by locating and getting
rid of inefficiencies. Use of advanced deep learning
techniques like 3D GAN, deep SDF with different
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representations have found increasing trends. As
transformer models are becoming more popular for 3D
reconstruction with better control over
manufacturing and increased workload capacity to
channelise the process; deep learning techniques have
revolutionized image-based 3D reconstruction by enabling
more accurate, efficient, and scalable methods for
generating 3D models from 2D images. NeRF research has
evolved significantly in recent 5 years, focusing on
improving rendering speed, scalability, and applicability to
diverse scenarios. Further exploration of dynamic scenes,
more efficient representations, and integration with other
computer vision tasks will be intersert for further reserch.
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