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Abstract—The fast progress of Three-Dimensional (3D) 
reconstruction has led to the emergence of advanced Deep 
Learning (DL) approaches and techniques. Leveraging the 
technology of computers to produce realistic  
three-dimensional representations of objects has grown into 
an essential component of extensive study in a variety of 
domains. This review article investigates the cutting-edge 
methodologies, difficulties, and potential in this research 
field. The state-of-art study follows the development of Deep 
learning techniques with graphics expertise, which 
strengthens the requirement for good efficacy with better 
performance of 3D reconstruction. The research work begins 
by discussing classic strategies for 3D reconstruction with 
active and passive techniques that emphasizes their 
limitations with the need for cutting-edge practices. The 
various types of neural network architectures employed, like 
Convolutional Neural Networks (CNNs), autoencoders, and 
Generative Adversarial Networks (GANs) are explored with 
auxiliary information. This review aims to provide 
researchers and practitioners with a thorough understanding 
of the advancements, problems, and prospects in  
image-based 3D reconstruction while opting for the 
progressions in Deep Learning. Further, this research study 
presents the development in Neural Radiance Fields (NeRF) 
which is revolutionizing image-based rendering for efficient 
3D reconstructions.  
 
Keywords—Three-Dimensional (3D) reconstruction, Deep 
Learning (DL), Convolutional Neural Network (CNN), 
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I. INTRODUCTION 

Image-based Three-Dimensional (3D) reconstruction 
aims to create 3D model by operating the  
Two-Dimensional (2D) images, a process that has been 
revolutionized by deep learning techniques. The research 
trends explore the application of deep learning techniques 
which enables more accurate and efficient reconstruction 
of 3D models from 2D images. This has significant 
potential for numerous industrial applications, especially 
in design, manufacturing and maintenance. This review 
focuses on leveraging deep learning techniques to improve 
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the 3D reconstruction process than the traditional 
approaches. Deep learning research has made considerable 
progress in the area of image-based 3D reconstruction, 
addressing many limitations presented by previous 
approaches [1]. 3D reconstruction from images has been a 
long-standing goal in computer vision, with wide-ranging 
applications from industrial revolutions. 3D reconstruction 
technological advances help to build exact digital 
representations by collecting the 3D geometrical 
information of authentic objects. It may record and store 
the geometry along with the design of physical equipment 
or mechanical parts, leading to the digital foundation for 
equipment maintenance. 

Unlike typical manual 3D modelling, utilizing 
Computer-Aided Design (CAD) or Digital Content 
Creation (DCC) applications, the 3D reconstruction 
methodology starts with sensor input, such as images, 
point clouds, and additional data [2]. 3D reconstruction is 
categorized into both implicit and explicit representation 
strategies based on distinct methodologies, which provide 
a variety of viewpoints and processing methods to analyze 
real-world data. The term, explicit expression states to a 
representation method that uses explicitly defined 
geometric shapes and frameworks to express an object’s 
exterior or interior geometry. The object’s topology is 
implicitly specified by an appropriate function or 
mathematical equation, which is then utilized to solve the 
issue, where the values may be collected from spots on the 
surface. Training along with representing 3D models has 
grown into a standard survey procedure in 3D plane survey 
analysis. Analysing several images and then 
reconstructing the form and structure in three dimensions 
is a key goal in computer vision. Conventional multiview 
3D reconstruction methods use established camera settings 
to extract and match important elements from images. 
Nevertheless, these methods are ineffective and does not 
completely utilize the benefits of multiview data. In the 
past few years, deep learning-based approaches for 3D 
reconstruction have grabbed the curiosity of several 
researchers worldwide [3]. These unique algorithms may 
estimate an object’s or scene’s 3D form intuitively through 
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start to finish, avoiding the requirement for various steps 
including key-point detection and a successful match. 
Furthermore, these distinctive strategies can rebuild 
objects’ forms given a single input view [4]. Using one or 
more RGB photos, Han et al. [5] have concentrated on 
deep learning approaches to estimate the 3D geometry of 
common items. According to their research study, the 3D 
geometrical structure of the multiple 2D images was 
determined using 3D image reconstruction [6]. Deep 
learning breakthroughs have transformed multiview 3D 
reconstruction by making end-to-end 3D shapes [7, 8]. To 
increase reconstruction quality and decrease processing 

efficiency, several representations, including volumetric, 
surface-based, and intermediary representations, were 
described. The state-of-art study helps to understand 
various techniques and methodology for 3D 
reconstruction. This paper presents a comprehensive 
summary of current advances in image-based 3D 
reconstruction. The explored approaches are analyzed 
from a variety of perspectives, including input kinds, 
model architectures, output representations, and learning 
strategies. The objectives of the research study are enlisted 
in Table I.  

TABLE I. OBJECTIVES OF THE RESEARCH STUDY 

Objectives No Description 

Investigate Existing Techniques for 
3D Reconstruction 

(1) Study traditional and deep learning-based methods for 3D reconstruction. 
(2) Explore different deep learning approaches used for 3D reconstruction. 
(3) Analyze evolution of deep learning techniques and approaches for 3D reconstruction. 

Analyze Strengths and Limitations of 
Deep Learning Techniques 

(1) Assess the accuracy, robustness, and efficiency of different Deep Learning (DL) models. 
(2) Discover common challenges and limitations of DL techniques and approaches for 3D reconstruction. 

Explore the Future Research Trends 
and Enhancements 

(1) Identify gaps in current research and potential areas for improvement. 

(2) Examine emerging trends, self-supervised learning, transformer-based architectures, and diffusion 
models for 3D generation. 

The research work is presented into various sections, 
where Section II gives an overview of image-based 
conventional 3D reconstruction approaches and 
techniques. Section III outlines the deep learning 
techniques for 3D reconstruction. Section IV entails the 
state of art key studies and Section V summarizes 
discussion and future direction. Finally, Section VI 
concludes the research work. 

II. IMAGE BASED 3D RECONSTRUCTION 

The field of image-based 3D reconstruction involves 
creating three-dimensional models from two-dimensional 
images. It includes rebuilding and comprehending the 3D 
structure of objects and situations using two-dimensional 
images data. 3D visualization methods employ data from 
cameras or sensors to create a digital representation of the 
forms, structures, and attributes of objects in a scene. This 
technology has broad applications in areas such as 
Computer Vision, Robotics, Virtual Reality (VR), and 
Augmented Reality (AR). The 3D reconstructions create 
respective 3D models by extracting, processing, and 
analyzing 2D visual input. While performing 3D 
reconstructions, as shown in Fig. 1, it utilizes several 
algorithms and data collecting approaches that allow 
automated 3D vision models to rebuild the dimensions, 
outlines, and spatial coordinates of the objects in each 
visual environment.  

In 3D reconstruction, explicit formulations are clearer 
and more accurate, while implicit formulations provide 
flexibility and efficient storage. Choosing the right 
representation depends on the specific application needs 
for 3D reconstruction in computer vision [9, 10]. The 3D 
models are extracted & built either by using the input from 
special sensors, which is referred as active data capture or 
by using the input from the regular cameras called as 
passive technique. The initial processes, like the Structure 
from Motion (SfM) and Multiview Stereo (MVS), rely 

heavily on feature matching and geometric constraints, 
which often result in limitations regarding robustness in 
complex environments.  

 

 
Fig. 1. Conventional image-based 3D reconstruction. 

A. Passive Techniques 
Passive visualization approaches for image 

reconstruction entail gathering detailed information from 
the environmental surroundings without actively 
transmitting any signal or light. These strategies depend 
upon ambient light or natural radiation. It seamlessly 
analyzes images or videos captured using currently 
available light sources. Few of the traditional passive 
methods which are commonly used in 3D reconstruction 
are: 
1) Depth from Defocus (DfD) 

DfD evaluates the depth or 3D structure of an object by 
determining the amount of blur or defocus in certain 
sections of an image. It operates on the concept that objects 
at different distances from the camera lens will display 
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varied degrees of defocus blur. Pentland [11] suggested a 
technique for detecting depth of scenes by determining the 
degree of defocus functions in the image being examined. 
The method is intriguing since it involves no 
correspondence [12]. The challenges with DfD include 
requiring multiple images with different focus settings, 
making it time-consuming, and difficulty in texture-less 
regions, increasing computational cost. 
2) Shape from Shading (SfS) 

SfS reconstructs an object’s 3D shape from a single 2D 
image. This approach examines how light strikes an object 
with its shading patterns and how bright various parts seem 
with the intensity variations. It depends on the direction of 
the light source and the reflectance properties of the 
surface. It works better for reconstructing smooth surfaces. 
The visual data derived from a particular object’s coloring 
can be utilized to reconstruct the contour for the observed 
surface [13]. 
3) Structure from Motion (SfM) 

SfM collects the set of images of a scene from different 
perspectives with a single camera. The initial stage is to 
identify elements that are common among these images, 
such as corners, edges, or particular patterns. SfM then 
computes the location of cameras with its orientation for 
every image depending on the recognized features and 
their appearance from various perspectives as depicted in 
Fig. 2. Triangulation is used to establish the 3D position of 
the characteristics in the scene by contrasting matching 
features across multiple images. 

 

 
Fig. 2. Various stages of SfM technique. 

4) Stereo vision 
Stereo vision implements the varied perception with 

more than two cameras placed at distinct viewpoints to 
capture images of the same scene. This approach works by 
identifying comparable spots in both images and 
determining their 3D coordinates using the specified 
camera geometry. Stereo vision techniques use 
inequalities, or the difference in the locations of 
comparable points, to determine the depth of locations 
throughout a scene [14]. This depth data enables precise 
reconstruction of complex 3D models. It mimics human 
binocular vision to perceive depth. Overcoming the 
correspondence issue associated with image pairings 
represents one of the key problems of stereo vision. 
Another problem with stereo vision is facing 
computational complexity and latency mostly for  
real-world applications. 
5) Photometric stereo 

Photometric stereo seizes several images of an object 
under divergent lighting conditions; this was presented by 
Robert Woodham [15]. The word “photometric” relates to 
the measurement of light, whereas “stereo” means the 
utilization of multiple images. The variations in shading 
are used to infer the surface normals and reconstruct the 

3D shape of the object. Consider the light rays falling on a 
surface where, N is surface normal, L is the input light 
direction and V is the output light direction. Both, L and V 
make the respective angles with the normal N referred to 
as Radiance along direction L and Radiance along 
direction V, computed using Eq. (1). 

Radiance along V = Bi-directional reflectance function 
(⋅) Radiance along L 

 𝐿𝐿𝛾𝛾 =  𝜌𝜌�𝜃𝜃𝑖𝑖 ,𝜃𝜃𝛾𝛾� 𝐿𝐿𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖  (1) 

6) Multiview Stereo (MVS) 
Multiview Stereo (MVS) extends stereo vision to 

multiple viewpoints for 3D reconstruction. It represents 
3D shapes using dense point clouds or surface meshes, 
aiding photorealistic rendering. MVS generates cohesive 
models using depth maps and 3D fusion while aligning 
images based on geometry and camera settings [16]. 
Advances in processing power and algorithms have 
improved MVS, with key contributions from  
Delaunoy et al. [17] and Seitz et al. [18]. The main 
challenge is accurately computing dense pixel 
correlations, as matching pixels across views remains 
difficult [19]. 

B. Active Techniques 
Active 3D reconstruction techniques use any type of 

radiation, like sound, radio waves or light illuminating an 
object. It then examines the reflected light, reverberates 
and deformation to recreate the 3D structure of the item. 
These approaches use the reflection, dispersion, or 
absorption of the transmitted signal to obtain data 
regarding the surroundings. The active techniques provide 
better management for the imaging conditions with 
reliable environmental situations and applications. 
Typically used active strategies are as below: 
1) Light Detection and Ranging (LiDAR) 

Single-photon LiDAR is emerging as an effective 
solution for distance imaging in challenging environments. 
It works by emitting laser pulses and measuring the time it 
takes for the light to reflect off objects, generating a point 
cloud, which is a collection of data points used to create 
3D representations of surfaces, shapes, and objects. 
LiDAR is capable of detecting a wide range of elements, 
such as physical objects, chemical substances, and even 
clouds. It is widely used in fields like aviation, topographic 
mapping, and autonomous navigation. It represents a result 
of extensive advancements in laser technology, optics, and 
remote sensing. However, LiDAR faces limitations under 
certain environmental conditions, like rain, fog, snow, or 
humidity, which can distort data. It also struggles with 
accurate measurements on specular surfaces, such as 
mirrors or glass. Despite these challenges, LiDAR 
continues to be crucial in sectors like self-driving vehicles, 
archaeology, and environmental research [20, 21]. 
2) Structured light scanning 

This technique projects a well-planned pattern of light 
onto a visual scene. Grids, horizontal stripes, and more 
intricate designs are just a few of the various shapes that 
this light pattern may take. The light beams become 
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warped when the light pattern affects objects of various 
shapes and levels. To determine the 3D shape, a camera 
records the distorted pattern. The capacity to quickly 
produce accurate and high-resolution 3D models is one of 
the technique’s main benefits. Reverse engineering, 3D 
printing, and CAD modeling are just a few of the uses for 
it. 
3) Structured light with multiple patterns light scanning 

Conventional 3D capture methods run a single scanning 
laser stripe across a target object’s surface in a sequential 
manner. In order to acquire data using this approach, the 
object must stay still while many stripe photos are taken. 
A variety of light patterns with different spatial 
frequencies are projected onto the object to overcome 
issues like ambiguity and albedo (surface reflectivity). By 
analyzing the updates or highlights in the collected photos, 
these patterns make it possible to recreate a 3D geometry 
with greater accuracy [22]. This method is frequently used 
in industrial inspections and 3D scanning, which requires 
high precision. It is the outcome of years of computer 
vision and 3D scanning research and development by 
several research groups (1995–2010). 
4) Time-of-Flight (ToF) cameras 

Time-of-Flight (ToF) technique measures the time 
taken for a light pulse to travel to an object and return. Here 
the distance estimation is based on the reflected light  
time-of-flight [23]. For each pixel in the sensor array data 
is captured, producing a 3D depth representation of the 
scene. ToF sensors give depth information for every point 
as compared to conventional cameras that just record color 
or brightness. This enables to create reconstructions of the 

surroundings. Common applications of ToF includes 
gesture recognition, industrial automation, and augmented 
reality. The technology development from 1930 to 2000 
has focused on accurately measuring ranges by timing 
light signals. A significant challenge for multi-camera ToF 
setups is Multiple Camera Interference (MCI), requiring 
measures to prevent electromagnetic interference between 
cameras. 
5) Active infrared imaging 

It makes use of infrared light sources for illuminating 
the scene and collecting the reflected infrared light. 
Maiman [24] and Military-Defense Research Laboratories 
are significant personalities as well as organizations in the 
evolution of infrared technology. Active infrared imaging 
is the use of infrared light sources to illuminate a scene and 
capture the reflected light to form an image. The working 
of active infrared imaging yields better results in low-light 
or nighttime conditions; thus, it is more useful for night 
vision, surveillance, inspection of industry, etc. 
6) Acoustic imaging 

An acoustic imager uses sound like a camera uses light, 
detecting echoes to create images. It maps loudness with 
colors and is used in sonar and ultrasound imaging. Key 
contributors include Paul Langevin and Lewis Fry 
Richardson, with major advances in signal processing 
since 1970s. Challenges include precise geometry 
measurement, channel response estimation, and time 
synchronization. 

As depicted in Fig. 3, the conventional 3D 
reconstruction methods are timelind with the active and 
passive techniques. 
 

 
Fig. 3. Active and passive techniques for conventional 3D reconstruction methods. 

III. DEEP LEARNING TECHNIQUES FOR 3D 
RECONSTRUCTION 

While the classical methods covering active and passive 
techniques for image-based 3D reconstruction have been 
effective, they often require meticulous calibration of 
camera pose and are highly sensitive to noise and 

occlusions. The emergence of deep learning introduced 
data-driven approaches that can learn complex mappings 
from images to 3D structures, offering improved robust 3D 
reconstruction. Deep learning techniques have 
significantly advanced image-based 3D reconstruction, 
leading to notable improvements in both reconstruction 
quality and robustness.  
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Fig. 4. Deep learning techniques for 3D reconstruction. 

New horizons in Artificial Intelligence are being opened 
by expanding deep learning  techniques. This is possible 
through the use of deep learning techniques, sensor 
emancipation and the acceptance of concurrent active and 
passive methodologies [25]. Conventional techniques for 
reconstructing a single image in three dimensions rely on 

specific lighting and reflectance presumptions, making 
them extremely vulnerable to changes in the input’s 
reflective power, illumination, and texture. 3-dimensional 
forms of the objects are rebuilt with approaches  
using mathematical characteristics as contours,  
vertical-horizontal lines, and points. Other approaches use 
shading and repeating texture elements [26]. An overview 
of artificial intelligence-based techniques for 3D geometry 
reconstruction from a single image is presented in many 
studies, which investigates the possibilities of Variational 
Autoencoders (VA), Generative Adversarial Networks 
(GAN), Convolutional Neural Networks (CNN), and  
Zero-Shot techniques [27]. Deep learning techniques have 
evolved in recent past few years due to the quick growth 
of neural networks and the introduction of fully 
decentralized 3D model datasets. ShapeNet became the 
benchmark dataset, commonly used for evaluating 3D 
generative models like 3D-GAN, Occupancy networks, 
and DeepSDF [28]. In 3D planar survey interpreting, the 
training and representation of 3D models has grown into 
standard procedure. With the advancement of deep 
learning techniques since 2015, image-based 3D 
reconstruction using CNN has gained interest of 
researchers because of the impressive performance of the 
deep learning algorithms. Fig. 4 represents the deep 
learning techniques, which are classified in three 
categories as: (1) Supervised Learning, (2) Unsupervised 
Learning and (3) Self-Supervised Learning. 

 

 
Fig. 5. Framework for 3D reconstruction using deep learning. 

A. 3D Reconstruction Using Deep Learning 
The various research studies are trying to solve the 

problem of 3D reconstruction. Convolutional neural 
network is one of the widely used technique for  
image-based 3D reconstruction for decades, and it’s 
efficacy has been outstanding and has drawn growing 
attention. The three phases of the 3D reconstruction 
approach are as follows: first, a CNN is trained using a 
input image dataset to anticipate and recognize the object’s 
features and to reliably estimate the locations from one 
representation in the image space. Creating the object’s 
geometric form (mesh) is the second phase. In order to 
identify the surface referrals which, relate to each object 
polygon the third and final step of the method involves 
automatically translating the 3D space of the object into 
the 2D image space. This process yields better visual 

output, with respect to given inputs, including structure, 
expression, reflectance, and illumination [29]. As shown 
in Fig. 5 the framework for 3D reconstruction using deep 
learning consists of components as:  
(1) Input Image Data; 
(2) Output 3D Representations;  
(3) Network Architectures; 
(4) Transfer Learning.  

A deep learning architecture uses an image as input and 
creates a 3D model output in the form of a mesh, voxel 
grid, and point cloud. 
1) Input image data 

A dataset is a group of data with information unique to 
its category. The various types of datasets are real dataset, 
generated dataset, synthetic dataset, etc. with single  
image [30] or multiple images as data input. Typical data 
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inputs include subsurface depth data, LiDAR imaging  
point-cloud details, camera pictures, and inertial 
observations. RGB channel analysis is performed on 
camera pictures & creation of dense depth maps is 
facilitated by LiDAR data. 

The most popular method for deep learning-based 3D 
reconstruction makes use of both synthetic and real-world 
data. ShapeNet is a vast collection of synthetic CAD 
models with extensive annotations. It was widely used to 
train, evaluate, and compare approaches, allowing for 
consistent assessment across algorithms, and it became a 
common benchmark in the literature on deep 3D 
reconstruction [31]. ScanNet, Matterport3D, and TUM 
RGB-D/S3DIS offer extensive real-world RGB-D data 
with semantic labelling and dense geometry for  
scene-level reconstruction. Usually, the parametric CAD 
models from the ABC-Dataset, CC3D, Fusion360 Gallery 
and 3D CAD model dataset are used in geometric deep 
learning research [32]. Emerging datasets such as 
Objaverse‑XL push boundaries, offering millions of the 
annotated meshes and implicit-field representations 
tailored for generative and neural rendering  
techniques [33]. 
2) Output representations 

Output representation is important in the selection of 
network architecture, it also has the impact on the quality 
of reconstruction and the computational efficiency. Fig. 6 
depicts the commonly used representations in 3D deep 
learning, such as Voxel, Point Cloud, Meshes, Sign 
Distance Function (SDF) and Occupancy Grid. 

 

 
 (a) (b) (c) (d) (e) 

Fig. 6. Data representation methods in 3D deep learning. (a) Voxel;  
(b) Point Cloud; (c) Mesh; (d) SDF; (e) Occupancy Grid. 

a) Voxel grid  
Voxel grids are a fundamental method for representing 

3D data in Deep Learning, extending the concept of 2D 
pixels to 3D voxels. Each voxel, or volumetric pixel, stores 
information such as occupancy, probability, or material 
properties, and forms a grid that divides 3D space into 
cubic cells. Voxel grids offer a structured, regular 
representation of 3D space, making it easier to process 
with 3D convolutional neural networks, which can capture 
spatial patterns in the data. However, at high resolutions, 
voxel grids require significant memory and computational 
power, as the number of voxels increases cubically with 
resolution. At low resolutions, they may lose fine details 
of objects, and real-world 3D data is often sparse [34], 
requiring specialized data structures like octrees for 
efficiency. 
b) Point cloud 

Point clouds are the fundamental 3D representation 
method, which is used for efficiently representing 3D data 
for deep learning. It consists of (x, y, z) points with 

optional attributes like color or intensity. As point clouds 
are memory efficient compared to voxel grids, they are 
used in the applications like 3D object recognition, 
segmentation, and reconstruction. However, because of 
the unordered nature and sensitivity to noise it is 
challenging to use in the applications which requires dense 
information. Deep learning models like PointNet, 
PointNet++ [35, 36], and Dynamic Graph CNNs 
(DGCNN) solve these challenges with specialized 
architecture. PointNet gathers global features and 
independently processes points using Multi-Layer 
Perceptron (MLP). PointNet++ introduces a hierarchical 
structure which captures both local and global features. 
With edge convolution and dynamic graphs DGCNN 
analyzes local geometry. The needs of particular activities, 
such as the level of feature extraction and the handling of 
point density, determine which design is best. Reducing 
noise in the point clouds, which is particularly valuable for 
the condition assessment and 3D reconstruction,  
Emadi and Limongiello [37] presents a novel approach by 
integrating deep learning and clustering models to improve 
the quality of point clouds. Point cloud completion is a 
significant challenge due to incomplete or sparse data [38]. 
It is the task of generating a complete 3D representation of 
an object from a partial or incomplete point cloud input. 
Completing point clouds is usually not easy since they are 
naturally chaotic and unstructured, Point Cloud Network 
(PCN), Unpaired scan completion network, Morphing and 
sampling-based network, PF-Net, GRNet and 
SnowflakeNet are models used in Point Cloud  
completion [39]. 
c) Meshes  

Meshes are a fundamental 3D representation used in 
graphics, computer vision, and deep learning. It is 
composed of vertices, edges, and faces which makes them 
ideal for high-fidelity modelling. Compared to voxel grids 
and point clouds, meshes are more precise but complexity 
and high computational demands is a challenge in using 
meshes [40]. These problems are addressed by specialized 
deep learning models, MeshCNN that uses convolutions to 
mesh edges, GCNs which treat meshes as graphs to capture 
vertex interactions, and mesh autoencoders learn compact 
representations for unsupervised tasks. 
d) Signed Distance Functions (SDFs) 

In Signed Distance Functions (SDF), 3D shapes are 
represented by defining a scalar field over 3D space. Value 
of each point indicates the shortest distance to the shape’s 
surface. The sign of the distance shows whether the point 
is inside or outside the shape with negative or positive sign 
respectively. It provides a continuous and smooth 
representation, captures fine details and complex 
geometries. This makes SDF suitable for tasks like shape 
reconstruction and rendering which require high precision. 
They are differentiable due to their continuous nature, 
which helps neural network learning and optimization 
tasks [41]. However, because SDFs require dense grids 
and use a lot of memory, at high resolution its creation and 
processing are computationally demanding. Converting 
other representation, such as meshes or point cloud to 
SDFs can be complex and error-prone. 
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e) Occupancy grids 
An occupancy grid is a discrete representation of 3D 

space, that divides it into a regular grid of cells (voxels) 
and labels each one as either free (empty space) or 
occupied (within an object). It can be probabilistic, storing 
the probability that a voxel will be occupied. Occupancy 
grids are simple, intuitive, and compatible with 3D 
convolutional neural networks. However, high-resolution 
grids require significant memory and computational 
resources, limiting scalability, while low-resolution grids 
may miss fine details. In large grids, processing sparse data 
effectively can be difficult and frequently calls for 
specialized data structures [42]. The decision between 
SDFs and occupancy grids depends on the particular 
requirements of detail, resources, and task type. 
Occupancy grids are well suited for applications such as 
robotics and 3D object detection. 
f) Volumetric representations 

In 3D deep learning, volumetric representation is a key 
approach in which 3D space is divided into a regular grid 
of voxels (3D pixels). A value corresponding to a 3D space 
attribute, like occupancy, density, or color, is stored in 
each voxel. As voxel is compatible with 3D convolutional 

neural networks, it can be used for jobs requiring in-depth 
3D analysis. This allows the capture of spatial 
relationships and structural features. But scalability is 
limited by high computing resources which demand to 
represent high-resolution data with voxels. Accuracy may 
be impacted by low-resolution grids to capture minute 
details [31]. 

Techniques like 3D CNNs, VoxelNet, and 3D U-Net 
leverage voxel grids for various 3D tasks. 3D CNNs 
extend 2D convolutions to three dimensions, capturing 
spatial hierarchies across the grid. VoxelNet combines 
feature learning and 3D object detection by processing raw 
point clouds divided into voxels. 3D U-Net, an extension 
of 2D U-Net, uses an encoder-decoder structure with skip 
connections to capture detailed spatial information and 
context, making it effective for tasks like object detection, 
shape reconstruction, and segmentation. 
PointNet/PointNet++, DGCNN, CurveNet uses point 
cloud. Deep learning for meshes applies mesh-aware 
convolution and graph-based neural models. Table II 
shows the comparative analysis of different 3D data 
representation methods and suitability for practical 
applications. 

TABLE II. COMPARISON OF 3D REPRESENTATION TECHNIQUES  
Representation Techniques Pros Cons Applications 

Voxel/Volumetric 
Represents 3D shapes of 
regular cubes, 3D grid of 

voxel. 

Easy to use with 3D 
Convolutional Neural 

Networks (CNNs), can 
handle any spatial structure. 

High memory/computation, 
loses detail at low resolutions. 

3D CNN tasks: segmentation, 
object analysis, object detection 

[31, 43, 44] 

Point Cloud 
Unordered point sets 

representation of points in 
3D space. 

Memory-efficient, directly 
represent the 3D shape from 

sensor output. 

Requires special networks, 
sensitive to noise. 

Recognition, classification, 
segmentation, and real-time 

scene understanding. 
[35–39, 45–51] 

Mesh 
Represents combinations 

of structured vertices, 
edges and faces. 

High fidelity, compact 
surface representation. 

Complex graphs, heavy 
computation, and Difficult for 

the network to learn. 

Graphics, surface reconstruction, 
high-detail modeling. 

[40, 52, 53] 

Sign Distance 
Function (SDF) 

3D shape representation 
through a set of continuous 

signed distance fields. 

Smooth, detailed, Strong 
representation ability. 

Difficulty in handling complex 
shapes, conversion overhead 

issue. 

High-precision reconstruction, 
implicit surface modeling. 

[41, 54, 55] 

Occupancy Grid 
Discrete representation of 

3D space with voxel 
occupancy probability. 

Simple, CNN-ready, supports 
probabilistic reasoning. 

Scaling issue, difficult to 
represent small objects or fine 

details. 

Robotics, 3D detection, semantic 
mapping. 

[42, 56–58] 
 

3) Network architecture 
The physical as well as logical layout of the technology, 

software, standards, along with the medium used in 
transmitting information forms a network architecture. It 
determines the efficiency and accuracy of the 
reconstruction process, influence scalability, adaptability, 
and computational resource requirements. A clear 
understanding of these frameworks helps in selecting the 
most suitable model for specific applications. The different 
architectural structures used in 3D reconstruction using 
Deep Learning techniques are as discussed below: 
a) Convolutional Neural Networks (CNNs) 

CNNs play a crucial role in 3D reconstruction tasks by 
processing volumetric data, point clouds, or multi-view 
images to extract features, learn representations, and 
generate accurate and detailed reconstructions of 3D 
shapes. These CNN architectures as represnted in Fig. 7 
have significantly advanced the field of 3D reconstruction 

and are widely used in various applications, including 
computer vision, robotics, augmented reality, 
manufacturing industries, etc. Unlike conventional CNN 
methods that handle 2D data, 3D CNNs use special filters 
to immediately extract important characteristics from 
geometric data, including three-dimensional 
representations of objects or medical scans. This learning 
technique is able to interpret temporal characteristics and 
spatial connections as it can analyze data in three 
dimensions. 

Consequently, 3D CNNs work well for applications 
such as precise segmentation of medical visuals for 
diagnosis, video analysis, and 3D object identification. 
Convolutional neural networks are widely used for feature 
extraction from images, which is a crucial step in  
image-based 3D reconstruction. CNN architectures such 
as ResNet, VGG, and MobileNet are commonly employed 
for their ability to extract hierarchical features from input 
images. CNNs have been instrumental in advancing 3D 
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reconstruction tasks, particularly in handling volumetric 
data and processing point clouds. CNNs include deep 
neural networks which employ convolution rather than 
matrix multiplication and train various types of layers. 

 

 
Fig. 7. CNN model for 3D image reconstruction. 

b) Graph Neural Networks (GNNs) 
GNNs are neural network architectures designed for 

processing graph-structured data, which can represent 
relationships between 3D points or voxels. Initially, they 
were used to organize building units into conventional and 
irregular structures through unsupervised learning. A 
graph 𝐺𝐺 is non-Euclidean organization composed up of a 
collection of edges E and set of vertices 𝑉𝑉. An edge in a 
graph is represented by its nodes as 𝑒𝑒ij = (𝑣𝑣𝑖𝑖𝑣𝑣𝑗𝑗) ∈ 𝐸𝐸, where 
𝑣𝑣𝑖𝑖 and 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉. A graph is written as stated in Eq. (2). 

 𝐺𝐺 = 𝑉𝑉𝑉𝑉 (2) 

A graph can alternatively be represented like an 
adjacency matrix (𝐴𝐴), as shown in Eq. (3). 

 𝐴𝐴 =  
{ if 𝑒𝑒𝑖𝑖𝑖𝑖 ∈ E then  𝐴𝐴𝑖𝑖𝑖𝑖 = 1 }
{ if 𝑒𝑒𝑖𝑖𝑖𝑖 ∉ E then  𝐴𝐴𝑖𝑖𝑖𝑖 = 0 } (3) 

Additional data could be contained in the characteristics 
of any node, edge, or entire graph by representing them as 
vectors. GNNs are increasingly being applied to 3D 
reconstruction tasks to exploit geometric relationships 
between points and improve reconstruction accuracy. A 
key challenge in graph development is the manual 
conversion of geometric primitives, meshes, floor plans, 
and Building Information Modeling (BIM) models into 
graphs or point clouds. 
c) Variational Autoencoders (VAEs) 

VAE models are probabilistic generative methods 
which facilitate latent representations of data to generate 
intelligent information from the learned latent space. They 
are crucial for generating high-dimensional data due to 
their capacity to integrate stochastic data representation 
with the efficacy of deep learning techniques [59]. In 3D 
shape generation, VAEs can optimise the geometry of 3D 

shapes to build innovative shapes by applying learned 
latent space knowledge. VAEs are taught to rebuild input 
3D forms while minimising the disparity among the learnt 
latent probability and previous distribution, such as the 
typical normal distribution. 

 

 
Fig. 8. VAE model for 3D image reconstruction. 

It reconstructs the original data, and the metric 
employed assesses the disparity between the input data and 
the output data, as represented in Fig. 8, by calculating the 
Reconstruction Loss, which, in most cases, is Mean 
Squared Error (MSE) as depicted in Eqs. (4) and (5). 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ||𝑋𝑋 − 𝑋𝑋�||2 =  ||𝑋𝑋 − 𝑃𝑃𝜃𝜃 �
𝑋𝑋
𝑌𝑌
� ||2 (4) 

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ||𝑋𝑋 − 𝑃𝑃𝜃𝜃(𝑃𝑃𝜙𝜙 �
𝑌𝑌
𝑋𝑋
�)||2 (5) 

d) Generative Adversarial Networks (GANs) 
GANs are made up of two distinct artificial neural 

relationships: a generator and a discriminator, which are 
programmed to create authentic patterns. In 3D shape 
generation, GANs can generate new 3D shapes by training 
the generator to create shapes that are identical from real 
shapes, as determined by the discriminator. 3D-GANs and 
various conditional GAN architectures, as displayed in  
Fig. 9, have been developed for generating 3D shapes with 
specific properties. Generally, GANs generate better 
photorealistic pictures compared to VAEs. After 
pretraining the generator using L2 regularization, it uses 
phase difference as input and modifies the network design 
to do basic imaging tasks. 

  

 
Fig. 9. GAN model for 3D image reconstruction. 

Then it links it to a discriminator to create a counter 
network, and adds a cross verification set to track its 
convergence. 

3D-GANs and various conditional GAN architectures 
as displayed in Fig. 9, have been developed for generating 
3D shapes with specific properties. The primary aspect of 
this generator model is a maximum likelihood estimate, 
that enhances the possibility that the generator would 
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recreate conductivity using the actual distribution as 
implemented adapting the Eq. (6). 

 𝐿𝐿(𝐺𝐺,𝑉𝑉,𝜎𝜎) =  ∏ 𝑃𝑃𝐺𝐺(𝑉𝑉)( 𝜎𝜎(𝑖𝑖);  𝛳𝛳𝑔𝑔) 𝑀𝑀
 𝑖𝑖=1  (6) 

In recent advancement of 3D deep learning, 3D CNNs 
are remarkably enhanced by hybrid architectures like 
Point-Voxel CNN (PVCNN), which has tackled the 
memory and computation essential to full-resolution 
volumetric processing. PVCNN combined with  
point-based sparsity with voxel-based locality has 
achieved up to 10× memory reduction and much higher 
conversion speed. GNNs provides fascinating alternative 
for unstructured and irregular 3D data. However, 
complexity and memory demands scale with graph size,  
transformer-based graph architectures help manage  
large-scale graphs efficiently. Using compact latent 
representations, VAEs achieve a modest balance between 
strong generalization through probabilistic modeling, a 
smaller memory footprint, and less computational load 

than GANs. The maximum visual realism is achieved by 
GANs, but at very high computational and memory costs. 
Hierarchical and hybrid techniques, including VAE GAN 
variations, assist reduce mode collapse and enhance 
variety. 

These architectures collectively provide a complex set 
of trade-offs, although they need more resources, GANs 
push realism and quality, VAEs provide effective and 
generic reconstructions. CNN-based techniques can be 
fine-tuned for speed and resource utilization, and GNNs 
performs much better in flexible network topology 
modeling. In 3D reconstruction deep learning applications, 
this comparative research emphasizes the trade-offs 
between various neural network topologies in terms of 
computing demands, memory needs, and generalization 
capabilities. Table III depicts the key insights on the trade-
offs between various network architectural methods on 
computational complexity, memory footprint, 
generalization ability, and suitability for real-world 
deployment. 

TABLE III. TRADE-OFF BETWEEN VARIOUS NETWORK ARCHITECTURES  

Network 
Architecture 

Computational 
Complexity 

Memory 
Footprint 

Generalization 
Ability 

Accuracy 
Indicators 

Suitability for 
Real-World 
Deployment 

CNNs 

High: 3D CNNs are 
computationally intensive 

due to 3D convolutions, and 
requires optimizations to 

reduce latency. 

Large memory use for 
full-resolution 3D 

grids; hybrid 
point-voxel 

approaches lower 
GPU demand by 

~10×. 

Effective on 
structured data, but 
performance drops 
on unstructured or 
irregular scenes; 
multiview CNNs 

help. 

CNN models usually achieve 
high Intersection-over-Union 

(IoU) but only moderate 
Chamfer Distance, yielding 

decent reconstruction quality 
but limited surface detail. 

Mature tech with real-
time capabilities; 

optimized 3D CNNs used 
in robotics, medical 

imaging, AR/VR 
pipelines. 

[5, 39, 60–62] 

Graph Neural 
Networks 
(GNNs) 

Moderate to high: 
complexity increases with 

graph size; graph-
transformer models improve 

efficiency. 

Large memory 
requirement for 

storing adjacency or 
edge features. 

Optimizations in 
learning techniques 
handle large-scale 
graphs efficiently. 

Adept at handling 
unstructured data, 

suitable for diverse 
3D reconstruction 

tasks. Strong 
generalization 
capabilities. 

Achieve low Chamfer Distance 
(CD), confirming superior 
surface accuracy and detail 

preservation compared to voxel 
CNNs and VAEs. Against 

Generative Adversarial 
Networks (GANs), GNNs often 

win on CD. 

Emerging field; used in 
3D face and mesh 

reconstruction with 
promising results, though 

deployment is still 
limited. 

[39, 60–62] 

Variational 
Autoencoders 

(VAEs) 

Moderate: VAEs are 
generally less 

computationally demanding 
than GANs, as encoder–

decoder pairs are optimized 
for reconstruction tasks. 

Moderate memory 
footprint; latent 

bottleneck ensures 
compressed 

representations. 

Good generalization 
via probabilistic 
latent modelling; 
Reconstructing 

diverse 3D 
structures. 

Produce smoother 
reconstructions; fidelity may 
lag behind CNNs or GANs. 

Achieve decent IoU but higher 
CD (worse) due to smoothness 

and less sharp features. 

Stable and interpretable 
training; applied in 

robotics, compression, 
scene completion—
well-suited for real-

world. 
[59, 63, 64] 

Generative 
Adversarial 
Networks 
(GANs) 

Very high: Training GANs 
is computationally intensive 
because of the adversarial 
nature of the model; 3D 

GANs are resource-heavy 
but hierarchical training 
addresses the resource-

intensive issue. 

High memory due to 
dual networks; 
approaches like 

Hierarchical 
Amortized Training 
reduce demand for 

high-resolution 
volumes. 

High visual realism 
but prone to mode 
collapse; blending 
with VAE (e.g., 

VAE-GAN) 
improves diversity. 

GAN-based models yield 
improved visual detail and 
perceptual realism and can 

achieve low Chamfer Distance, 
but IoU is competitive but not 

consistently higher than CNNs. 

Powerful results; training 
instability and resource 

demand limit 
deployment. Advance 

training strategies enable 
usage in medical and 
industrial contexts. 

[62–68] 
 

4) Performance metrics for 3D reconstruction 
The efficacy of 3D reconstruction method was 

statistically assessed utilizing various established 
performance metrics with State-of-Art-Analysis (STOA) 
as discussed below: 
a) Chamfer Distance (CD) 

Chamfer Distance (CD) quantifies the arithmetic mean 
of the nearest-neighbour distance calculations between 
two-point sets { 𝑆𝑆1 ⊂ 𝑅𝑅𝟛𝟛 } and { 𝑆𝑆2 ⊂ 𝑅𝑅𝟛𝟛 }.  

Here, 𝑆𝑆1  is the Predicted point set with reference to 
11,000–55,000 sampled points from reconstructed object 
surface and 𝑆𝑆2 is the Ground-truth point set for the given 
samples. |𝑆𝑆1| depicts the cardinality of predicted set and 
|𝑆𝑆2| depicts the cardinality of ground-truth set. The 3D 
points of the two sets are stated as ′𝑠𝑠′ ∈ {𝑆𝑆1} and ′𝑡𝑡′ ∈ {𝑆𝑆2} 
respectively which implements the minimization objective 
function using Squared Euclidean distance measure. CD is 
calculated using Eq. (7). 
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𝐶𝐶𝐶𝐶(𝑆𝑆1,𝑆𝑆2) = 1

|𝑆𝑆1|
∑ 𝑚𝑚𝑚𝑚𝑛𝑛(𝑡𝑡∈𝑆𝑆2)�|𝑠𝑠 − 𝑡𝑡|�2𝑠𝑠∈𝑆𝑆1  

+ 1
|𝑆𝑆2|

∑ 𝑚𝑚𝑚𝑚𝑛𝑛(𝑠𝑠∈𝑆𝑆1)�|𝑡𝑡 − 𝑠𝑠|�2𝑡𝑡∈𝑆𝑆2

 (7) 

Lower is the evaluated measure of CD(S1, S2), better is 
the geometric fidelity with closer match between the 
surfaces and improved performance. 
b) Intersection-over-Union (IoU) 

Intersection-over-Union (IoU) measures the volume 
overlap metric for evaluation of voxels/meshes. Here, 
𝑉𝑉(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) is the Predicted voxel grid set for occupied voxels 
and 𝑉𝑉(𝑔𝑔𝑔𝑔) is the Ground-truth voxel grid set for occupied 
voxels. �𝑉𝑉(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ∩ 𝑉𝑉(𝑔𝑔𝑔𝑔)� depicts the cardinality of voxels 
that are occupied in intersection set of prediction and 
ground-truth. �𝑉𝑉(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) ∪ 𝑉𝑉(𝑔𝑔𝑔𝑔)�  depicts the cardinality of 
voxels that are occupied in union set of prediction and 
ground-truth. IoU is computed using Eq. (8). 

 𝐼𝐼𝐼𝐼𝐼𝐼 =  
�𝑉𝑉(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)∩𝑉𝑉(𝑔𝑔𝑔𝑔)�

�𝑉𝑉(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)∪𝑉𝑉(𝑔𝑔𝑔𝑔)�
 (8) 

The IoU ratio score ∈ [0, 1] where, 
• Perfect reconstruction for IoU = 1. 
• No overlap between 𝑆𝑆1  as Predicted 3D 

reconstruction and 𝑆𝑆2 as the Ground-truth surfaces 
for IoU = 0. 

• Otherwise, Partial Overlap ={0 < IoU < 1}. 
c) Earth Mover’s Distance (EMD) 

Earth Mover’s Distance (EMD) is the minimum “work” 
to morph one point set into the other under a bijection ϕ: 
S1→ S2. 
d) Normal Consistency (NC) 

Normal Consistency (NC) is the average cosine 
similarity between the normals of the Predicted surface 
and the Ground-truth surface that computes the 
smoothness and local geometric consistency. 𝑛𝑛𝑖𝑖

(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) is the 
normal vector at predicted surface whereas 𝑛𝑛𝑖𝑖

(𝑔𝑔𝑔𝑔)  is the 
normal vector at ground-truth surface. NC is computed 
using Eq. (9). 

 𝑁𝑁𝑁𝑁 =  1
𝑁𝑁
∑ �𝑛𝑛𝑖𝑖

(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) · 𝑛𝑛𝑖𝑖
(𝑔𝑔𝑔𝑔)�𝑖𝑖∈𝑁𝑁  (9) 

Higher is the NC score, better is the similarity alignment 
amongst the predicted and true surface normals.  

 

e) F-Score 
F-Score is the harmonic mean at various distance 

thresholds which captures the precision and recall of 
reconstruction. It is the statistic measure that offers a 
comprehensive assessment of the completeness and 
precision of the reconstructed surfaces. It evaluates the 
accuracy of a reconstructed 3D model (predicted) against 
the ground-truth model. 
f) Peak Signal-to-Noise Ratio (PSNR) 

Peak Signal-to-Noise Ratio (PSNR) quantifies image 
reconstruction fidelity by comparing a Predicted image 
against Ground-truth image. It uses the Mean Squared 
Error (MSE) and the maximum possible intensity as shown 
in Eq. (10) while evaluating the rendered view quality 
(e.g., NeRF outputs).  

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10 log10 �
𝑀𝑀𝑀𝑀𝑋𝑋𝐼𝐼

2

𝑀𝑀𝑀𝑀𝑀𝑀
� (10) 

Higher PSNR is interpreted as the better reconstruction 
quality which is more similar to ground truth. Whereas, the 
low value of PSNR includes the noisy or inaccurate 
reconstruction. 
g) Mean Squared Error (MSE)  

MSE is a fundamental metric which evaluates the 
average squared difference between predicted 3D 
representation and its ground-truth for the N data points as 
shown in Eq. (11). 

 𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑁𝑁      

∑ �𝐼𝐼𝑖𝑖
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐼𝐼𝑖𝑖

𝑔𝑔𝑔𝑔�
2𝑁𝑁

𝑖𝑖=1  (11) 

Lower MSE relates the closes of reconstructed 3D 
model to the ground truth. Whereas, higher MSE value 
fails to approximate the shape, large deviations, etc. 
h) Accuracy 

Accuracy computes the amount of correctly predicted 
elements such as voxels, points, or mesh vertices, as 
compared to the total number of elements. 
i) Completeness 

Completeness is the percentage of ground-truth points 
that are successfully reconstructed, or the percentage of 
ground-truth points that are located within a given distance 
threshold from any point in the reconstructed output. This 
is frequently used in conjunction with Accuracy. These 
two together make up the F-Score. 

Table IV depicts the most commonly used performance 
metrics which evaluates the various 3D reconstruction 
models.  

TABLE IV. COMMONLY USED PERFORMANCE METRICS 

Model Type Models Performance Metrics 
Voxel-based Pix2Vox, 3D-R2N2 IoU, F-Score 

Point Cloud-based PCN, PointNet, PointNet++, Dynamic Graph 
CNNs (DGCNN) CD, Earth Mover’s Distance (EMD), F-Score 

Mesh-based Pixel2Mesh, Pixel2Mesh++, MeshCNN CD, EMD, Normal Consistency (NC) 
Multi-View Stereo (MVS) MVSNet, DeepMVS Accuracy, Completeness 

Implicit SDF DeepSDF CD, EMD 

Neural Rendering Neural Radiance Fields (NeRF) Peak Signal-to-Noise Ratio (PSNR),  
Structural Similarity Index (SSIM), Root Mean Square Error (RMSE) 
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5) Transfer learning for 3D reconstruction 
Compatible conversion computation, implicit 

representation synthesis from raw 3D data, and data-driven 
training for spatial coherence learning are some of the 
processes involved in 3D reconstruction. The pre-trained 
learning techniques can be used to train deep networks for 
3D reconstruction without requiring explicit supervision. 
By leveraging geometric constraints or image 
correspondences, the training methods can learn to 
reconstruct 3D geometry directly from unlabelled or 
weakly labelled data. These DL techniques have 
remarkably improved image-based 3D reconstruction, 
permitting more accurate, scalable, and versatile 
approaches for producing 3D models. With the influence 
of deep learning, researchers are discovering various 3D 
reconstruction approaches in various domains such as 
robotics, augmented reality, virtual reality, etc [30]. 

3D multimedia relies on photorealistic models, but 
creating high-quality 3D designs is time-consuming and 
costly. This drives research into automated methods for 
generating textured 3D models from multiple viewpoints. 
Transfer learning and fine-tuning strategies can 
significantly enhance the performance of image-based 3D 
reconstruction. These techniques are as follows: 
a) Transfer learning 

Transfer learning starts with a pre-trained CNN model 
which is trained using an appropriate dataset, such as 
ImageNet. They learn to have knowledge with generic 
features that can be beneficial for multiple imaging tasks. 

b) Feature extraction 

The pre-trained CNN is utilised as a feature extractor. 
Remove the fully connected layers of the CNN and use 
result of previous convolutional layers as feature 
representations for input images. These features capture 
high-level semantic information relevant to 3D 
reconstruction tasks. 
c) Domain adaptation 

It includes the fine-tuning of pre-trained CNN on lesser 
dataset specific for 3D reconstruction task. This process 
adapts the generic features learned from the foundation 
sets to the target domain with 3D reconstruction while 
improving the model’s performance on the target task. 
d) Model architecture adaptation 

It adjusts the architecture of pre-trained CNN to better 
suit requirements of the 3D reconstruction task. This may 
involve modifying the network’s depth, width, or adding 
specialized layers to handle data. 

B. Evolution of DL in 3D Reconstruction 
During the last ten years, deep learning algorithms have 

advanced significantly in 3D reconstruction which has 
revolutionized the creation of 3D models from a variety of 
data sources. Starting with traditional 3D object 
recognition approaches, the research expedition has 
advanced to complex reconstruction techniques driven by 
deep learning that incorporate generative models, 
multiview learning, and point cloud processing. 

 

 
Fig. 10. Evolution of deep learning techniques and approaches for 3D reconstruction.  

Early in 2015–2019, ShapeNet for 3D object 
recognition and PointNet, which enabled point  
cloud-based processing, were introduced, laying the 

foundation of deep learning for 3D reconstruction. These 
techniques made it possible to extract features from sparse 
3D data points. CNNs based on voxel grids began to 
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appear around the same time, processing  
three-dimensional data [31]. With the introduction of 
DGCNN, the ability to model spatial relationships within 
point clouds has enhanced significantly. MVS methods 
combined with deep learning has shown significant 
improved in depth estimation from 2D images, which 
enabled generation of more accurate 3D structures. 
Generalizable Reconstruction (GenRe) aimed at 
improving single-image 3D shape reconstruction by 
making it more class-agnostic [30]. 

By 2020, with the further development in neural 
architectures, deep learning techniques like Neural 
Radiance Fields (NeRF) [69] has revolutionized the area. 
It offered a novel method of using implicit neural modeling 
to create continuous 3D representations from sparse 2D 
images. The incorporation of GNNs further refined 3D 
shape understanding, capturing geometric dependencies 
between points and edges. Hybrid models integrating 
CNNs and CAD tools allowed for DeepCAD, enabling 
automated design generation from 3D models. Generative 
models [70] such as GANs and VAEs were introduced to 
reconstruct missing or occluded parts of 3D objects, 
greatly enhancing realism in 3D reconstruction [71]. With 
latest advancements and focus on transformers for 3D 
learning, which leverage self-attention mechanism to 
capture long-range dependencies in 3D data. Hybrid deep 
learning models, integrating multiple techniques such as 
NeRF with GANs and GNN-enhanced depth estimation, 
have further pushed the boundaries of 3D reconstruction 
accuracy. In 2023–2024, research has moved towards  

part-specific 3D reconstruction, AI-assisted automated 
CAD modeling, and real-time 3D scene reconstruction 
using multi-modal data fusion. Deep learning-based 3D 
mesh reconstruction has evolved, improving object surface 
generation with minimal artifacts. Fig. 10 shows an 
overview of the evolution of deep learning techniques and 
approaches for 3D reconstruction. It traces the field’s 
journey from early voxel-based CNNs and point-cloud 
encoders to Multiview stereo networks like MVSNet and 
hybrid point-voxel models, then onto implicit 
representation methods such as NeRF and DeepSDF. 

IV. STATE-OF-ART ADVANCES AND KEY STUDIES OF 3D 
RECONSTRUCTION USING DEEP LEARNING 

3D object reconstruction is a fundamental problem in 
computer vision and graphics, enabling applications in 
augmented reality, robotics, medical imaging, and cultural 
heritage preservation. The field has witnessed significant 
advancements over the years, with deep learning playing a 
crucial role in improving reconstruction accuracy and 
efficiency. 3D reconstruction from images has seen 
significant advancements due to deep learning techniques, 
allowing for more accurate and high-resolution 
reconstructions. Traditional approaches such as SfM and 
MVS have been supplemented by CNN, GANs, and GNNs. 
This survey explores key contributions in 3D 
reconstruction using deep learning which include 
approaches, techniques, methodologies, significance and 
limitations in this field as portrayed in Table V. 

TABLE V. SUMMARY OF KEY STUDIES ON DEEP LEARNING FOR 3D RECONSTRUCTION 

Article Approach Technique Significance/ Impact Limitations 

Image based 3D 
Reconstruction  

[5] 

Surveys DL 
techniques for 3D 

approximation 
- 

(i) Examines GANs and VAEs in improving 
3D shape synthesis. 
(ii) Discusses NeRFs for view synthesis and 
transformer-based models for better global 
shape understanding. 

(i) Single-view reconstruction is 
ambiguous, lacking full 3D shape 
information. 
(ii) Multiview reconstruction depends on 
accurate camera poses; errors reduce 
quality. 

3D GAN 
[72] 

Introduced GAN-
based 3D model 

generation 
3DGAN 

(i) Easy to implement. 
(ii) Learns realistic 3D structures without 
explicit supervision. 
(iii) Improving the sharpness and realism of 
generated 3D objects. 

(i) Memory-intensive, limiting high-
resolution shape generation. 
(ii) Struggles to generate fine-grained 
geometric details, no smooth details.  
(iii) Difficult to model thin structures or 
highly detailed surfaces. 

3D Reconstruction 
of Industrial Parts 

from a Single 
Image  
[32] 

Hybrid network for 
improved 3D 

object 
reconstruction, 

CAD-
ClassNet & 

CAD-
ReconNet 

(i) A dataset of 2D images of industrial parts is 
created. 
(ii) Deep Learning infers 3D shapes from a 
single image. 
(iii) Handles occlusions and missing details for 
better accuracy. 
(iv) Integrates geometric and semantic features. 

(i) Single-image Computer-Aided Design 
(CAD) reconstruction struggles with 
complex geometries. 
(ii) Lacks parametric constraints, 
requiring manual edits. 
(iii) Occlusions and ambiguities can cause 
errors. 

Pixel2Mesh: 3D 
Mesh Models  

[40] 

Graph-based CNNs 
to correct 3D shape 

Pixel2-
Mesh 

(i) Learns to predict a 3D mesh from a single 
image, efficient for real-time graphics. 
(ii) GCNs refine mesh vertices and faces, 
enabling better 3D shape representation. 
(iii) Silhouette, perceptual, and shape 
consistency losses improve reconstruction 
quality. 

(i) A predefined ellipsoid limits 
representing complex topologies. 
(ii) Limited generalization to unseen or 
out-of-distribution objects. 
(iii) Self-occlusions or ambiguous views 
cause errors due to single-point input. 

Asteroid-NeRF: 3D 
Surface 

Reconstruction  
[50] 

Neural implicit 
representation for 
surface modeling 
based on NeRF 

SDF with 
Multiview 

(i) Illumination adaptation for appearance 
embedding. 
(ii) Enables continuous 3D surface 
reconstruction from sparse views. 
(iii) Better than Stereo-Photogrammetry (SPG) 
and Stereo-Photoclinometry (SPC). 
(iv) Multiview photometric consistency 
optimization. 

(i) Availability of images under different 
illumination conditions. 
(ii) Computationally expensive due to 
SDF and appearance modeling. 
(iii) May underperform on low-texture or 
shadowed surfaces. 
(iv) Suffers from uncertainties related to 
surface reflectance & albedo. 
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DL-Based 
Monocular 3D 
Reconstruction 

Pipeline.  
[57] 

Monocular RGB, 
U-Net++ model 
trained on NYU 

Depth V2 for depth 
prediction 

Customized 
U-Net++ 

depth 
network 

(i) Lightweight pipeline with depth estimation 
generates reliable 3D reconstruction 
(ii) Outperforms or matches heavier models 
(like GLPN) in both accuracy and speed 
(iii) Improving the sharpness and realism of 
generated 3D objects. 

(i) Less consistent. 
(ii) Reliability challenges with top-tier 
models. 
(ii) Scope limited by training data. 

Boosting MVS with 
Depth Foundation 

Models  
[68] 

Leverages depth 
priors from a 

foundation model 
for generating 
pseudo-labels. 

Pseudo-
supervised 

MVS 

(i) Enables high-quality MVS training without 
ground truth. 
(ii) Excels on DTU and Tanks & Temples. 
(iii) Error correction. 

(i) Performance may depend on quality of 
pretrained depth foundation models. 
(ii) Training stability may vary. 

NeRF for 
Continuous Scene 

Representation [69] 

Implicit 
neural 

representations for 
continuous 
volumetric 
rendering. 

NeRF 

(i) Pioneered novel view synthesis and 3D 
scene representation. 
(ii) Implicit 3D representation allows infinite 
resolution rendering. 
(iii) NeRF offers a more flexible, detailed 3D 
scene representation. 
(iv) Reducing reliance on explicit modeling 
(v) Overcomes voxel and point cloud 
resolution limitations. 

(i) NeRF struggles with sparse inputs, 
needing multiple views for accuracy. 
(ii) Requires known camera poses; errors 
degrade reconstruction quality. 
(iii) NeRF is limited to static scenes, 
failing on moving objects. 
(iv) NeRF lacks direct 3D surfaces; 
extracting meshes is computationally 
costly. 

Shape Inpainting 
using 3D-GAN  

[73] 

Uses 3D Encoder-
Decoder GANs for 
shape completion 

3D-ED-
GAN, 
LRCN 

(i) High-fidelity shape completion. 
(ii) Hybrid model improves shape inpainting, 
GANs generate realistic 3D shapes, while 
RCNs refine the structure. 
(iii) Volumetric representation allows better 
feature learning for generating & refining 
3Dshapes. 

(i) Suffer from high memory usage and 
low resolution, limits scalability. 
(ii) Struggle when large portions of a 
shape are missing, leading to unrealistic 
reconstructions and generating ambiguous 
or inconsistent structures. 

MVSNet: 
Multiview Stereo 

Network  
[74] 

End-to-end 
learning for depth 

inference in 
multiview stereo 

MVSNet 

(i) Deep Learning-based depth estimation 
outperforms traditional MVS method. 
(ii) Uses a 3D CNN to process cost volumes, 
enhancing depth estimation and generalization. 
(iii) Outperforms classical MVS methods such 
as COLMAP in certain scenarios. 

(i) Uniform depth sampling may be 
suboptimal for varying depth scenes. 
(ii) Fixed depth planes lead to suboptimal 
depth resolution and accuracy. 
(iii) Lacks domain adaptability, struggles 
with large-scale outdoor scene w/ depth 
variations. 

ShapeNet: Large-
Scale 3D Model 

Dataset  
[75] 

dataset for 3D deep 
learning 

applications 
ShapeNet 

(i) First large-scale 3D model dataset for DL. 
(ii) Enabled diverse 3D learning, advancing 
3D-GANs, PointNet, NeRF, and implicit fields. 
(iii) ShapeNet is the benchmark for 3D 
generative model evaluation. 

(i) ShapeNet’s synthetic Computer-Aided 
Design (CAD) models lack real-world 
variations, limiting generalization. 
(ii) Lacks detailed textures, limits 
usefulness for realistic rendering. 
(iii) Bias in shape complexity hinders 
generalization. 

DL for CAD Model 
Reconstruction  

[76] 

Encoder–decoder 
architecture for 
robust 3D CAD 

model generation. 

Encoder–
decoder 
network 

(i) Deep Learning automates CAD 
reconstruction, reducing manual work. 
(ii) Structured CAD models outperform raw 
meshes. 
(iii) Automatically extracts machining features. 

(i) Deep Learning automates CAD but 
struggles with constraints and precision. 
(ii) Lacks parametric relations, making 
AI-generated CAD less editable. 
(iii) High-resolution, large-scale CAD 
remains challenging. 

MonoLI: Precise 
Monocular 3-D 

Object Detection  
[77] 

Location-aware 
attention 

mechanism and 
importance-aware 

detection head 

CNN, 
DLA-34 
(Deep 
Layer 

Aggregatio
n) 

(i) High-precision 3D detection using only a 
single camera. 
(ii) Superior performance on KITTI BEV and 
3D metrics. 
(iii) Reweighted feature map. 
(iv) Lightweight Partial convolutional blocks. 

(i) Limitations in diverse real-world 
conditions (e.g. occlusion, weather). 
(ii) Unknown performance on larger 
datasets. 
(ii) Complex LiDAR based detectors. 

Learning a Model 
of Shape & 

Appearance from a 
Single View. [78] 

Implicit neural 
surface 

reconstruction 
using SDF and 
differentiable 

rendering 

SDF, 
Gradient-

based 
normals 

(i) Learns geometry and appearance from 
posed RGB images without ground-truth 3D. 
(ii) Delivers high-fidelity reconstruction. 
(iii) Foundational for future NeRF-SDF 
hybrids. 
(iv) Differentiable ray marching. 

(i) Requires accurate camera positions. 
(ii) Scene-specific, slow ray-marching. 
(iii) Limited scalability. 

The three-Dimensional Generative Adversarial 
Networks (3DGAN) are introduced which are pioneering 
the use of GANs for generating 3D models from 2D 
images [72]. Wang et al. [73] extended this approach with 
Shape Inpainting using 3D-GAN, leveraging a 3D  
encoder-decoder GAN to complete missing structures in 
partially observed 3D models. This approach effectively 
improved shape completion for occluded objects but 
struggled with high computational costs and artifacts in 
fine structures. 

Yao et al. [74] proposed MVSNet, a multiview stereo 
approach that integrates depth inference with a deep 

learning framework. Unlike traditional MVS methods, 
MVSNet optimizes depth maps directly from multiple 
views, reducing errors in disparity estimation. The key 
challenge with MVSNet is its requirement for high 
computational power and limited performance in 
textureless or reflective surfaces. Pixel2Mesh introduced a 
graph-based CNN that represents 3D meshes as graphs and 
progressively deforms an initial ellipsoid into the target 
shape [40]. This approach enables efficient mesh-based 
reconstruction, preserving fine details compared to  
voxel-based methods. However, its primary drawback lies 
in handling topological changes, which are crucial for 
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reconstructing highly complex objects. The model 
demonstrated the ability to synthesize high-quality 
volumetric shapes, making it a cornerstone for  subsequent 
developments. However, the primary limitation was the 
difficulty in generating fine-grained details, especially for 
complex objects with intricate geometries. 

Han et al. [5] provided a state-of-the-art review of deep 
learning approaches for 3D reconstruction, analyzing 
CNN-based depth estimation, GAN-based shape 
synthesis, and hybrid approaches. The paper highlighted 
the lack of large, high-quality 3D datasets as a fundamental 
bottleneck, limiting generalization across diverse object 
categories. Voxel-based methods represent 3D objects as 
discrete volumetric grids, making them intuitive for deep 
learning models [9]. However, they often suffer from high 
memory consumption and computational inefficiency at 
higher resolutions. Xie et al. [79] introduced Pix2Vox, a 
context-aware approach to single-view and multiview 3D 
reconstruction, significantly improving reconstruction 
accuracy [8, 80]. The model consists of an  
encoder-decoder framework that progressively refines the 
3D reconstruction. Key contributions of Pix2Vox include: 
(1) Hierarchical feature fusion- integrating features from 
different levels of the neural network for improved 
reconstruction. (2) Multiview consistency-handling 
multiple views to ensure consistency in 3D object 
generation. (3) Adaptive merging- reducing redundancy 
with high-quality voxel-based reconstructions. 
Applications of Pix2Vox include real-time 3D modeling, 
augmented reality applications, and object recognition 
tasks that require volumetric representation. Neural 
implicit representations use continuous functions to 
represent 3D structures, allowing for high-resolution 
reconstructions without memory constraints. 

Mildenhall et al. [69] introduced a novel approach, 
NeRF to view synthesis by representing a scene as a fully 
connected neural network. Unlike traditional methods, 
NeRF optimizes its representation using only a sparse set 
of 2D images with known camera poses. Instead of 
discretized voxels, NeRF models scenes using a 5D 
function that maps spatial locations and viewing directions 
to color and density values. The model uses volume 
rendering techniques to synthesize novel views by 
integrating information along camera rays. NeRF does not 
require explicit 3D supervision, making it highly effective 
for scenarios where 3D ground truth data is unavailable. 
NeRF has found applications in high-fidelity 3D scene 
reconstruction, visual effects, and virtual reality, 
revolutionizing the way 3D models are generated from 2D 
images. 

Dataset-driven approaches have played a pivotal role in 
advancing 3D reconstruction by leveraging large-scale 
labelled datasets for model training and evaluation. 
ShapeNet which is a large-scale 3D model repository that 
has been instrumental in training deep learning models for 
3D object recognition and reconstruction. It provides the 
highly annotated 3D models dataset for supervised 
learning, that serves as a standardized benchmark 3D 
reconstruction. ShapeNet has facilitated numerous 
advancements in CAD model reconstruction that 

introduces a method for machining features with a deep 
learning-based encoder-decoder network. It generates 
features through parametric modelling and converts the 
CAD models into voxel representations for deep learning 
training [75]. This approach enables multiple machining 
features to be reconstructed efficiently, supporting 
industrial and mechanical design applications. In CAD 
models without historical data, design history 
reconstruction entails determining features, parameters, 
and their order. Although earlier methods were not very 
successful, new developments in deep learning provide 
hopeful answers along with potential research  
questions [81]. 

Xu et al. [32] proposed an image-based approach for 
reconstructing 3D industrial parts from 2D images. This 
study includes developing algorithms to extract 3D 
parameters and pose information from images, enabling 
reconstruction of parts such as bolts, gears, and roller 
bearings. The use of CAD-ClassNet and CAD-ReconNet 
in this study highlights the importance of deep learning in 
reconstructing industrial components accurately.  
Wang et al. [35] suggests a neural implicit 3D 
reconstruction technique that uses sparse convolutions and 
concentrates calculations solely on grid points close to the 
surface in order to increase efficiency and preserve detail. 
A 3D residual UNet improves robustness to noise while 
maintaining fine features [36]. Zheng et al. [82] study on a 
generative machine learning model for 3D reconstruction 
of material microstructure, used U-Net architectures and 
GANs to recreate material microstructure in three 
dimensions. GAN-based realism and efficient 
reconstruction of minute microstructural features are made 
possible by U-Net’s encoder-decoder structure with 
multiscale feature extraction. Enhancement guarantees 
that artificial structures closely mimic actual 
microstructures. These developments highlight the 
expanding use of generative models in 3D reconstruction 
by enabling precise digital twins for production and 
replacement parts. 

Asteroid-NeRF is a specific advancement in 3D 
reconstruction for planetary research, providing 
geometrically reliable and illumination-resistant 
reconstructions. Its utilization of a global SDF and visual 
embeddings distinguishes it from previous local or 
volumetric approaches such as Sparse Point Geometry 
(SPG) and Sparse Point Clouds (SPC) that rely on local 
fusion. However, its computational expense, dependency 
on camera postures, and lack of physically oriented 
lighting models are opportunities for development. The 
study contributes robust and generalizable NeRF 
applications in planetary exploration [50]. 

Pananthula and Sebastian [57] proposed a lightweight 
pipeline using monocular RGB images for 3D 
reconstruction, in their study used a custom U-Net++ 
trained on NYU Depth V2 dataset for depth prediction, 
followed by Open3D point-cloud generation and Poisson 
mesh reconstruction. The model achieves competitive 
accuracy with superior efficiency, making it suitable for 
real-time and domain-constrained problems. However, it 
trails Global-Local Path Networks (GLPN) in consistency 
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and would benefit from enhanced generalization via  
multi-view training and uncertainty modeling.  
Hong et al. [83] used multiview UAV pictures and the 
deep learning-based MVS model to rebuild the 3D model 
of the structures after an earthquake to help with the 
process of assessing the damage to the buildings. The 
study analysed different MVS models for 3D 
reconstruction of UAV images and their applicability. 

DFM-MVS method leverages the depth foundation 
model and offers an intriguing improvement to MVS 
learning by substituting depth priors from large foundation 
models for supervision. It offers state-of-the-art findings 
and a workable solution to dataset-label scarcity, making 
it a significant advancement for extensible and label-free 
3D scene reconstruction [84, 85]. The transformer model 
approach advances the field by enabling multiview 
Transformer reconstruction across hundreds of photos at 
once, providing significant gains in reconstruction 
accuracy and speed [86]. 

A volumetric scene is 3D depiction and representation 
of a physical world that divides the interior of the space 
into volume elements, or voxels. These voxels store data 
with various attributes such as vibrance, density, surface 
geometry, semantic labels, etc. A novel explicit volumetric 
rendering technique called LinPrim substitutes linear 
primitives, specifically tetrahedra and octahedra, for dense 
voxels or neural fields. Differentiable rendering is 
achieved by rasterization of primitives on GPU and linear 

interpolation of color/opacity inside each cell built on 
gradient, allowing the method to be trained like a NeRF. 
Volumetric scene includes voxel-based volumetric 
reconstructions using multiple calibrated camera views. 
Silhouette techniques are implemented for binary images, 
whereas voxel coloring uses the volumetric warping tag. It 
implements photo-consistency and visibility constraints 
across arbitrarily multiple views. Dense 3D reconstruction 
enabled without requiring sparse feature matches. 
Domain-warping supports large-scale or infinite scene 
modeling [87, 88]. The challenges posed during 
reconstructions are the computationally intensive 
operations wherein, voxel grids scale poorly. Precise 
camera calibration and controlled illumination are required 
for appropriate processing. The technique struggles in 
untextured regions or shadows. Implicit Differentiable 
Renderer (IDR) enables surface reconstruction through 
differentiable rendering by introducing an implicit neural 
representation that can concurrently describe 3D geometry 
and appearance from multiview images. The SDF 
gradients are used to compute precise surface normals for 
shading. Learnable appearance function models the  
view-dependent appearance for photorealistic  
rendering [77]. 

In recent years NeRF revolutionized image-based 
rendering; Table VI shows the developments in the field of 
NeRF. 

TABLE VI. DEVELOPMENTS IN THE FIELD OF NERF 

Model/Method Methodology Algorithmic Techniques Significance Challenges 

Vanilla NeRF 
[69] 

Per-scene Multi-Layer 
Perceptron (MLP) 

optimized via volume 
rendering from 

multiview calibrated 
images. 

Positional encoding; hierarchical 
sampling; gradient-based 

optimization. 

Detailed and view-dependent 
scene representations without 

explicit geometry; NeRF can be 
optimized directly from 2D 

images. 

Extremely slow convergence, 
impractical for real-time 

applications; designed for static 
scenes and requires retraining for 

each new scene, limiting 
generalization. 

Mip-NeRF [89] 

Extensions of NeRF 
addressing aliasing, 
pose refinement, and 
speed (7% faster than 

NeRF). 

Anti-aliasing via Gaussian 
frustums; multiscale positional 

encoding. 

Scales NeRF to multiscale 
sampling using conical frustum 
representation; encodes a whole 

Gaussian region—preserving 
high-frequency details. 

While Mip-NeRF improves upon 
NeRF, rendering scenes with high 

fidelity still requires significant 
computational resources. Applying 
to diverse, real-world datasets can 
be challenging due to variations in 

scene complexity. 

PlenOctrees / 
SNeRG [90, 91] 

Bake trained NeRF into 
fast lookup structures: 
octree or sparse grids. 

Octree-based spherical radiance 
lookup (PlenOctrees); sparse voxel 
grids with residual MLP (SNeRG). 

Enabling real-time rendering 3K× 
faster. 

Pre-processing heavy, large 
memory; inflexible after baking. 

FastNeRF [92] 
Factorizes radiance 
field for extremely 
high-fps rendering. 

Precompute deep radiance maps; 
directional query via lookup tables; 

graphics-inspired factorization. 

Strong result (~3000× faster than 
NeRF); enables Real-Time and 

Interactive Applications. 

Limited support for dynamic or 
unbounded scenes; training dataset 

and preprocessing overhead. 

Instant-NGP 
[93] 

Hash-based 
multiresolution grid 
encoding allowing 

minute-scale per-scene 
training. 

Spatial hash encoding; tiny MLP; 
multires grid. 

Massive Speed-Up via Compact 
Encoding; Instant-NGP sparked 
wide adoption across fields like 

NeRF acceleration, neural 
image/volume representations, 

signed-distance functions. 

High GPU memory requirements; 
needs empirical hyperparameter 

tuning. 

SSDNeRF [94] 
Single-stage NeRF with 

effective generative 
modelling 

Single-stage latent diffusion + 
NeRF fusion. 

Strong performance under sparse 
input. 

Diffusion model adds training 
complexity and runtime. 

PixelNeRF [95] 

Feed-forward encoder 
conditioned NeRF 

enabling generalization 
across scenes. 

CNN (ResNet) extracts per-view 
features; conditions MLP weights 

or embeddings; no per-scene 
optimization. 

Generate plausible novel view 
synthesis from very few input 

images without test-time 
optimization. 

Lower fidelity than per-scene 
NeRF; blurry in occluded areas, 
limited to training distribution. 

D-NeRF [96] 

Dynamic NeRF 
modeling motion via 

time-conditioned 
volume rendering. 

Two MLPs: canonical scene + 
deformation network; time as 

input; joint learning. 

Extends NeRF to dynamic, 
non-Rigid scenes. 

Requires dense temporal data, 
handles only single-object motion. 
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Block-NeRF / 
Mega-NeRF 

[97] 

Decomposes large 
scenes into per-block 

NeRFs with appearance 
alignment. 

Learned pose refinement; per-
block appearance embedding; 
exposure control; scene tiling. 

Enables large-scale scene 
reconstruction by representing the 

environment using multiple 
compacts NeRFs that each fit into 

memory. 

Complex pipeline, heavy data and 
computing. 

Mixer-NeRF 
[98] 

Hybrid spatial feature 
module before MLP to 

boost detail in real 
multiview scenes. 

MLCA feature mixing; 
squeeze-and-excitation module 

before MLP. 

This method improves the 
learning of perceptual image 
block similarity by more than 

30%. 

Architecturally complex, limited 
real-scene evaluation. 

MIS-NeRF [99] 

Adapted to surgical 
endoscopy images for 

intraoperative 3D 
reconstruction. 

Camera-centre input and response 
modeling; specular-aware loss; 

depth smoothing; ICP alignment. 
Novel medical adaptation. 

Long runtime, designed for 
specific anatomy; lighting/specular 

dependency. 

Compressed 
Instant-NGP 
(CNC) [100] 

Context-based 
compression of 

Instant-NGP 
representation for 
storage reduction. 

Context models over hash grids; 
entropy modeling; hash collisions 

and occupancy priors. 

CNC can significantly compress 
multi-resolution Instant-NGP-

based NeRFs and achieve SOTA 
performance. 

Focus on storage, not 
reconstruction speed; adds 

modeling complexity. 

PhysicsNeRF 
[101] 

Sparse-view 3D 
reconstruction 
depending on 

fundamental physical 
condition/states. 

Depth ranking, consistency and 
sparsity priors integrated into 

NeRF. 

Enables reconstruction with just 8 
input views with ~21.4 dB PSNR 

with good generalization. 

Needs carefully tuned priors, 
performance deteriorates on highly 

novel scenes. 

RA-NeRF [102] 

Pose refinement with 
parameter tunning and 

mapping in dynamic 3D 
scenes. 

Joint photometric + flow-based 
pose filtering within NeRF. 

Robust while handling the noisy 
or missing data; useful in real-

time environments. 

Complex system with real-time 
tasks and computations. 

FA-BARF 
(NeRF 

Convergence) 
[103] 

The convergence is 
speeded within the pose 

uncertainty. 

Frequency-adapted spatial filtering 
replaces coarse-to-fine scheduling. 

Speeds up NeRF convergence and 
enables robust reconstruction 

even with noisy camera inputs. 

Performance degrades in large, 
wide-area scenes; but works for 

object-centric settings. 

Snake-NeRF 
(Tile and Slide) 

[104] 

Scaling NeRF to 
large/satellite scenes or 

volumetric 
representations. 

Out-of-core tiling & sampling with 
GPU-memory-aware scheduling. 

Combines NeRF reconstruction 
and generation, while effectively 

handles the sparse views also. 

Difficult to handle visual tasks 
between tiles. 

PC-NeRF [105] 
Large-scale scene 
reconstruction in 

autonomous driving 

Hierarchical Parent–Child NeRF 
using sparse LiDAR + camera 

views. 

Enables NeRF on massive 
topographic data that demands 
more memory requirements. 

Assumes availability of LiDAR; 
may not generalize to LiDAR-free 

settings. 
 

Since its inception in 2020, NeRF revolutionized  
image-based rendering by learning a continuous 5D 
function, mapping spatial coordinates and viewing 
direction to volume density with emitted radiance, for 
multiview photographs [69]. With large computational 
complexities, NeRF exhibits limitations in aliasing and 
scale variation handling. Mip-NeRF addressed this issue 
by conical frustums instead of point-based rays while 
integrating the positional encoding over these regions, 
reducing rendering artifacts, with faster inferences [89]. 
Baking NeRF precomputed NeRF content into sparse 
neural voxel grids or light field caches with residual MLPs 
to enable very efficient real-time rendering [90]. 
PlenOctrees packed the NeRF style data into octrees with 
precomputed spherical radiance and interpolation, 
providing interactive frame rates suitable for real-time 
applications [91]. FastNeRF focused on ultra-fast 
inference by factoring the network into spatial and 
directional components while caching intermediate 
radiance maps and enabling high-fidelity rendering at over 
200 FPS [92]. Instant Neural Graphics Primitives 
(Instant-NGP) dramatically shortened training in seconds 
and rendering in milliseconds by using a multiresolution 
hash encoding of spatial features paired with a small  
MLP [93]. SSDNeRF [94] is a single-stage NeRF 
framework that fuses latent diffusion with neural radiance 
fields to enable strong performance from sparse input 
views, although the added diffusion component increases 

both training complexity and runtime. PixelNeRF learned 
with the convolutional NeRF that prior conditioned on one 
or few input images, eliminating the need for per-scene 
optimization and generalizing to unseen scenes [95]. NeRF 
introduced time as an additional input and trained 
deformation fields to handle non-rigid temporal motion, to 
model dynamic content [96]. Block-NeRF, decomposed 
large scenes into spatial blocks with individual NeRFs, 
coupled with appearance alignment and pose  
refinement [97]. Mixer NeRF proposed a hybrid  
spatial-feature mixing architecture to improve 3D 
reconstruction efficiency by combining features across 
scales and spatial regions [98]. MIS-NeRF reconstructed 
volumetric anatomy from limited visual inputs in complex 
operative environments [99].  

A compression-focused extension of Instant-NGP 
investigated the lossy encodings and pruning strategies to 
reduce model size while retaining reconstruction  
fidelity [100]. PhysicsNeRF incorporated physical 
illumination priors into training, enhancing the 
reconstruction accuracy from sparse views under unknown 
lighting by embedding physics-guided constraints [101]. 
RA-NeRF proposed robust camera pose estimation under 
complex motion trajectories, jointly optimizing pose and 
scene radiance to reconstruct challenging trajectory 
datasets [102]. FA-BARF replaced cyclic frequency 
annealing in BARF with spatial frequency adaptation, 
accelerating convergence and improving joint pose-scene 
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optimization robustness [103]. Single-stage diffusion 
NeRF unified generative diffusion modeling and  
NeRF-based reconstruction into a single-stage network for 
generation and view synthesis simultaneously [104]. 
Tile-and-slide extended NeRF representations globally 
through tiling and stitching mechanisms, enabling  
earth-scale reconstruction by adapting local NeRF blocks 
to global scales [105]. Lastly, Difix3D+ improved 
reconstruction quality by incorporating diffusion-based 
priors to refine geometry and view synthesis from  
single-step diffusion models in NVIDIA’s 2025 release.  

A critical investigation of NeRFs in image-based 3D 
reconstruction is presented by Remondino et al. [106]. 
Using a variety of criteria, including noise level, geometric 
accuracy, and the number of necessary images, this study 
impartially assesses the advantages and disadvantages of 
NeRFs and offers insights into their suitability for various 
real-world situations as well as the caliber of the resulting 
3D reconstruction. 

V. SUMMARY AND DISCUSSION 

The revolution in image-based 3D reconstruction is 
marked by 3D GAN deep learning techniques. The current 
research emphasizes the hybrid architectures with  
self-supervised training which enhances the performance 
of model. The industrial applications for real-time 
automation includes CAD designing with building 
information modeling. 3D GANs impact the CAD 
workflows in manufacturing industries. GANs with 3D 
deep learning generate the CAD models from images using 
voxels, meshes, etc. with varied geometric representations, 
which has its description in Table VII. 3D GAN methods, 
including voxel-based, point cloud, mesh-based, and 
implicit function GANs, enable efficient and high-quality 
3D CAD reconstruction. These models, such as 3D-GAN, 
pointgrow, and DeepSDF, cater to different reconstruction 
scenarios, from basic shape generation to high-resolution 
modeling. 

TABLE VII. 3D GAN MODELS AND REPRESENTATIONS METHODS   

Representation Models Advantages Limitations 
Voxel 3D-GAN, VoxGAN Easy to process with CNNs, Structured grid High memory usage, Low resolution 

Point Cloud PointGrow, Tree GAN Efficient, Compact, Suitable for sparse data No surface connectivity, Requires post-processing 
Mesh MeshGAN, GraphGAN Explicit surfaces, Suitable for rendering Irregular topology, Difficult optimization 

Implicit 
Function 

Occupancy Networks, 
DeepSDF High-resolution details, Memory efficient Requires optimization for sampling, No explicit 

geometry 
 

Their selection depends on criteria like structured 
training, point-based efficiency, and rendering capability. 
It is expected that in future, 3D reconstruction innovation 
will incorporate the benefits of deep learning and classical 
approaches to further investigate and improve the ability 
to produce more effective and precise 3D reconstruction. 
It might be broadly employed in multimodal information 
fusion, modest terminology with good data synthesis, 
generative machine learning techniques or algorithms, and 
various additional contexts with robust adaptability in  
real-time environments.  

Fig. 11 dipicts applications of the 3D GAN techniques. 
deep learning based 3D reconstruction has evolved with 
robust advancements in various research domains and its 
real-time applications. Still few challenges need to be 
addressed where the recent techniques struggle to stabilize 
high geometric and texture reliability at the cost of heavy 
computations with less scalability. Techniques such as 
NeRF demand large GPU memory for processing 
graphical data with long training sessions and yet, lack 
generalization across varied conditions. Dynamic scenes 
and moving objects pose additional challenges for most 
deep learning pipelines. Several approaches of deep 
learning implemented for 3D reconstruction, like 
volumetric representations, implicit data, point-based 
networks, mesh networks, etc. have a persistent problem 
since they rely heavily on large, view-diverse, annotated 
training sets, limiting their utility across real-time data. 
Also, it may be challenging to implement models such as 
occupancy networks or DeepSDF in real-world situations 
as they need substantial preprocessing and they frequently 
lose fine geometric detail because of pooling or global 
representations. 3D GANs face problems while dealing 

with 3D object reconstructions from limited views or noisy 
depth maps. Recent 3D GANs frequently produce coarse, 
low-resolution meshes or voxel grids, that is affected from 
training instability due to high-dimensional outputs.  

 

 
Fig. 11. Potential applications of 3D GAN techniques. 

Table VIII shows the comparative analysis of 
performance metrics; it helps in understanding the 
strengths and limitations of various deep learning methods 
for 3D reconstruction. Voxel-based models such as 
Pix2Vox/Pix2Vox++ and 3D-R2N2 show improved IoU 
and F-Score with multi-view inputs, though they lag 
behind point-based methods in fine detail preservation. 
Mesh-based approaches like Pixel2Mesh/Pixel2Mesh++ 
achieve competitive F-Scores and lower CD, indicating 
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better geometric fidelity. Point-based architectures 
including PointNet, PointCNN, PointNet++, DGCNN, and 
PCN consistently demonstrate high IoU values, 
underlining their robustness in capturing local and global 
structures. Implicit representations such as DeepSDF 
achieve very low CD and EMD, signifying superior shape 
accuracy. Multi-view stereo methods like MVSNet 
balance accuracy and completeness, though performance 
depends heavily on input quality. Finally, volumetric 
radiance field models like NeRF excel in perceptual 
quality with high PSNR and SSIM, making them effective 
for photorealistic reconstruction. Overall, the trade-offs 
between accuracy, completeness, and perceptual quality 

across representations suggest complementary strengths 
depending on application requirements. 

The future research need focus on the research-gaps 
identified by performing the state-of-art study which 
includes: (1) Efficient, scalable architectures with hybrid 
pipelines that integrate fast depth fusion with selective 
high-detail refinement; (2) Data-efficient models that 
generalizes with self-supervision, domain adaptation, 
few-shot/ meta-learning; (3) Dynamic scene modeling that 
handles motion and occlusion jointly with semantic 
constraints; (4) Unified training that includes surface 
extraction at resolution beyond coarse grids; and (5) 
Robust evaluation frameworks and datasets, especially for 
complex real-world domains like underwater. 

TABLE VIII. PERFORMANCE METRICS 

Model Output Dataset Performance Metrics Ref. No. 

Pix2Vox /  
Pix2Vox++ Voxel ShapeNet 

IoU: ~0.670 
F-Score: ~0.436 

(Single view) 
F-Score: ~0.452–0.462 

IoU: ~0.695–0.719 (Multi views) 

[43] 

3D-R2N2 Voxel ShapeNet 

IoU: ~0.560 
F-Score:  ~0.351 

(Single view)  
IoU: ~0.603–0.636 

F-Score: ~0.368–0.383 
(Multi views) 

[43] 

Pixel2Mesh Mesh ShapeNet 
CD: ~ 0.591 

EMD: ~1.380 
F-Score: 0.5972 

[40] 

Pixel2Mesh++ Mesh ShapeNet CD: ~ 0.486 
F-Score: 0.6648 [52, 53] 

PointNet Point Cloud 
ShapeNet 

S3DIS  
ScanNet v2 

IoU: 0.837 
IoU: 0.411 
IoU: 0.557 

[38] 

PointCNN Point Cloud 
ShapeNet 

S3DIS  
ScanNet v2 

IoU: 0.851 
IoU: 0.572 
IoU: 0.484 

[38, 107] 

PointNet++ Point Cloud ShapeNet IoU: 0.85 [107] 
DGCNN Point Cloud ShapeNet IoU: 0.852 [102] 

PCN Point Cloud ShapeNet IoU: 0.851 [108] 

DeepSDF Implicit SDF ShapeNet CD: ~0.006 
EMD: ~0.07 [28] 

MVSNet Depth volumes DTU 

Accuracy: 0.396  
Completeness: 0.527 

Overall:  0.462 
Accuracy: 0.375;  

Completeness: 0.283;  
Overall: 0.329 

(Distance metrics) 

[74, 84] 

NeRF Volumetric radiance field Realistic Synthetic 360◦ PSNR = 31.01, SSIM = 0.947 [69] 

VI. CONCLUSION 

With the developing technology and expanding the 
possibilities of connection between the real and virtual 
worlds, 3D reconstruction is a highly evolving discipline 
for research and practical use. These developments have 
the power to completely transform a number of industries, 
including manufacturing, medicine, automation and the 
protection of historical assets. These advancements will 
raise living standards by opening up new avenues for 
research and creativity. There is a need to discover how 
technological advances are changing the world around us. 
This research study seeks to identify the potentials and 

difficulties for enhancing the use of image-based 3D 
building through an analysis of the current literature. The 
learnings of this research provide insights for various 
methods of reconstructing 3D models from images and 
highlight the great potential of reconstructing 3D models 
for industrial real-world applications. The neural network 
architectures such as CNN, GNN, autoencoders, GAN are 
investigated with supplementary research understandings. 

Thus, the state-of-art research study depicts the most 
advanced state of evolution in deep learning for 3D 
reconstruction. 3D CAD model produces an improved 
cost-effective final quality product by locating and getting 
rid of inefficiencies. Use of advanced deep learning 
techniques like 3D GAN, deep SDF with different 
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representations have found increasing trends. As 
transformer models are becoming more popular for 3D 
reconstruction with better control over  
manufacturing and increased workload capacity to 
channelise the process; deep learning techniques have 
revolutionized image-based 3D reconstruction by enabling 
more accurate, efficient, and scalable methods for 
generating 3D models from 2D images. NeRF research has 
evolved significantly in recent 5 years, focusing on 
improving rendering speed, scalability, and applicability to 
diverse scenarios. Further exploration of dynamic scenes, 
more efficient representations, and integration with other 
computer vision tasks will be intersert for further reserch. 
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